矩协方差矩阵

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

补充:设 X为 随 机 变 量 , C为 任 意 实数, EX为X的 数 学 期 望 , 则 (B) . ( A) E ( X C ) E ( X EX )
2 2
( B ) E ( X C ) 2 E ( X EX ) 2 (C ) E ( X C ) 2 E ( X EX ) 2 ( D) E ( X C )2 0
1 , 第i只球放入第i只盒子中 令X i ,i 1 ,2 , , n 0,否则
则 X X i , EX EX i , i 1,2,... ,n
i i
Xi
0
1 n
1
1 n
pk 1
1 EX i n
EX EX i 1
i
练习:
习题 解 :X 1, 2, 3, 4 43 33 P ( X 1) 43 每 只 球 有 四 个 盒 子 可选 供择 ;若X 1, 表明每只球有 1,2, 3, 4号 四 个 盒 子 可 供 选 择 , 但 不 能 仅 放2 在 , 3, 4号 盒 子 中 。
33 23 同理: P ( X 2) 3 4 每 只 球 有 四 个 盒 子 可选 供择 ; 若 X 2, 表 明 球 可 放 在 2, 3, 4号 盒子中,但不能仅放3 在 , 4号 盒子中。
考试题型:
1、 设X ~ N ( 1,1),Y ~ N (1,4), X与Y 相互独立,则 D( 2 X 3Y ) ___. x, 0 x 1 2、 设X的 概 率 密 度 f ( x ) 2 x , 1 x 2 0, 其 他 求( 1 )EX , ( 2)分 布 函 数 F ( x ).
协方差矩阵 设n维随机变量(X1,X2,· · · Xn) 的1+1阶混合中心矩
都存在,则称矩阵
为n维随机变量(X1,X2,· · · Xn)的协方差矩阵。 协方差矩阵具有以下性质: (1)协方差矩阵为对称矩阵; (2)协方差矩阵为非负定矩阵。
上一页
下一页
返回
上页 下页 返回
上页 下页 返回

上页 下页 返回
同理:
2 1 P ( X 3) 3 4 1 P ( X 4) 3 4
3
3
X的分布律为:
X
1
37 64
2
19 64
3Βιβλιοθήκη Baidu
7 64
4
1 64
Pk
19 7 1 EX 1 37 2 3 4 64 64 64 64

25 16
第 8题
解:设X=“总的配对数”
设EX C , 则DX E( X C ) .
2
证:DX E( X EX )2
E[( X C ) (C EX )]2 E ( X C ) 2 2(C EX ) E ( X C ) (C EX ) 2 E ( X C ) 2 ( EX C ) 2 EX C , ( EX C ) 2 0 DX E ( X C ) 2 这表明在一切 C值 中 , 只 有 当 C EX时 , 才 使E ( X C ) 2 达 到 最 小 。
3、 设( X , Y )在 区 域 R: 0 x 1, 0 y x上 服 从 均 匀 分 布 , 2, ( x , y ) R 即 f ( x, y) 0, ( x , y ) R 求( 1 ) 边 缘 分 布 ( 2) EX , DX ( 3) P ( X 2Y 0)
相关文档
最新文档