经济数学基础 1试题及答案

合集下载

经济数学基础及参考答案

经济数学基础及参考答案

作业(一)(一)填空题3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 21. 函数212-+-=x x x y 的连续区间是( )答案:D ,可能是cA .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1l i m=+→xxxC.11sinlim 0=→xx x D.1si n l i m=∞→xx x3. 设y x =lg 2,则d y =( ).答案:B A .12d xx B .1d x x ln 10C .ln 10xx d D .1d xx4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x 2 B .xx sinC .)1ln(x +D .x cos(三)解答题问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在;1lim ()lim (sin)x x f x x b b x--→→=+=,0sin lim ()lim 1x x x f x x++→→==,有极限存在,lim ()lim ()1x x f x f x b +-→→===(2)当1==b a 时,)(x f 在0=x 处连续。

国家开放大学电大《经济数学基础1》形成性考核及答案解析

国家开放大学电大《经济数学基础1》形成性考核及答案解析

《经济数学基础12》网上形考任务1至2试题及答案形考任务1 试题及答案题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调减少的是().答案:题目3:设,则().答案:题目3:设,则().答案:题目3:设,则=().答案:题目4:当时,下列变量为无穷小量的是().答案:题目4:当时,下列变量为无穷小量的是(). 答案:题目4:当时,下列变量为无穷小量的是(). 答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目6:().答案:0题目6:().答案:-1题目6:().答案:1题目7:().答案:题目7:().答案:().题目7:().答案:-1题目8:().答案:题目8:().答案:题目8:().答案:().题目9:().答案:4 题目9:().答案:-4 题目9:(). 答案:2题目10:设在处连续,则().答案:1题目10:设在处连续,则().答案:1题目10:设在处连续,则().答案:2题目11:当(),()时,函数在处连续. 答案:题目11:当(),()时,函数在处连续. 答案:题目11:当(),()时,函数在处连续.答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目13:若函数在点处可导,则()是错误的.答案:,但题目13:若函数在点处可微,则()是错误的.答案:,但题目13:若函数在点处连续,则()是正确的.答案:函数在点处有定义题目14:若,则().答案:题目14:若,则().答案:1题目14:若,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目16:设函数,则(). 答案:题目16:设函数,则(). 答案:题目16:设函数,则(). 答案:题目17:设,则().答案:题目17:设,则().答案:题目17:设,则().答案:题目18:设,则().答案:题目18:设,则().答案:题目18:设,则().答案:题目19:设,则().答案:题目19:设,则().答案:题目19:设,则().答案:题目20:设,则().答案:题目20:设,则(). 答案:题目20:设,则(). 答案:题目21:设,则(). 答案:题目21:设,则(). 答案:题目21:设,则().题目22:设,方程两边对求导,可得().答案:题目22:设,方程两边对求导,可得().答案:题目22:设,方程两边对求导,可得().答案:题目23:设,则().答案:题目23:设,则().答案:题目23:设,则().答案:-2题目24:函数的驻点是().答案:题目24:函数的驻点是().答案:题目24:函数的驻点是().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目25:设某商品的需求函数为,则需求弹性().答案:形考任务2 试题及答案题目1:下列函数中,()是的一个原函数.答案:下列函数中,()是的一个原函数.答案:下列函数中,()是的一个原函数.答案:题目2:若,则(). 答案:若,则().答案:若,则(). 答案:题目3:(). 答案:题目3:().答案:题目3:(). 答案:题目4:().答案:题目4:().答案:题目4:().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目6:若,则()答案:题目6:若,则().答案:题目6:若,则(). 答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目9:用分部积分法求不定积分答案:题目9:用分部积分法求不定积分答案:题目9:用分部积分法求不定积分答案:题目10:答案 0题目11:设,则(). 答案:题目11:设,则().答案:题目11:设,则(). 答案:题目12:下列定积分计算正确的是().答案:答案:答案:题目13:下列定积分计算正确的是().答案:答案:答案:题目14:计算定积分,则下列步骤中正确的是().答案:题目14:().答案:题目14:().答案:题目15:用第一换元法求定积分答案:题目15:用第一换元法求定积分答案:题目15:用第一换元法求定积分答案:题目16:用分部积分法求定积分答案:题目16:用分部积分法求定积分答案:题目16:用分部积分法求定积分答案:题目17:下列无穷积分中收敛的是().答案:答案:答案:题目18:求解可分离变量的微分方程答案:题目18:求解可分离变量的微分方程答案:题目18:求解可分离变量的微分方程答案:题目19:根据一阶线性微分方程的通解公式求解答案:题目19:根据一阶线性微分方程的通解公式求解答案:题目19:根据一阶线性微分方程的通解公式求解答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:有关考试的注意事项:一、考试时注意事项:1、考生参加闭卷考试,除携带2B铅笔、书写兰(黑)字迹的钢笔、圆珠笔或0.5mm签字笔、直尺、圆规、三角板、橡皮外(其他科目有特殊规定的除外),其它任何物品不准带入考场。

经济数学1参考答案

经济数学1参考答案
11、
A. B. C. D. 参考答案: C
12、
A. k=0 B. k=1 C. k=2 D. -1/2 参考答案: C
13、
A. (n+1)阶无穷小 B. n阶无穷小 C. 同阶无穷小 D. 高阶无穷小 参考答案: A
14、
A. 不含有对数函数 B. 含有反三角函数 C. 一定是初等函数 D. 一定是有理函数 参考答案: C
一、单项选择题
1、
A. л B. 2л C. 4л D. 6л 参考答案: C
2、
A. -1 B. 0 C. 1 D. 不存在 参考答案: C
3、
A. 1 B. 2 C. 6 D. 1/6 参考答案: C
4、
A.
B. C. D. 参考答案: B
5、
A. B. C. D. 参考答案: C
6、
A. 5/6 B. 1/2 C. -1/2 D. 1 参考答案: A
A. [0,л] B. (0,л) C. [-л/4,л/4] D. (-л/4,л/4) 参考答案: C
26、 若函数f(x)在(a,b)内存在原函数,则原函数有( )
A. 一个 B. 两个 C. 无穷多个 D. 都不对 参考答案: C
27、
A. 必要条件 B. 充分条件 C. 充分必要条件 D. 无关条件 参考答案: A
7、
A.
B.
C. D.
参考答案: B
8、 若函数f(x)在(a,b)内存在原函数,则原函数有( )
A. 一个 B. 两个 C. 无. 参考答案: B
10、 数列有界是数列收敛的( )
A. 充分条件 B. 必要条件 C. 充要条件
D. 既非充分也非必要 参考答案: B

经济数基础学试题及答案

经济数基础学试题及答案

经济数基础学试题及答案一、单项选择题(每题2分,共10分)1. 经济学中,需求曲线通常呈现为:A. 向上倾斜的直线B. 向下倾斜的直线C. 水平直线D. 垂直直线答案:B2. 边际成本与平均成本的关系是:A. 边际成本始终高于平均成本B. 边际成本始终低于平均成本C. 边际成本与平均成本无固定关系D. 边际成本等于平均成本时,平均成本最小答案:D3. 完全竞争市场中,企业在短期内的供给曲线是:A. 边际成本曲线B. 平均成本曲线C. 总成本曲线D. 固定成本曲线答案:A4. 价格弹性的计算公式是:A. (价格变化/需求量变化)×100%B. (需求量变化/价格变化)×100%C. (价格变化/需求量变化)D. (需求量变化/价格变化)答案:B5. 根据洛伦兹曲线,收入分配的不平等程度可以通过:A. 基尼系数来衡量B. 洛伦兹曲线与45度线之间的面积来衡量C. 洛伦兹曲线与45度线之间的距离来衡量D. 洛伦兹曲线与45度线之间的交点来衡量答案:A二、多项选择题(每题3分,共15分)6. 以下哪些因素会影响供给曲线的移动?A. 生产成本的变化B. 消费者偏好的变化C. 相关产品的价格变化D. 技术水平的变化答案:A, C, D7. 宏观经济学中的总需求包括:A. 消费B. 投资C. 政府支出D. 净出口答案:A, B, C, D8. 货币政策工具包括:A. 调整利率B. 公开市场操作C. 调整存款准备金率D. 调整税收答案:A, B, C9. 以下哪些属于宏观经济学中的失业类型?A. 摩擦性失业B. 结构性失业C. 周期性失业D. 非自愿失业答案:A, B, C10. 根据菲利普斯曲线,通货膨胀率与失业率之间的关系是:A. 正相关B. 负相关C. 无相关D. 长期内无相关答案:B, D三、简答题(每题5分,共20分)11. 简述边际效用递减原理。

答案:边际效用递减原理指的是随着消费某种商品的数量增加,消费者从每增加一单位商品中获得的额外满足(即边际效用)逐渐减少。

国开大学电大《经济数学基础1》2020期末试题及答案

国开大学电大《经济数学基础1》2020期末试题及答案

国开大学电大《经济数学基础1》2020期末试题及答案一、选择题(每题3分,共30分)1. 设函数f(x) = x^3 - 6x^2 + 9x - 1,求f(1)的值。

A. 3B. 0C. -3D. -12. 函数y = 2x^3 - 3x^2 + 4在x = 1处的切线斜率为:A. 1B. 2C. 3D. 43. 设函数f(x) = x^2 - 4x + 3,求f'(x)的值。

A. 2x - 4B. 2x + 4C. 4x - 2D. 4x + 24. 若函数f(x)在区间(a,b)内可导,则下列结论正确的是:A. f'(x)在(a,b)内连续B. f(x)在(a,b)内单调C. f'(x)在(a,b)内可积D. f(x)在(a,b)内可导5. 下列函数中,哪个函数在x = 0处不可导?A. y = x^2B. y = |x|C. y = x^3D. y =x^2 + 3x6. 设函数y = 2x^3 - 3x^2 + 4,求y"的值。

A. 12x - 6B. 12x + 6C. 6x - 12D. 6x + 127. 函数y = x^2e^x在x = 0处的极值为:A. 0B. 1C. 2D. 38. 下列函数中,哪个函数在(-∞,+∞)内单调递增?A. y = x^2B. y = x^3C. y = -x^2D. y =-x^39. 求极限lim(x→0) (sin x)/x的值。

A. 0B. 1C. 2D. 无极限10. 设函数f(x) = 2x^3 - 3x^2 + 4,求f'(1)的值。

A. 1B. 2C. 3D. 4二、填空题(每题3分,共30分)1. 函数y = 3x^2 - 2x + 1在x = 2处的导数y' =_______。

2. 函数y = x^3 - 6x^2 + 9x - 1的导数y' = _______。

3. 函数y = e^x在x = 0处的导数y' = _______。

2022国家开放大学电大专科《经济数学基础1》期末试题及答案

2022国家开放大学电大专科《经济数学基础1》期末试题及答案

:2441) 2022国家开放大学电大专科《经济数学基础1》期末试题及答案(试卷号盗传必究一、单项选择题(每小题4分,共20分)I. F为各函歌对中」)中的网个等.) — (JT )S. <(x> B. f(^ ) = y/x1•C. /(x > =lox'・房《工)™2ltur D, /(x) —liur1. <(x ) *3lar夕、a 虹Al + Ar)-/(I) _ 、z A fix)hm -------------- : -------------- =( ).At-M ^XrA.2e :&ec T e3.下列等式中正■的是《).A. d( -■―-—r ) = arctftn^ (Lr 1 <£xBu d( —) = —―r1 +工”x x*Cd(2* ln2)-r(Lr D. d( Unx ) =ctiLr<Lr4.若。

x)—sirvz .■ |/*(x )d_r =().A・ tinjr + c 玫COJUT + cC. — sinx + c IX — ctwiz +c5.下列无分牧效的是《).A.「一&项京以r是答案:l.D 2. B 3.B 4. A 5. B填空题(每小题4分,共20分)6.函散七广足______________________ _函8K就通敬的奇俱住回答).7.巳— .当了—2 _________ 为无芬小・8. + 1 的少B[何星—.9.苔[/(x )dr ■Ntir +< .则/(x ) =_ _ •10. ),dx —.答案:6. <7.08. (— X»O)9. coicr1。

・COST 4 <三、计算题(每小题11分,共44分)8 — 2x — 2H-什鼻极fMhm ------------------- -x —x — 6 12. 没 y «»lax 4- e u•求 y'.£13. 计算不定快分]号姓・ 14. 计算定租分「zlnxdx .i答案:e 1 Ic 1 I=里-互上|打=〔+彳 .................................... "1分〉四、应用题(本题16分)15. 设生产某产品的总成本甫数为C (x>=3 + «r (万元).其中了为产眼.争位:白晚.第何 •r 百晚村的边际枚人为R'Cr )・15 — lr (万元/百晚).求:(Df41R«大时的产■:(2〉在利狷酸大般的产H 的基础上再生产1百吨•利迥会发生什么变化?答案:15.因为边际成本为C'Cr ) = l边际利狷 L r (x > =田'(工> -C'(x ) -U-2JT 令 L'Cr>=0,得 x-7由诚BS 实际建义可切口=7为MJWSft L (x )的01大值互,也是会大值点-因此.当产量 为7百晚时料漏ift 大. .............................................................. .. ...(2)3产■由7百晚:至8百晚时.利润改斐■为.」L =J 《14 — 2x )<Lr =( I4x — x‘)= 112-64—98+49 = —1(万元)<11 分)12. »h 由导数四19!远JT 法网牧基本公式再y* = Ur^r + t? * Y = (Irur ), + <e ")'=1-十."《一5】尸X(11 分)13- 由换元枳分法闵J -jdj =-倡 d(<11 分)14. 由分部机分怯仰一打*IL(x -3心 + I)(jr -3)(742)J x lor dx:2441)即科腐将X少1万元- ........................... —................ H6分)。

经济数学基础综合练习及参考答案

经济数学基础综合练习及参考答案

9.已知 y
52 cos x ,求
y
π ()

2
10.已知
3
y=
ln 2
x ,求
dy

11.设 y esin x cos5 x ,求 dy .
12.设 y tan x3 2 x ,求 dy .
13.已知 y cos2x sin x2 ,求 y ( x) .
14.已知 y
ln 3 x
e
5x
,求
y ( x)
17.需求量 q 对价格 p 的函数为 q( p) 100
. . .
.
p
e 2 ,则需求弹性为 E p

20 2
18.已知需求函数为 q
p ,其中 p 为价格,则需求弹性 Ep =
.
33
三、计算题
2
1. lim x x2
3x x2 4
2
sin 2x 3. lim
x0 x 1 1
5.
lim
x1
tan( x x2 x
D ( , 0)
3.下列各函数对中,(
)中的两个函数相等.
A . f (x) ( x )2 , g ( x) x
B. f ( x)
x2 1 , g( x)
x1
x+ 1
C. y ln x 2 , g (x) 2ln x
D. f ( x) sin 2 x cos2 x , g(x) 1
1
4.设 f (x)

15.由方程 yln(1 x) exy e2 确定 y 是 x 的隐函数,求 y ( x) .
16.由方程 sin y xe y 0 确定 y 是 x 的隐函数,求 y ( x) .

经济数学基础试题及答案

经济数学基础试题及答案

经济数学基础试题及答案I. 选择题1. 在经济学中,边际成本指的是:A. 总成本与产量之间的比率B. 达到某一产量水平所需的额外成本C. 固定成本的变化程度D. 不需支付的成本费用答案:B. 达到某一产量水平所需的额外成本2. 在市场需求曲线下,垄断行为会导致:A. 价格和数量增加B. 价格和数量减少C. 价格增加,数量减少D. 价格减少,数量增加答案:C. 价格增加,数量减少3. 边际收益递减指的是:A. 达到最大产量后,每单位产量的成本逐渐降低B. 达到最大产量后,每单位产量的成本逐渐增加C. 达到最大产量后,每单位产量的收益逐渐降低D. 达到最大产量后,每单位产量的收益逐渐增加答案:C. 达到最大产量后,每单位产量的收益逐渐降低II. 计算题1. 假设市场需求曲线为Qd = 100 - 2P,市场供给曲线为Qs = 2P - 20,则市场均衡价格和数量分别是多少?答案:将市场需求曲线和市场供给曲线相等,得到:100 - 2P = 2P - 204P = 120P = 30将P = 30代入市场供给曲线,得到:Qs = 2P - 20Qs = 2(30) - 20Qs = 40所以,市场均衡价格为30,数量为40。

2. 一个企业的总成本函数为TC = 1000 + 10Q + 0.2Q^2,其中Q代表产量。

每单位产品的售价为20。

求该企业的最优产量和利润。

答案:企业的利润为总收入减去总成本,即Profit = TR - TC。

总收入为售价乘以产量,即TR = 20Q。

代入总成本函数,得到Profit = 20Q - (1000 + 10Q + 0.2Q^2)。

为求最优产量,对利润函数求导数并令其等于0:d(Profit)/dQ = 20 - 10 - 0.4Q = 0-0.4Q = -10Q = 25最优产量为25,将其代入总成本函数,得到:TC = 1000 + 10(25) + 0.2(25^2)TC = 1000 + 250 + 125TC = 1375最优利润为20Q - TC = 20(25) - 1375 = 125 - 1375 = -1250。

《经济数学基础》习题答案及试卷(附答案)

《经济数学基础》习题答案及试卷(附答案)

习题解答第一章 经济活动中的函数关系分析实训一(A )1.填空题:(1)(,2][2,)-∞-+∞ ; (2)()3,5; (3)1x; (4)2x e ;2x e ; (5)473x -,提示:由()()47433433g f x x x =+=+-⎡⎤⎣⎦,所以()473x g x -=.2.(1)tan(2)y x =;(2)(3)y=;(4)y=lg(sin 2)x .3.(1)cos y u =,1xu e =-; (2)ln y u =,222u x x =-+;(3)y =1u x =+;(4)y lg u v =,v =实训一(B )1.由已知可知2110x -<-<,得到201x <<,即定义域为()()1,00,1- .2.由()21f x x -=,可得()()2111f x x -=-+,所以()()21f x x =+.也可令1x t -=.3.(1)u y e =,sin u v =,2v x =;(2)log uv ay =,21u x =+,sin v w =,2w x =. 4. ()()()log log log a a a f x f y x y xy f xy +=+==;()()log log log a a axx f x f y x y f y y ⎛⎫-=-== ⎪⎝⎭. 实训二 (A )1.填空题:(1)y =(2)[]1,3-; (3)2π-,4π; (4)12,π. 2.(1)⨯;(2)⨯;(3)⨯;(4)√.3.(1)由()cos 21y x =+,解得21arccos x y +=,()1arccos 12x y =-, 所以,()()11arccos 12fx x -=-.定义域:[]1,1x ∈-;值域:11,22y π-⎡⎤∈-⎢⎥⎣⎦(2)由()1ln 2y x =++,解得12y x e -+=,12y x e -=-,所以,()112x fx e --=-定义域:(),x ∈-∞+∞;值域:()2,y ∈-+∞ 4.【水面波纹的面积】设面积为S (2cm ),时间为t (s ),则()22502500S t t ππ==【仪器初值】()0.04200.800208986.58Q Q e Q e -⨯-===解得0.808986.582000Q e =≈.实训二(B )1.由()x a f x x b +=+,解得反函数为()11a bx f x x --=-. 由已知()1x a f x x b -+=+,可得1a bx x a x x b-+=-+,相比较,可得a 为任意实数,1b =-.2.由()ln x x ϕ=,()21ln 3g x x ϕ=++⎡⎤⎣⎦,可得()221ln 3ln 3x x g x e e e ϕ+=⋅⋅=⎡⎤⎣⎦所以,()213x g x e+=.实训三【商品进货费用】 设批次为x ,由题意: 库存费:11250030000242C x x=⋅⋅=; 订货费:2100C x =. 【原料采购费用】设批量为x ,库存费用为1C ,进货费用为2C ,进货总费用为12C C C =+.1122C x x=⋅⋅= 23200640000200C xx=⋅=所以进货总费用为:12640000C C C x x=+=+. 【商品销售问题】设需求函数关系式为:d Q ap b =+,其中p 为定价. 由已知可得:1000070700073a ba b=+⎧⎨=+⎩,解得1000a =-,80000b =,所以100080000d Q p =-+; 供给函数为:1003000s Q p =+平衡状态下:价格70p =;需求量10000d Q =. 【商品盈亏问题】设()()()()2015200052000L x R x C x x x x =-=-+=-.()6001000L =; 无盈亏产量:()0L x =,解得400x =. 【供给函数】答案:1052PQ =+⋅. 【总成本与平均成本】总成本()1306C Q Q =+,[]0,100Q ∈. 平均成本()13061306Q C Q Q Q+==+,[]0,100Q ∈.第一章自测题一、填空题1、[2,1)(1,1)(1,)---+∞2、(,)-∞+∞3、(,1)a a --4、23x x -5、2ln(1)x -6、arcsin 2x7、cos(ln )x8、2142R Q Q =-+9、22()2505;()6248100R x x x L x x x =-=-+- 10、6P = 二、选择题1、C2、B3、B4、D5、C三、计算解答题1、(1)22log , 1y u u x ==+(2)1x y u e ==+ 2、1()1 , ()1f x x f x x -=+=- 四、应用题1、(1) 6 , 8P Q == (2) 3.5 , 3P Q == (3) 6.5 , 7P Q ==2、(1)()10200C x x =+,()200()10C x C x x x==+ (2)()15R x x =(3)()()()5200L x R x C x x =-=-,无盈亏点:40x =五、证明题(略)第二章 极限与变化趋势分析实训一(A )1.(1)×;(2)√;(3)×;(4)×;(5)√. 2.(1)收敛,且lim 0n n x →∞=;(2)发散,lim n n x →∞=∞;(3)收敛,且lim 2n n x →∞=;(4)发散.3.(1)收敛,且lim 2x y →∞=;(2)收敛,且0lim 1x y →=;(3)收敛,且lim 1x y →+∞=;(4)发散.【产品需求量的变化趋势】lim lim 0t t t Q e -→+∞→+∞==.实训一(B )(1)无穷大;(2)无穷大;(3)无穷大;(4)无穷大. 【人影长度】越靠近路灯,影子长度越短,越趋向于0.实训二 (A )1.填空题(1)5;(2)2;(3)1;(4)13;(5)∞;(6)∞;(7)2. 2.(1)()()()()2211111112lim lim lim 21121213x x x x x x x x x x x x →→→-+-+===---++; (2)(222211lim2x x x x x x →→→===--;(3)()()2322000222lim lim lim 211x x x x x x x x x x x x x →→→---===---; (4)()()211121111lim lim lim 111112x x x x x x x x x →→→--⎛⎫-===-⎪---++⎝⎭. 3.(1)222112lim lim 2111x x x x x x x →+∞→+∞-⎛⎫-==- ⎪+--⎝⎭; (2)()()()1121lim lim lim 22222222n n n n n n n n n n n n →∞→∞→∞⎛⎫++++-⎛⎫-=-==- ⎪⎪ ⎪+++⎝⎭⎝⎭. 【污染治理问题】由题意可知,该问题为等比级数问题,首项为a ,公比为45,则设n 周后所剩污染物为n a ,则45nn a a ⎛⎫= ⎪⎝⎭,因为4lim 05nn a →∞⎛⎫= ⎪⎝⎭,所以,可以确定随着时间的推移能将污染物排除干净.【谣言传播】 (1)1lim (t)lim11ktt t P ae -→∞→∞==+;(2)121(t)0.8110t P e-==+,可解得2ln 407.38t =≈.实训二(B )1.填空题(1)32π-; (2)0;0.(无穷小与有界函数的乘积为无穷小)(3)0a =,2b =-.2.(1)()3320lim3h x h x x h→+-=;(2)442x x x →→→===.3.由()3lim 30x x →-=,且232lim 43x x x kx →-+=-,可得()23lim 20x x x k →-+=,解得3k =-.4.由题意可知()()21116lim lim 511x x x x x ax bx x→→--++==--,可得7a =-,6b =.实训三 (A )1.填空题(1)1e -;(2)3e -;(3)e ;(4)e ;(5)3k =;(6)5050.1230⨯⨯=万元,()55010.125038.1⨯+-=万元,50.125041.1e ⨯=万元. 2.(1)6e -;(2)1e -;(3)2e -;(4)01e =. 3.(1)0.042003 6.68rtPe e ⨯==万元; 2.25o P =万元.(2)24.38t p =万元;24.43t p =万元.实训三(B )1.(1)(()0111lim 1lim 1lim 11x x x x x x e x x x --→∞→∞→∞⎡⎤⎛⎛⎫⎛⎫-=-=-==⎢⎥⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦;(2)()15lim 15xx x x e →→∞=+=;(3)()1111111lim lim 11xxx x xx e ---→→=+-=;(4)()()()1000ln 121limlim ln 12limln 12x x x x x x x xx →→→+=+=+ ()()112limln 12lnlim 12ln 2x xx x x x e →→=+=+==.2.322lim lim 122x xc x x x c c e e x c x c →∞→∞+⎛⎫⎛⎫=+== ⎪ ⎪--⎝⎭⎝⎭,所以3c =. 实训四 (A )1.填空题 (1)(]0,3;(2)()243,110,1x x x f x x ⎧-+≤-=⎨>⎩;(3)()0lim 1x f x -→=-,()0lim 0x f x +→=,()0lim x f x →不存在; (4)()(),22,-∞--+∞ ; (5)1x =,2x =;(6)1k =.2.图略,()0lim 1x f x -→=,()0lim 0x f x +→=,()0lim x f x →不存在. 3.()()1lim 11x f x f -→==,()1lim 2x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在1x =处不连续.【个人所得税计算】个人所得税的起征点为月收入3500元.850035005000-=,50000.2555455⨯-=;1200035008500-=,85000.25551145⨯-=.【出租车费用】图略,()8, 322, 3836, 8x f x x x x x ≤⎧⎪=+<≤⎨⎪->⎩.实训四 (B )1.图略,()()0lim 10x f x f -→=-=,()0lim 0x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在0x =处不连续.2.由连续的定义可知:()()220lim 1xx k f x e →==+=.3.因为()01f =,()01lim sin00x x f x→=≠(无穷小与有界函数的乘积), 所以0x =为第一类的可去间断点.第二章自测题一、填空题 1、1- 2、1 3、12- 4、345、221,02,0x x x x ⎧+=⎪⎨≠⎪⎩6、1-7、100 ; 0 8、0.035; 5.15e(万)(万)二、选择题1、C2、A3、C4、A5、B 三、计算解答题1、(1)原式=211(1)1 lim lim0(1)(1)1x xx xx x x→→--==+-+(2)原式=lim lim x x=1lim2x==-(3)设1xe t-=,则ln(1)x t=+,0x→时,0t→,原式=10011lim lim1ln(1)ln(1)limln(1)t ttttt ttt→→→==+⋅++1111lnln[lim(1)]ttet→===+(4)原式=sin[lim sin[limx x→+∞=s i n[l]s i n00x===2、(0)2f=00l i m()l) x x xf x---→→→==00lim lim(12x x--→→==+=00lim()lim(2)2x xf x x++→→=+=lim()2(0)xf x f→∴==()f x∴在0x=点连续,从而()f x在(,)-∞+∞内连续.四、应用题第三章经济最优化问题分析实训一(A )1.填空题(1)45x ; (2)2313x -; (3)23x ; (4)5232x --;(5)2ln 2x ; (6)1ln10x ; (7)0; (8)0.2.2log y x =,1ln 2y x '=.212ln 2x y ='=,122ln 2x y ='=.3.(1)()141y x -=-,即43y x =-; (2)()222y x +=--,即22y x =-+; (3)cos y x '=,312x k y π='==,切线方程为123y x π⎛⎫=- ⎪⎝⎭,即126y x π=-. 实训一(B )1.()()()20001sin010limlim lim sin 00x x x x f x f x f x x x x→→→-'====-.2.()()()()000002lim h f x h f x f x h f x h →+-+--()()()()0000022lim2h f x h f x hh f x h f x h →+-=+--()()()()00000022limlim 12h h f x h f x hh f x h f x h →→+-=⋅=+--. 其中()()()00002lim2h f x h f x f x h→+-'=,()()()()()00000021limh h f x f x h f x f x h f x →='+----⎡⎤⎡⎤⎣⎦⎣⎦. 3.因为3,02⎛⎫⎪⎝⎭不在21y x =上,不是切点.设过点3,02⎛⎫⎪⎝⎭与21y x =相切的切线的切点坐标为21,a a ⎛⎫ ⎪⎝⎭,则切点为21,a a ⎛⎫ ⎪⎝⎭的切线方程为:()2312Y X a a a -=--,有已知3,02⎛⎫ ⎪⎝⎭在切线上,带入可得1a =,所以切线方程为:()121y x -=--,即23y x =-+.实训二 (A )1.(1)223146y x x x '=+-; (2)11'ln n n y nx x x --=+; (3)21'41y x x =++; (4)2cosx cosx sinx'(x 1)x y +-=+. 2.(1)22'1xy x =+; (2)22'2sin3x 3cos3x x x y e e =+; (3)'y = (4)22sec cos122'csc sinx 2tan 2cos sin222x x y x x x x ====.3.(1)''2y =; (2)''2x x y e xe --=-+(3)222222(1x )2(2x)''224(1x )x y x x --+-==-+--; (4)2322222(1x)2''2arctanx 1(1x )x x x y x +-=++++. 4.(1)2212dy x xdx y y --+==;(2)x y x y dy y e y xy dx e x xy x++--==--. 【水箱注水】由24r h =,12r h =,22311133212h v r h h h πππ⎛⎫=== ⎪⎝⎭,两边求导得214v h h π''=,由已知2v '=,3h =,带入可得: 1294h π'=,89h π'=所以水位上升的速度为89π米/分.【梯子的滑动速度】由题意可得22100x y +=,两边求导可得:220dx dy xy dt dt +=,即dx y dy dt x dt=-, 将8y =,6x =,0.5dy dt =带入可得:820.563dy dt =-⨯=-.所以梯子的另一端华东的速度为23米/秒.负号表示运动方向. 实训二 (B )1.(1)11(1ln )e x e x y x x x e -=+++; (2)()()1112121y x x x ⎫'=--⎪⎪-+⎭. 2.()()cos sin x x y e x f e x ''=++. 3.将1y y xe -=两边对x 求导可得:0y y dy dy e xe dx dx --=,即1y ydy e dx xe =-.…………(1) 将0,1x y ==带入(1)可得:y e '=. 对(1)继续求导,()()()22121y y y y y y y e xe e e xy e y e xe ''----''==-.4.(1)22x z z xy x ∂'==∂, 22y zz yx y ∂'==∂; (2)2xy x z z ye xy x ∂'==+∂,2xy y z z xe x y∂'==+∂. 实训三 (A )1.填空题(1)单调递增区间,(),0-∞;单调递减区间()0,+∞. (2)6a =-.(3)驻点. (4)()00f x ''<.2.()()3444110y x x x x x '=-=-+=,得驻点1230,1,1x x x ==-=,单调递增区间:()()1.0 1.-+∞ ,单调递减区间:()().10.1-∞- .3.()()23693310y x x x x '=--=-+=,得驻点121,3x x =-=.又由于:66y x ''=-,()1120y ''-=-<,所以11x =-为极大点,极大值为0; ()360y ''=>,所以23x =为极小点,极小值为32-.【定价问题】21200080R PQ P P ==-,25000502500050(1200080)6250004000C Q P P =+=+-=-, 224000160T Q P ==-,21200080625000400024000160L R C T P P P P =--=--+-+28016160649000P P =-+-160161600L P '=-+=,解得:101P =, 167080L =.【售价与最大利润】1100200Q p =-,21100200R PQ P P ==-;220019004400L R C P P =-=+-,40019000L P '=-+=,解得 4.75P =此时:150Q =,112.5L =. 【最小平均成本】210000501000050x x c x x x ++==++;21000010c x '=-+=,解得100x =.【最大收入】315x R px xe -==,33155x x R exe--'=-3(155)0x x e-=-=,解得:3x =,此时115p e -=,145R e -=.实训三 (B )1.(1)设()1xf x e x =--,()10xf x e '=->(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. (2)设()()ln 1f x x x =-+,()1101f x x'=->+(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. 2.()cos cos3f x a x x '=+,没有不可导点,所以cos cos 033f a πππ⎛⎫'=+=⎪⎝⎭,得2a =.又()2sin 3sin3f x x x ''=--,03f π⎛⎫''=<⎪⎝⎭,所以3x π=为极大值点,极大值为3f π⎛⎫= ⎪⎝⎭【采购计划】 设批量为x ,采购费:132********200C x x =⨯=; 库存费:222xC x =⨯=;总费用:12640000C C C x x=+=+; 264000010C x'=-+=,解得800x =唯一驻点, 所以采购分4次,每次800吨,总费用最小.第三章自测题一、填空题 1. 2 2. 12-3. 21x -4. 1-5. 212c o s x xx+ 6. 17. 2l n3x + 8. 2 ; 09. 11ln ; ln y x y x yxy y x x xy --+⋅⋅+10. 12x =二、选择题1、C2、A3、A4、D5、A 三、计算解答题1、(1)([1]y x '''=+=+[12]()1x =⋅⋅⋅==(2)222()()2x x x x y e x e x xe e --'''=⋅+⋅-=- 2、方程221x y xy +-=两边对x 求导,得22()0x y y y x y ''+⋅-+= 解得:22y xy y x-'=-,将0,1x y ==代入,得切线斜率12k =,所以,切线方程为:11(0)2y x -=-,即:220x y -+=. 3、定义域(,)-∞+∞2363(2)y x x x x '=-=- 令0y '=,得驻点120,2x x ==递增区间:(,0)-∞、(2,)+∞ 递减区间:(0,2)极大值:(0)7f = 极小值:(2)3f = 四、应用题1、50S t ==(50)50dSt dt'== 所以,两船间的距离增加的速度为50千米/小时. 2、第四章 边际与弹性分析实训一(A )1.填空题(1)0.2x ∆=, 2.448y ∆=, 2.2dy =. (2)1x dy edx ==. (3)12dy x dx x ⎛⎫=+⎪⎝⎭. (4)cos(21)x +,2cos(21)x +. (5)[]()f g x ',[]()()f g x g x ''.2.(1)(12)dy x dx =+; (2)221dy dx x =+; (3)222(22)x x dy xe x e dx --=-; (4)322(1)dy x x dx -=-+; (5)23(1)1dy dx x =-+; (6)1dx dy x nx=. 3.()ln 11x y x x '=+++,11ln 22x y ='=+,所以11ln 22x dy dx =⎛⎫=+ ⎪⎝⎭. 【金属圆管截面积】2s r π=,2200.05ds r r πππ=∆=⨯=.实训一(B )1.(1)2sec x ;(2)1sin 5x 5;(3)2x ;(4)232x ;(5)21x +;(6)arctan x . 2.将x yxy e+=两边对x 求导,()1x yy xy ey +''+=+,解得:x y x ye yy x e ++-'=-,所以x y x ye ydy dx x e++-=-.3.(1110.001 1.00052≈+⨯=;(20.02221 2.001783⎛⎫==≈+= ⎪⨯⎝⎭; (3)()ln 1.01ln(10.01)0.01=+≈; (4)0.0510.05 1.05e ≈+=. 【圆盘面积的相对误差】2s r π=,0.2r ∆≤()'2s ds s r r r r π∆≈=∆=∆(1)()()22482240.29.65s ds cm cm πππ∆≈=⨯⨯==; (2)2220.22 1.67%24r r r s ds s s r r ππ∆∆∆≈===⨯≈. 实训二 (A )1.(1)()2'2x f x xe =;(2)[]1'()(1)a bf x x e a x ac --=++.2.(1)()21900110090017751200C =+⨯=;17757190036C ==. (2)()39002C '=,表示第901件产品的成本为32个单位;()51000 1.673C '=≈,表示第1001件产品的成本为53个单位. 3.(1)(50)9975R =;9975199.550R ==. (2)()502000.0250199R '=-⨯=,表示第51件产品的收入为199个单位. 4.22()()100.01520050.01200L R x C x x x x x x =-=---=--,50.020L x '=-=,解得唯一驻点250x =,所以当每批生产250个单位产品时,利润达到最大.实训二(B )1.()()()()()242,04282, 4x x x x L x R x C x x x ⎧--+≤≤⎪=-=⎨⎪-+>⎩, 即()232,0426, 4x x x L x x x ⎧-+-≤≤⎪=⎨⎪->⎩,求导()3,041, 4x x L x x -+≤<⎧'=⎨->⎩,令()0L x '=解得3x =百台(唯一驻点) 所以每年生产300台时,利润达到最大.()()430.5L L -=-万元,在最大利润的基础上再生产1百台,利润将减少0.5万元.2.()0.50.25C a a =+(万元)()2152R a aa =- ()22150.50.25 4.750.522a L a a a a a =---=-+-令() 4.750L a a '=-+=,解得 4.75a =(百台)又()10L a ''=-<,有极值的第二充分条件,可知当 4.75a =为最大值(唯一驻点) 所以该产品每年生产475台时,利润最大.实训三 (A )1.填空题 (1)1axy=;(2)21x Ey Ex ==;(3)1ln()4p η=-;(4)()334η=,()41η=,()554η=. 2.(1)15x η=; (2)3(3)5η=,价格为3时,价格上涨1%,需求下降0.6%,缺乏弹性;(5)1η=,价格为5时,价格上涨1%,需求下降1%,单位灵敏性; 6(6)5η=,价格为6时,价格上涨1%,需求下降1.2%. 3.(1)500P =元时,100000Q =张. (2)18002ppη=-.(3)1η=时,18002600p p p =-⇒=所以:当0600p ≤<时,1η<;当600900p <≤时,1η>.实训三 (B )1.(1)224202EQ x x Q Ex Q x '==--,243x EQ Ex ==-,所以价格增长5%,需求量减少6.7%;(2)()()3220R x xQ x x x ==--,x =403Q =.2.(1)2Q P '=-,48P Q ='=-,经济意义:在价格4P =的基础上,增加一个单位,需求量减少8个单位.(2)22275P P Q Q P η'=-=-,4320.542359P η===,经济意义,在4P =的基础上涨1%,需求减少0.54%.(3)375R PQ p p ==-,3375375p p p pη-=-,(4)0.46η=,经济意义,在4P =的基础上,若价格上涨1%,收入上涨0.46%.(4)198(6)0.46234η-=≈-,经济意义,在6P =的基础上,若价格上涨1%,收入减少0.46%. (5)375R p p =-,275305R p p '=-=⇒=,又6R p ''=-,()5300R ''=-<,所以由极值的第二充分条件,可知5P =时,总收入最大.第四章自测题一、填空题 1. 22 ; 2xxe e2.212x 3. arctan x4. 0.1 ; 0.63 ; 0.6 5. 45 ; 11 ; 456.10 ; 10% ; 变动富有弹性 7. 15%20% 8. 10% 二、选择题1、C2、B3、D4、A5、C 三、计算解答题1、(1)2222222()()2(2)x x x x y x e x e xe x e x ''''=⋅+⋅=+⋅2222222(1)x x x x e x e x e x =+=+ 22(1)xd y y d x xe x d x'∴==+ (2)222sin(12)[sin(12)]y x x ''=+⋅+2222s i n (12)c o s (12)(12)x x x '=+⋅+⋅+ 24s i n (24)x x =+ 24s i n (24)d y y d x x x d x'∴==+ 2、方程242ln y y x -=两边对x 求导,得31224dy dyy x dx y dx⋅-⋅⋅= 解得,3221dy x y dx y =-,3221x y dy dx y ∴=-3、四、应用题1、(1)()60.04C Q Q '=+ ()300()60.02C Q C Q Q Q Q==++(2)2300()0.02C Q Q'=-+令()0C Q '=,得Q = (3)2()()(204)204R Q P Q Q Q Q Q Q =⋅=-⋅=-2()()() 4.0214300L Q R Q C Q Q Q =-=-+- ()8.0414L Q Q '=-+ 令()0L Q =,得Q =2、 4Q P '=-(1)(6)24Q '=-,6P =时,价格上升1个单位,需求量减少24个单位.(2)22224(1502)15021502P P P Q P Q P P η''=-⋅=-⋅-=-- 24(6)13η=6P =时,价格变动1%,需求量变动2413% (3)23()()(1502)1502R P Q P P P P P P =⋅=-⋅=-33(1502)1502E R P PR P P E P R P P''=⋅=⋅--2215061502P P -=-61113P EREP==-6P =时,若价格下降2%,总收入将增加2213%第五章 经济总量问题分析实训一(A )1.填空题(1)3x ,3x C +; (2)3x ,3x C +; (3)cos x -,cos x C -+;(4C ; (5)arctan x ,arctan x C +.2.(1)B ; (2)C ; (3)D ; (4)A .3.(1)5322225x x C -+;(2)31cos 3xx e x C --+;(3)21x x C x-++; (4)(2)ln 2xe C e+. 4.(1)1arctan x C x--+;(2)sin cos x x C ++. 【曲线方程】由题意()21f x x '=+,所以()()()23113f x f x dx x dx x x C '==+=++⎰⎰,又过点()0,1带入,得到1C =,所以曲线方程为:()3113f x x x =++. 【总成本函数】由题意可得()220.01C x x x a =++,又固定成本为2000元,所以 ()220.012000C x x x =++. 【总收入函数】()()278 1.2780.6R x x dx x x C =-=-+⎰,由()000R C =⇒=,所以总收入函数为()2780.6R x x x =-.实训一(B )1.填空题(1)sin 2ln x x x +;(2)223cos3x e x +;(3)ln x x C +. 2.(1)D ; (2)B .3.(1)322233331u u u I du u du u u u -+-⎛⎫==-+- ⎪⎝⎭⎰⎰ 2133ln 2u u u C u=-+++; (2))32332333I dx x x C ===-+⎰;(3)()222222121212arctan 11x x I dx dx x C x x x x x ++⎛⎫==+=-++ ⎪++⎝⎭⎰⎰; (4)()()()1111tttt te e I dt edt e t C e +-==-=-++⎰⎰.实训二 (A )1.填空题 (1)212x ; (2)x e --; (3)ln x ; (4)arctan x ; (5)23x x +; (6)arcsin x . 2.(1)B ; (2)B .3.(1)()()()11cos 2121sin 2122I x d x x C =++=++⎰; (2)()()3212313139I x x C =+=++;(3)()()231ln ln ln 3I x d x x C ==+⎰;(4)111xx I e d e C x ⎛⎫=-=-+ ⎪⎝⎭⎰.4.(1)sin sin sin x xI e d x eC ==+⎰; (2)()()11ln 11x xx I d e e C e =+=+++⎰;(3)()()2222ln 22d x x I x x C x x -+==-++-+⎰;(4)22221111111x x x I dx dx x x x ++-⎛⎫==+- ⎪+++⎝⎭⎰⎰ 21l n (1)a r c t a n 2x x x C=++-+. 5.(1)()x x x x x I xd e xe e dx xe e C -----=-=-+=--+⎰⎰;(2)()()()ln 1ln 1ln 1I x dx x x xd x =+=+-+⎰⎰()()11ln 1ln 111x x x x dx x x dx x x +-=+-=+-++⎰⎰()()l n 1l n 1x x x x C =+-+++. 【需求函数】由已知,()111000ln3100033p pQ p dp C ⎛⎫⎛⎫=-⨯=+ ⎪ ⎪⎝⎭⎝⎭⎰ 又因为0p =时,1000Q =,代入上式,得到0C =.所以,()110003pQ p ⎛⎫= ⎪⎝⎭.【资本存量】由已知,32()2(1)y I t dt t C ===++⎰⎰因为0t =时,2500498y C C =+=⇒= 所以,322(1)498y t =++.实训二 (B )1.填空题(1)ln ()f x C +;(2)arctan(())f x C +;(3)'()()xf x f x C -+. 2.(1)()()2arctan 1x x x d e I e C e ==++⎰;(2)()()11131431dx I dx x x x x ⎛⎫==-⎪-+-+⎝⎭⎰⎰113l n 3l n 1l n 441x I x x C C x -=⎡--+⎤+=+⎣⎦+;(3)()()2arctan 111dxI x C x ==++++⎰;(4)()22222x x x x x I x d e x e e dx x e xe dx -----=-=-+=--⎰⎰⎰()22222x x x x x x I x e xe e C x e xe e C ------=----+=-+++. 【物体冷却模型】设()T t 为t 时刻物体的温度,由冷却定律可得:0()dTk T T dt=-, 分离变量0dT kdt T T =-,两边积分0dTkdt T T =-⎰⎰,可得:()0ln ln T T kt c -=+,0()kt T t T ce =+.由已知()0100T =,()160T =,020T =,带入得到:80c =,ln 2k =-, 所以ln2()2080t T t e -⋅=+, 当ln 23020803te t -⋅=+⇒=.实训三 (A )1.填空题 (1)122lim(1)nn i i n n→∞=+∑;(2)2)x dx -;(3)2π;(4)0. 2.(1)12010(3)3S x dx =+=⎰; (2)12218(2)3S x x dx -=--=⎰;(3)1303(1)4S x dx =-=⎰或034S ==⎰.实训三 (B )1.(1)分割:将[]0,4n 等分,每份长度为4n ;(2)近似代替:2412823i i n iA n n n⎡⎤+⎛⎫∆=⋅+= ⎪⎢⎥⎝⎭⎣⎦;(3)求和:()2212221111281281282nnni ii i n n n in n iA A n nn===++++≈∆===∑∑∑; (4)取极限:()2211282lim16n n n n A n→∞++==. 2.1sin xdx π⎰.3.22211113ln ln 222x dx x x x ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭⎰.实训四 (A )1.填空题(1)64;(2)1;(3)2π;(4)3;(5)1. 2.(1)()()()44341118111144I x d x x =--=-=⎰; (2)()()44223328I x dx xx =+=+=⎰;(几何上为直角三角形的面积)(3)22242200111222x x e I e dx e -===⎰; (4)2112111xx I e d e e x =-=-=⎰(5)01cos sin 222x x x I dx πππ++===⎰; (6)0;(利用当积分区间为对称区间,被积函数为奇函数时定积分的性质) (7)121211122222235I xdx xdx xdx xdx -=+=+=+=⎰⎰⎰⎰;(8)02sin 4I xdx π==⎰.(利用定积分的周期性)【资本存量问题】 (1)434211214I t ===⎰(万元);(4)33224422820 6.87x xtx x ⎛⎫==-=⇒=≈ ⎪⎝⎭⎰.【投资问题】01000P =,200A = 0.05()200T t tdP e dt-= 0.05()0.05020040004000TT t T t P edt e -==-+⎰ 10t =,0.5400040002595t P e=-+= 因为0.515741600T P e-≈<,所以,此项投资不恰当.实训四 (B )1.因为()1229214x dx --+=-⎰,()1129214x dx -+=⎰,()20216x dx +=⎰,()21214x dx +=⎰, ()3222213x dx +=⎰, 所以应该分两种情况: (1)因为()3403kf x dx =⎰,()()332240221816333k f x dx x dx -+=-==⎰⎰ 所以,0k =; (2)因为()()102112f x dx f x dx ---=⎰⎰,由对称性可知1k =-.2.对()21f x dx -⎰作代换令1x t -=(切记:定积分的换元要换限,积分值不变),则有:()()21011f x dx f t dt --=⎰⎰,所以,()()21101101112tte f x dx f t dt dt dt e t ---==+++⎰⎰⎰⎰ ()()()()001101011132ln 1ln 2ln 121t t td e ed te t e t e --+=++=+++=+++⎰⎰. 3.()()()()11111111I xf x dx xdf x x f x f x dx ----'===-⎰⎰⎰()()()()21111110x f f e f f --=+--=+-=.因为()()222x x f x e xe --'==-,()f x 为奇函数,所以()()110f f +-=.【储存费用问题】第五章自测题一、填空题 1.sin x x e c ++2.5314453x x x c -++ 3.ln xdx4.21ln 2x c +5.196.327.94π8.21200 ;200Q Q - 9.二、选择题1、D2、B3、A4、B5、C 三、计算解答题 1、(1)原式=1111()(3)(2)532dx dx x x x x =--+-+⎰⎰ 113[l n 3l n 2]l n 552x x x c cx -=--++=++ (2)原式=22111112sin ()cos cos cos1d x x x πππ-==-⎰2、(1)222222212(1)()()(1)(1)x x x F x G x dx dx x x x x ++++==++⎰⎰22111()arctan 1dx x c x x x=+=-+++⎰(2)222222212(1)3()()(1)(1)x x x F x G x dx dx x x x x -+--==++⎰⎰ 22131()3arctan 1dx x c x x x=-=--++⎰3、原式=31222(1)(1)1)33x x =+=+=⎰⎰四、应用题 1、(1)32412)2(24S x x dx x x =-=-=(2)1100()()1x x S e e dx ex e =-=-=⎰2、(1)2()()(100020)C Q C Q dQ Q Q dQ '==-+⎰⎰2311000103Q Q Q c =-++(0)9000C = ,9000c ∴=, 321()10100090003C Q Q Q Q ∴=-++ ()3400R Q Q = 321()()()10240090003L Q R Q C Q Q Q Q =-=-++- (2)令()()R Q C Q ''=,得60Q = 最大利润(60)99000L =(元) 3、.期末考试(90分钟)一、选择题(每题3分,共9分)1、设()0, 0x f x k x ≠=⎪=⎩在0x =处连续,问k =( )。

国开大学电大《经济数学基础1》2020期末试题及答案(试卷号:2441)

国开大学电大《经济数学基础1》2020期末试题及答案(试卷号:2441)

国开大学电大《经济数学基础1》2020期末试题及答案(试卷号:2441)一、选择题(每题2分,共20分)1. 下列函数中,奇函数是()A. f(x) = x^3B. f(x) = x^2C. f(x) = |x|D. f(x) = 1/x答案:A2. 函数f(x) = 2x - 3在区间(-∞,+∞)内是()A. 递增函数B. 递减函数C. 常数函数D. 非单调函数答案:A3. 下列极限中,正确的是()A. lim(x→0) (sinx)/x = 1B. lim(x→∞) (1/x) = 1C. lim(x→0) (1/cosx) = 1D. lim(x→∞) (x^2) = 0答案:A4. 函数y = e^x在x = 0处的导数是()A. 1B. eC. 0D. -1答案:A5. 下列函数中,可导的是()A. f(x) = |x|B. f(x) = |x - 1|C. f(x) = √xD. f(x) = 1/x^2答案:C6. 下列函数在区间(0,+∞)内单调递增的是()A. f(x) = x^2B. f(x) = x^3C. f(x) = 1/xD. f(x) = -x^2答案:B7. 函数y = 2x^3 - 3x^2 + 4x + 5的拐点是()A. (0, 5)B. (1, 3)C. (2, 8)D. (3, 0)答案:B8. 下列积分中,正确的是()A. ∫(x^2)dx = (1/3)x^3 + CB. ∫(1/x)dx = ln|x| + CC. ∫(e^x)dx = e^x + CD. ∫(sinx)dx = -cosx + C答案:B9. 下列行列式中,值为0的是()A. |1 2 3||4 5 6||7 8 9|B. |1 0 1||0 1 0||1 0 0|C. |1 2 3||4 5 6||7 8 9|D. |1 2 3||3 2 1||2 3 1|答案:A10. 下列线性方程组中,有解的是()A. x + y = 22x - y = 3B. x + y = 22x - y = 4C. x + y = 32x - y = 4D. x + y = 12x - y = 3答案:A二、填空题(每题2分,共20分)11. 函数f(x) = x^3 - 3x 在x = 0处的导数f'(0) = _______。

《经济数学基础》答案

《经济数学基础》答案

第17题: 下面哪一个可以用泊松分布来衡量( B)。

A一个班学生们的身高B一段道路上碰到坑的次数C投掷硬币时遇到正面朝上的概率D某稀有金属的半衰期长短第18题: 线性回归方法是做出这样一条直线,使得它与坐标系中具有一定线性关系的各点的( C)为最小。

A水平距离的平方和B垂直距离的和C垂直距离的平方和D垂直距离的平方第19题: 当两变量的相关系数接近相关系数的最小取值-1时,表示这两个随机变量之间( B)。

A几乎没有什么相关性B近乎完全负相关C近乎完全正相关D可以直接用一个变量代替另一个第20题: 关于概率,下列说法正确的是( ABC)。

A是度量某一事件发生的可能性的方法B概率分布是不确定事件发生的可能性的一种数学模型C值介于0和1之间D所有未发生的事件的概率值一定比1小第21题: 下列哪些方面需要用到概率知识分析其不确定性( ABC )。

A外汇走势B不良贷款率预测C证卷走势D税收确认第22题: 什么样的情况下,可以应用古典概率或先验概率方法( BD )。

A不确定有什么样的结果空间B不确定结果的范围是已知的C不确定结果发生的概率不一样D不确定结果具有等可能性第23题: 关于协方差,下列说法正确的有( ABD )。

A协方差体现的两个随机变量随机变动时的相关程度B如果P=1,则I 和n有完全的正线性相关关系C方差越大,协方差越大D Cov(x,η)=E(X-EX)( η-Eη)第24题: 关于中位数,下列理解错误的有( BC )。

A当所获得的数据资料呈偏态分布时,中位数的代表性优于算术平均数B当观测值个数为偶数时,(n+1)/2位置的观测值,即X(n+1)/2为中位数C当观测值个数为偶数时,(n+1)/2位置的观测值,X(n+1)/2为中位数D将资料内所有观测值从小到大一次排列,位于中间的那个观测值,称为中位数第25题: 线性回归时,在各点的坐标为已知的前提下,要获得回归直线的方程就是要确定该直线的( BD )。

经济数学基础试题及答案

经济数学基础试题及答案

经济数学基础试题及答案一、单项选择题(每题2分,共10分)1. 下列函数中,哪一个是偶函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = x^2 + x \)D. \( f(x) = \sin(x) \)答案:A2. 微积分中,求定积分 \(\int_{0}^{1} x^2 dx\) 的值是多少?A. 0B. 1C. \(\frac{1}{3}\)D. 2答案:C3. 线性代数中,矩阵 \( A \) 与矩阵 \( B \) 相乘,结果矩阵的行列数是什么?A. \( A \) 的行数与 \( B \) 的列数B. \( A \) 的行数与 \( B \) 的行数C. \( A \) 的列数与 \( B \) 的列数D. \( A \) 的列数与 \( B \) 的行数答案:D4. 概率论中,如果事件 \( A \) 和事件 \( B \) 是互斥的,那么\( P(A \cup B) \) 等于什么?A. \( P(A) + P(B) \)B. \( P(A) - P(B) \)C. \( P(A) \times P(B) \)D. \( P(A) / P(B) \)答案:A5. 经济学中,边际效用递减原理指的是什么?A. 随着消费量的增加,每增加一单位商品带来的额外满足感逐渐减少B. 随着消费量的增加,每增加一单位商品带来的额外满足感逐渐增加C. 随着消费量的增加,每增加一单位商品带来的额外满足感保持不变D. 随着消费量的减少,每增加一单位商品带来的额外满足感逐渐增加答案:A二、填空题(每题3分,共15分)1. 函数 \( f(x) = 2x + 3 \) 的反函数是 ________。

答案:\( f^{-1}(x) = \frac{x - 3}{2} \)2. 函数 \( y = x^2 \) 在 \( x = 1 \) 处的导数是 ________。

经济数学基础作业(一)参考答案

经济数学基础作业(一)参考答案

经济数学基础作业(一)(一)填空题1.___________________sin lim0=-→xxx x . 答案:0解:x x x x sin lim 0-→=011sin lim 1)1(lim 00=-=-=-→→xxx simx x x因为2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 1k )0()(lim )(lim )0(,1)1(lim )(lim ,1)1(lim )(lim ox ox 2ox ox 2ox ox ---=====+==+=+++→→→→→→,所以是:而函数连续的充要条件解:f x f x f k f x x f x x f3.曲线x y =+1在(1,2)的切线方程是 . 答案:y=12x+32解:曲线)(x f y =在),(00y x 点的切线方程公式是))((00/0x x x f y y -=-2321),1(212-y ,21)1(,21)()(/21/21/+=-====-x y x f x x x f 即:所以有:4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 解:因为)1(+x f =4)1(41222++=+++x x x ,所以,4)(2+=x x f x x f 2)(/=5.设x x x f sin )(=,则__________)2π(=''f ..答案:2π-解:2π2π02πsin 2π2π2)2π(,sin 2)sin ()(,sin )(/////-=-=-=-=-+=+=con f x x conx x x conx conx x f xconx x x f (二)单项选择题1. 当+∞→x 时,下列变量为无穷小量的是( D )A .)1ln(x +B . 12+x xC .21x e - D . xxsin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx x C.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg 2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5./1(),()f x f x x==则( B ) A .21x B .—21xC .1xD .1x (三)解答题1.计算极限(1)、2112lim )1)(1(2)-1)(x -x (lim 123lim 11221-=+-=+-=-+-→→→x x x x x x x x x x 解: (2)、212143lim )4)(2()3-(x )2(lim 8665lim 22222=--=--=---=+-+-→→→x x x x x x x x x x x x 解:21111lim )1x -1(11lim )1x -1()1x -1(11lim 11lim).3(0000-=+--=+--=++--=--→→→→x x x x x x x x x x x )(解:(4)32423532lim 423532lim 423532lim 22222222=+++-=+++-=+++-∞→∞→∞→x x x x xx x x x x x x x x x x x 解:535355sin 1lim 33sin lim 535sin 533sin lim 5sin 3sin lim)5(0000=••=••=→→→→xx x x x x x x x x x x x x x x 解:42)2sin(lim )2(lim 2)2sin(2lim )2sin()2)(2(lim )2sin(4lim )6(222222=--+=--+=--+=--→→→→→x x x x x x x x x x x x x x x x 解:2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x x x a x b x x x f , 问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续..1)0()(lim )(lim 0)(21),(lim )(lim 0x )(,,1sin lim )(lim ,0lim 1sin lim )1sin(lim )(lim 1000000a b f x f x f x x f b x f x f x f xxx f b b b x x b x x x f x x x x x x x x x x ===========+=+=+=-+-+++----→→→→→→→→→→,即:点连续,所以在)因为(。

经济数学基础试题及答案

经济数学基础试题及答案

经济数学基础试题及答案一、选择题(每题2分,共10分)1. 以下哪个选项是微分的定义?A. 函数在某一点的极限B. 函数在某一点的导数C. 函数在某一点的切线斜率D. 函数在某一点的切线方程答案:B2. 已知函数f(x) = 3x^2 - 2x + 1,求f'(x)。

A. 6x - 2B. 6x^2 - 2C. 3x^2 - 2D. 3x + 1答案:A3. 以下哪个选项是积分的定义?A. 函数在某一点的极限B. 函数在某一段区间的面积C. 函数在某一点的导数D. 函数在某一段区间的切线斜率答案:B4. 已知曲线y = x^3 + 2x^2 - 5x + 1,求其在x=1处的切线斜率。

A. 7B. 9C. 11D. 13答案:B5. 以下哪个选项是泰勒级数的定义?A. 函数在某一点的极限B. 函数在某一点的导数C. 函数在某一点的切线方程D. 函数在某一点的展开式答案:D二、填空题(每题3分,共15分)1. 函数f(x) = sin(x)的导数是_________。

答案:cos(x)2. 函数f(x) = e^x的不定积分是_________。

答案:e^x + C3. 函数f(x) = ln(x)的不定积分是_________。

答案:x * ln(x) - x + C4. 函数f(x) = x^3的二阶导数是_________。

答案:6x5. 函数f(x) = x^2 + 3x + 2的极值点是_________。

答案:-3/2三、解答题(每题10分,共30分)1. 求函数f(x) = x^3 - 6x^2 + 11x - 6的极值点。

答案:首先求导数f'(x) = 3x^2 - 12x + 11,令f'(x) = 0,解得x = 1 或 x = 11/3。

检查二阶导数f''(x) = 6x - 12,当x = 1时,f''(1) = -6 < 0,所以x = 1是极大值点;当x = 11/3时,f''(11/3) = 2 > 0,所以x = 11/3是极小值点。

专科《经济数学基础》一套练习题库及答案

专科《经济数学基础》一套练习题库及答案

一.选择题1.函数y= 是()A.偶函数B.奇函数 C 单调函数 D 无界函数文档收集自网络,仅用于个人学习2.设f(sin)=cosx+1,则f(x)为()A 2x-2B 2-2xC 1+xD 1-x文档收集自网络,仅用于个人学习3.下列数列为单调递增数列地有()A.0.9 ,0.99,0.999,0.9999 B.,,,C.{f(n)},其中f(n)= D. {}4.数列有界是数列收敛地()A.充分条件 B. 必要条件C.充要条件 D 既非充分也非必要5.下列命题正确地是()A.发散数列必无界B.两无界数列之和必无界C.两发散数列之和必发散D.两收敛数列之和必收敛6.()A.1B.0C.2D.1/2文档收集自网络,仅用于个人学习7.设e 则k=( )A.1B.2C.6D.1/6文档收集自网络,仅用于个人学习8.当x1时,下列与无穷小(x-1)等价地无穷小是()A.x-1B. x-1C.(x-1)D.sin(x-1)文档收集自网络,仅用于个人学习9.f(x)在点x=x0处有定义是f(x)在x=x0处连续地()A.必要条件B.充分条件C.充分必要条件D.无关条件10、当|x|<1时,y= ()A、是连续地B、无界函数C、有最大值与最小值D、无最小值11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为()文档收集自网络,仅用于个人学习A、B、e C、-e D、-e-1文档收集自网络,仅用于个人学习12、下列有跳跃间断点x=0地函数为()A、xarctan1/xB、arctan1/xC、tan1/xD、cos1/x13、设f(x)在点x0连续,g(x)在点x0不连续,则下列结论成立是()A、f(x)+g(x)在点x0 必不连续B、f(x)×g(x)在点x0必不连续须有C、复合函数f[g(x)]在点x0必不连续D、在点x0必不连续14、设f(x)= 在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b满足()A、a>0,b>0B、a>0,b<0C、a<0,b>0D、a<0,b<015、若函数f(x)在点x0连续,则下列复合函数在x0也连续地有()A、B、C、tan[f(x)]D、f[f(x)]16、函数f(x)=tanx能取最小最大值地区间是下列区间中地()A、[0,л]B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)17、在闭区间[a ,b]上连续是函数f(x)有界地()A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b) <0是在[a,b]上连续地函f(x)数在(a,b)内取零值地()A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值地有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+120、曲线y=x2在x=1处地切线斜率为()A、k=0B、k=1C、k=2D、-1/221、若直线y=x与对数曲线y=logx相切,则()A、eB、1/eC、exD、e1/e22、曲线y=lnx平行于直线x-y+1=0地法线方程是()A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=0文档收集自网络,仅用于个人学习23、设直线y=x+a与曲线y=2arctanx相切,则a=()A、±1B、±л/2C、±(л/2+1)D、±(л/2-1)24、设f(x)为可导地奇函数,且f`(x0)=a, 则f`(-x0)=()A、aB、-aC、|a|D、025、设y=㏑,则y’|x=0=()A、-1/2B、1/2C、-1D、026、设y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在27、设yf(x)= ㏑(1+X),y=f[f(x)],则y’|x=0=()A、0B、1/ ㏑2C、1D、㏑228、已知y=sinx,则y(10)=()A、sinxB、cosxC、-sinxD、-cosx29、已知y=x㏑x,则y(10)=()A、-1/x9B、1/ x9C、8.1/x9D、-8.1/x930、若函数f(x)=xsin|x|,则()A、f``(0)不存在B、f``(0)=0C、f``(0) =∞D、f``(0)= л文档收集自网络,仅用于个人学习31、设函数y=yf(x)在[0,л]内由方程x+cos(x+y)=0所确定,则|dy/dx|x=0=()文档收集自网络,仅用于个人学习A、-1B、0C、л/2D、232、圆x2cosθ,y=2sinθ上相应于θ=л/4处地切线斜率,K=()A、-1B、0C、1D、233、函数f(x)在点x0连续是函数f(x)在x0可微地()A、充分条件B、必要条件C、充要条件D、无关条件34、函数f(x)在点x0可导是函数f(x)在x0可微地()A、充分条件B、必要条件C、充要条件D、无关条件35、函数f(x)=|x|在x=0地微分是()A、0B、-dxC、dxD、不存在36、极限地未定式类型是()A、0/0型B、∞/∞型C、∞ -∞D、∞型37、极限地未定式类型是()A、00型B、0/0型C、1∞型D、∞0型38、极限=()A、0B、1C、2D、不存在39、xx0时,n阶泰勒公式地余项Rn(x)是较xx0 地()A、(n+1)阶无穷小B、n阶无穷小C、同阶无穷小D、高阶无穷小40、若函数f(x)在[0, +∞]内可导,且f`(x) >0,xf(0) <0则f(x)在[0,+ ∞]内有()文档收集自网络,仅用于个人学习A、唯一地零点B、至少存在有一个零点C、没有零点D、不能确定有无零点41、曲线y=x2-4x+3地顶点处地曲率为()A、2B、1/2C、1D、042、抛物线y=4x-x2在它地顶点处地曲率半径为()A、0B、1/2C、1D、243、若函数f(x)在(a,b)内存在原函数,则原函数有()A、一个B、两个C、无穷多个D、都不对44、若∫f(x)dx=2ex/2+C=()A、2ex/2B、4 ex/2C、ex/2 +CD、ex/2文档收集自网络,仅用于个人学习45、∫xe-xdx =( D )A、xe-x -e-x +CB、-xe-x+e-x +CC、xe-x +e-x +CD、-xe-x -e-x +C46、设P(X)为多项式,为自然数,则∫P(x)(x-1)-ndx()A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数47、∫-10|3x+1|dx=()A、5/6B、1/2C、-1/2D、148、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围地平面图形面积等于()文档收集自网络,仅用于个人学习A、лB、2лC、4лD、6л49、曲线y=x2-2x与x轴所围平面图形绕轴旋转而成地旋转体体积是()A、лB、6л/15C、16л/15D、32л/1550、点(1,0,-1)与(0,-1,1)之间地距离为()A、B、2 C、31/2 D、21/251、设曲面方程(P,Q)则用下列平面去截曲面,截线为抛物线地平面是()A、Z=4B、Z=0C、Z=-2D、x=252、平面x=a截曲面x2/a2+y2/b2-z2/c2=1所得截线为()A、椭圆B、双曲线C、抛物线D、两相交直线53、方程=0所表示地图形为()A、原点(0,0,0)B、三坐标轴C、三坐标轴D、曲面,但不可能为平面54、方程3x2+3y2-z2=0表示旋转曲面,它地旋转轴是()A、X轴B、Y轴C、Z轴D、任一条直线55、方程3x2-y2-2z2=1所确定地曲面是()A、双叶双曲面B、单叶双曲面C、椭圆抛物面D、圆锥曲面二、填空题1、求极限(x2+2x+5)/(x2+1)=()2、求极限[(x3-3x+1)/(x-4)+1]=()3、求极限x-2/(x+2)1/2=()4、求极限[x/(x+1)]x=()5、求极限(1-x)1/x= ()6、已知y=sinx-cosx,求y`|x=л/6=()7、已知ρ=ψsinψ+cosψ/2,求dρ/dψ| ψ=л/6=()8、已知f(x)=3/5x+x2/5,求f`(0)=()9、设直线y=x+a与曲线y=2arctanx相切,则a=()10、函数y=x2-2x+3地极值是y(1)=()11、函数y=2x3极小值与极大值分别是()12、函数y=x2-2x-1地最小值为()13、函数y=2x-5x2地最大值为()14、函数f(x)=x2e-x在[-1,1]上地最小值为()15、点(0,1)是曲线y=ax3+bx2+c地拐点,则有b=()c=()16、∫xx1/2dx= ()17、若F`(x)=f(x),则∫dF(x)= ()18、若∫f(x)dx=x2e2x+c,则f(x)= ( )19、d/dx∫abarctantdt=()20、已知函数f(x)= 在点x=0连续, 则a=()21、∫02(x2+1/x4)dx=()22、∫49 x1/2(1+x1/2)dx=()23、∫031/2a dx/(a2+x2)=()24、∫01 dx/(4-x2)1/2=()25、∫л/3лsin(л/3+x)dx=()26、∫49 x1/2(1+x1/2)dx=( )27、∫49 x1/2(1+x1/2)dx=()28、∫49 x1/2(1+x1/2)dx=()29、∫49 x1/2(1+x1/2)dx=()30、∫49 x1/2(1+x1/2)dx=()31、∫49 x1/2(1+x1/2)dx=()32、∫49 x1/2(1+x1/2)dx=()33、满足不等式|x-2|<1地X所在区间为( )34、设f(x) = [x] +1,则f(л+10)=()35、函数Y=|sinx|地周期是()36、y=sinx,y=cosx直线x=0,x=л/2所围成地面积是()37、y=3-2x-x2与x轴所围成图形地面积是()38、心形线r=a(1+cosθ)地全长为()39、三点(1,1,2),(-1,1,2),(0,0,2)构成地三角形为()40、一动点与两定点(2,3,1)和(4,5,6)等距离,则该点地轨迹方程是()41、求过点(3,0,-1),且与平面3x-7y+5z-12=0平行地平面方程是()42、求三平面x+3y+z=1,2x-y-z=0,-x+2y+2z=0地交点是( )文档收集自网络,仅用于个人学习43、求平行于xoz面且经过(2,-5,3)地平面方程是()44、通过Z轴和点(-3,1,-2)地平面方程是()45、平行于X轴且经过两点(4,0,-2)和(5,1,7)地平面方程是()三、解答题1、设Y=2X-5X2,问X等于多少时Y最大?并求出其最大值.2、求函数y=x2-54/x.(x<0=地最小值.3、求抛物线y=x2-4x+3在其顶点处地曲率半径.4、相对数函数y=㏑x上哪一点处地曲线半径最小?求出该点处地曲率半径.5、求y=x2与直线y=x及y=2x所围图形地面积.6、求y=ex,y=e-x与直线x=1所围图形地面积.7、求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点地平面方程.8、求过点(4,-1,3)且平行于直线(x-3)/2=y=(z-1)/5地直线方程.9、求点(-1,2,0)在平面x+2y-z+1=0上地投影.10、求曲线y=sinx,y=cosx直线x=0,x=л/2所围图形地面积.11、求曲线y=3-2x-x2与x轴所围图形地面积.12、求曲线y2=4(x-1)与y2=4(2-x)所围图形地面积.13、求抛物线y=-x2+4x-3及其在点(0,3)和(3,0)得地切线所围成地图形地面积.9/414、求对数螺线r=eaθ及射线θ=-л,θ=л所围成地图形地面积.15、求位于曲线y=ex下方,该曲线过原点地切线地左方以及x轴上方之间地图形地面积.16、求由抛物线y2=4ax与过焦点地弦所围成地图形面积地最小值.17、求曲线y=x2与x=y2绕y轴旋转所产生旋转体地体积.18、求曲线y=achx/a,x=0,y=0,绕x轴所产生旋转体地体积.19、求曲线x2+(y-5)2=16绕x轴所产生旋转体地体积.20、求x2+y2=a2,绕x=-b,旋转所成旋转体地体积.21、求椭圆x2/4+y2/6=1绕轴旋转所得旋转体地体积.22、摆线x=a(t-sint),y=a(1-cost)地一拱,y=0所围图形绕y=2a(a>0)旋转所得旋转体体积.文档收集自网络,仅用于个人学习23、计算曲线上相应于地一段弧地长度.24、计算曲线y=x/3(3-x)上相应于1≤x≤3地一段弧地长度.25、计算半立方抛物线y2=2/3(x-1)3被抛物线y2=x/3截得地一段弧地长度.26、计算抛物线y2=2px从顶点到这典线上地一点M(x,y)地弧长.27、求对数螺线r=eaθ自θ=0到θ=ψ地一段弧长.28、求曲线rθ=1自θ=3/4至θ4/3地一段弧长.29、求心形线r=a(1+cosθ)地全长.30、求点M(4,-3,5)与原点地距离.31、在yoz平面上,求与三已知点A(3,1,2),B(4,-2,-2)和C(0,5,1)等距离地点.文档收集自网络,仅用于个人学习32、设U=a-b+2c,V=-a+3b-c,试用a,b,c表示2U-3V.33、一动点与两定点(2,3,1)和(4,5,6)等距离.求这动点地轨迹方程.34、将xoz坐标面上地抛物线z2=5x绕轴旋转一周,求所生成地旋轴曲方程.35、将xoy坐标面上地圆x2+y2=9绕Z轴旋转一周,求所生成地旋转曲面地方程.36、将xoy坐标面上地双曲线4x2-9y2=36分别绕x轴及y轴旋转一周,求所生成地旋转曲面地方程.文档收集自网络,仅用于个人学习37、求球面x2+y2+z2=9与平面x+z=1地交线在xoy面上地投影方程.38、求球体x2+(y-1)2+(z-2)2≤9在xy平面上地投影方程.39、求过点(3,0,-1),且与平面3x-7x+5z-12=0平行地平面方程.40、求过点M0(2,9,-6)且与连接坐标原点及点M0地线段OM0垂直地平面方程.41、求过(1,1,1),(-2,-2,2)和(1,-1,2)三点地平面方程.42、一平面过点(1,0,-1)且平行于向量a={2,1,1}和b={1,-1,0},试求这平面方程.文档收集自网络,仅用于个人学习43、求平面2x-y+2z-8=0及x+y+z-10=0夹角弦.44、求过点(4,-1,3)且平行于直线(x-3)/2=y=(z-1)/5地直线方程.45、求过两点M(3,-2,1)和M(-1,0,2)地直线方程.46、求过点(0,2,4)且与两平面x+2z=1和y-3z=z平行地直线方程.47、求过点(3,1,-2)且通过直线(x-4)/5=(y+3)/2+z/1地平面方程.48、求点(-1,2,0)在平面x+2y-z+1=0上地投影.49、求点P(3,-1,2)到直线x+2y-z+1=0地距离.50、求直线2x-4y+z=0,3X-y-2z=0在平面4x-y+z=1上地投影直线地方程.四、证明题1.证明不等式:2.证明不等式3.设,g(x)区间上连续,g(x)为偶函数,且满足条件证明:4.设n为正整数,证明5.设是正值连续函数,则曲线在上是凹地.6.证明:7.设是定义在全数轴上,且以T为周期地连续函数,a为任意常数,则8.若是连续函数,则9.设,在上连续,证明至少存在一个使得10.设在上连续,证明:11.设在上可导,且,证明:华中师范大学网络教育学院《高等数学》练习测试题库参考答案一.选择题1——10 ABABD CCDAA11——20 ABABB CAADC21——30 DCDAA BCCCA31——40 BABDD CCAAD41——50 ABCDD CACCA51——55 DDCCA二.填空题1.22.3/43.04.e-15.e-16.(31/2+1)/27.(1+)8.9/259.-1或1-10.211.-1,012.-213.1/514.015.0,116. C+2 x3/2/517. F(x)+C18. 2xe(1+x)19.020.021.21/822.271/623. /3a24. /625.026. 2(31/2-1)27. /228. 2/329. 4/330. 21/231. 032. 3/233. (1,3)34. 1435.36. 7/637. 32/338. 8a39. 等腰直角40. 4x+4y+10z-63=041. 3x-7y+5z-4=042. (1,-1,3)43. y+5=044. x+3y=045. 9x-2y-2=0三.解答题1. 当X=1/5时,有最大值1/52. X=-3时,函数有最小值273. R=1/24. 在点(,-)处曲率半径有最小值3×31/2/25. 7/66. e+1/e-27. x-3y-2z=08. (x-4)/2=(y+1)/1=(z-3)/59. (-5/3,2/3,2/3)10. 2(21/2-1)11. 32/312. 4×21/2/313. 9/414.(a-e)15. e/216. 8a2/317. 3л/1018.19. 160л220. 2л2 a2b21.22. 7л2 a323. 1+1/2㏑3/224.2-4/325.26.27.28.ln3/2+5/1229. 8a30. 5×21/231. (0,1,-2)32. 5a-11b+7c33. 4x+4y+10z-63=034. y2+z2=5x35. x+y2+z2=936. x轴:4x2-9(y2+z2)=36 y轴:4(x2+z2)-9y2=36文档收集自网络,仅用于个人学习37. x2+y2(1-x)2=9 z=038. x2+y2+(1-x)2≤9 z=039. 3x-7y+5z-4=040. 2x+9y-6z-121=041. x-3y-2z=042. x+y-3z-4=043.44. ==45. ==46. ==47. 8x-9y-22z-59=048. (-5/3,2/3,2/3)49.50.四.证明题1.证明不等式:证明:令则,令得x=0f(-1)=f(1)=,f(0)=1则上式两边对x在上积分,得不出右边要证地结果,因此必须对f(x)进行分析,显然有于是故2.证明不等式证明:显然当时,(n>2)有即,3.设,g(x)区间上连续,g(x)为偶函数,且满足条件证明:证明:4.设n为正整数,证明证明:令t=2x,有又,,所以,又,因此,5.设是正值连续函数,则曲线在上是凹地.证明:故,曲线在上是凹地.6.证明:证明:7.设是定义在全数轴上,且以T为周期地连续函数,a为任意常数,则证明:在等式两端各加,于是得8.若是连续函数,则证明:9.设,在上连续,证明至少存在一个使得证明:作辅助函数,由于,在上连续,所以在上连续,在(a,b)内可导,并有由洛尔定理即=0亦即,10.设在上连续,证明:证明:令故是上地减函数,又,故11.设在上可导,且,证明:证明:由题设对可知在上满足拉氏微分中值定理,于是有又,因而,由定积分比较定理,有版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试卷代号:2441
中央广播电视大学2009~2010学年度第二学期“开放专科”期末考试
经济数学基础 1 试题
2010年7月
一、单项选择题(每题4分,本题共20分)
1..下列各函数对中,( )中的两个函数相等.
A .2(),()f x g x x ==
B .21(),()11x f x g x x x -==+-
C .2ln ,()2ln y x g x x ==
D .22()sin cos ,()1f x x x g x =+= 2.已知()1sin x f x x
=-,当( )时,()f x 为无穷小量。

A .0x →
B .1x →
C .x →-∞
D .x →+∞ 3.若函数()f x 在点0x 处可导,则( )是错误的.
A .函数()f x 在点0x 处有定义
B .0lim (),x x f x A →=但0()A f x ≠
C .函数()f x 在点0x 处连续
D .函数()f x 在点0x 处可微 4.下列函数中,( )是2sin x x 的原函数。

A .
21cos 2
x B . 22cos x C . 22cos x D . 21cos 2
x - 5.计算无穷限积分311dx x
+∞=⎰( ). A .0 B .12
- C .12 D .∞
二、填空题(每题4分,共20分)
1.函数22, 50
()1, 02x x f x x x +-≤<⎧=⎨-≤<⎩的定义域是 .
2.0sin lim x x x x →-= .
3.已知需求函数20233
q p =-,其中p 为价格,则需求弹性p E = . 4.若()f x '存在且连续,则[()]df x '=⎰ .
5.计算积分
11(cos 1)x x dx -+=⎰ 。

三、计算题(每小题11分,共44分) 1.计算极限22256lim 68
x x x x x →-+-+。

2.已知cos 2x
x y x
=-,求dy 。

3.计算不定积分2cos x dx x ⎰. 4.计算定积分
3
1e ⎰。

四、应用题(共16分)
已知某产品的边际成本为()43C q q '=-(万元/百台),q 为产量(百台),固定成本为18(万元),求最低平均成本。

参考答案
一、单项选择属(每小题4分,共20分)
1、D
2、A
3、B
4、D
5、C
二、填空(每小题4分,共20分)
1.[5,2)-
2.0
3.10p
p -
4.()f x '
5.2
三、计算题(每小题11分,共44分)
四、应用题(共16分)。

相关文档
最新文档