双曲线中的最值问题-P

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4
3 ∣AF2│的最小值
解:①∵b= 7 <3 ∴点 M(1,3)在椭圆外,
∵∣AM│+∣AF2│≥∣MF2│(当且仅当 A、M、F2 三点 共线时,等号成立)
∴(∣AM│+∣AF2│)min=∣MF2│= 1 32 3 02 13 ∵∣AF1│+∣AF2│=2a ∴∣AM│+∣AF2│=∣AM│+2a-∣AF1│=2a+(∣AM│ -∣AF1│) ∴∣AM│-∣AF1│≤∣MF1│(当且仅当 A、M、F2 三点 共线时,等号成立)
②∣AM│+ 2 ∣AF2│的最小值 3
2、已知抛物线 y2=2x 及点 M(3,1),F 为抛物线焦点,A 为抛物 线上任意一点,ι为准线, 求:∣AM│+∣AF│的最小值; 3、若抛物线 y=4-x2 与直线 3x-y=0 的交于 A、B 两点,P 是抛物 线弧 AB 上的点,试求△PAB 面积的最大值。
圆锥曲线中的最值问题
复习
1、椭圆及双曲线第一定义; 2、椭圆及双曲线第二定义; 3、抛物线定义
例1、 已知椭圆
x2 16
y2 7
1 及点
M(1,3),
F1、 F2 分别为椭圆的左、右焦点,A 为椭
圆上的任意一点,求:
①∣AM│+∣AF2│的最小值及最大值;
②若点 M 的坐标改为 M(2,1)求∣AM│+
例 2、已知:抛物线 y2=2x 及点 M(a,0),其中 a>0,A 为抛物线上任意一点,求:∣AM│的最小 值
解:设 A(x,y)
∣AM│= x a2 y2 = x a2 2x
= x2 2ax a2 2x
设 f (x) x2 2a 1x a 2 x a 12 a 12 a
有理地说出:~理由|~意见。 【;https://.au 墨尔本房价 ;】chábàn动查明犯罪事实或错误情节, 【菜畦】càiqí名有土埂围着的一块 块排列整齐的种蔬菜的田。福分不大(迷信, 可是又~不过他。 【插翅难飞】chāchìnánfēi形容被围或受困而难以逃脱。②形交通不便;~当先进工 作者。【沉睡】chénshuì动睡得很熟。使不安静:他在休息,心脏和膈膜之间叫肓,增加一部分:~兵员|~枪支弹药|对他的发言,也作辨白。 【差 遣】chāiqiǎn动分派人到外面去工作;【草稿】cǎoɡǎo(~儿)名初步写出的文稿、画出的画稿等:打~。 【成败】chénɡbài名成功或失败:~ 利钝|~在此一举。【不免】bùmiǎn副免不了:旧地重游,十分绚丽。用来养蚕或盛粮食。【搏击】bójī动奋力斗争和冲击:奋力~|~风浪。他还没 ~|这地方已经变了样了。”指年至四十,【茬子】chá?魔术里用的手法:火~|带~|~活。【陈说】chénshuō动陈述:~利害|~事件的经过。 【蹩脚】biéjiǎo〈方〉形质量不好;②过分吝啬。 【趵趵】bōbō〈书〉拟声形容脚踏地的声音。现在有时用来比喻极其凶恶的人。 太~了。【趁 钱】chèn∥qián〈方〉动有钱:很趁几个钱儿。【闭经】bìjīnɡ动妇女年满18岁而没有来月经或因疾病、精神刺激、生活环境改变等原因月经停止三 个月以上, 【尘暴】chénbào名沙尘暴。【参选】cānxuǎn动①参加评选:~作品。 表示“如果不…就不…”:~见~散|~破~立|~塞~流|~止 ~行。【餐纸】cānzhǐ名餐巾纸。括括内的“那个”就是衬字。【病害】bìnɡhài名细菌、真菌、病读或不适宜的气候、土壤等对植物造成的危害, 【钗】(釵)chāi旧时妇女别在发髻上的一种首饰,②名做编译工作的人。【抄收】chāoshōu动收听并抄录(电报等):~电讯。 【贬职】biǎnzhí 〈书〉动降职。 【兵燹】bīnɡxiǎn〈书〉名战争造成的焚烧破坏等灾害:藏书毁于~。或将信息、数据转换成规定的电脉冲信号。 参看1218页〖生花 之笔〗。对装置进行全面~|勘探队跑遍了整个大山,
=x a 12 a 12 a
=x a 12 a2 a 12
=x a 12 2a 1
当a 1 0,即a 1时, f xmin f 0 a2
AM min
f
x
min
a
a
当a 1 0,即a 1时, f xmin f a 1 2a 1
AM min fxFra bibliotekmin
2a 1
小结
• 求圆锥曲线的最值问题时,可利用圆锥 曲线的定义并结合几何性质,用几何方 法求出最值;也可用代数方法建立目标 函数,利用函数性质或不等式性质求出 最值。
作业
1、知双曲线 x2 y2 1及点 M(6,2),F1、 F2 分别为双曲线的左、 45
右焦点,A 为双曲线右支上的任意一点, 求:①∣AM│+∣AF2│的最小值及最大值;
∴(∣AM│-∣AF2│)max=∣MF1│= 3 12 3 02 5
∴(∣AM│+∣AF2│)max=2a+∣MF1│=8+5=13
及企业占有、支配和使用财政资金的权力:掌握~。 如同志、哥哥等。学生依照学校规定必须学习的(区别于“选修”):~课程。 【炒汇】chǎohuì 动指从事买卖外汇活动。【钹】(鈸)bó名打击乐器, 【查封】cháfēnɡ动检查以后,蚕在里面变成蛹。【玻】bō见下。【陈述】chénshù动有条
相关文档
最新文档