02 全因子试验设计

因子方差分析的试验设计

试验设计 一、试验设计的基本概念与正交表 (一)试验设计 产品质量的好坏很大程度上是由设计所决定的,因此在新产品的开发设计阶段就要十分重视。当然设计的好产品要成为真正高质量的产品,在生产过程中还得有好的工艺参数,为此经常需要进行试验,从影响产品两的一些因素中去寻找好的原料搭配,好的工艺参数搭配等,这便是多因素(因子)的试验设计问题。 多因素试验遇到的最大困难时试验次数太多,让人无法忍受。如果有10个因子对产品质量有影响,每个因子取两个不同水平进行比较,那么就有210=1024个不同的试验条件需要比较,假定每个因子取三个不同水平比较的话,那么就有310=59049个不同的试验条件,要全部做试验在实际中是不大可能的,因此我们只能从中选择一部分进行试验。选择哪些条件进行试验十分重要,这便是试验的设计。一个好的设计,可以通过少量试验获得较多的信息,达到试验的目的。试验设计的方法有许多,这里介绍的正交实验设计便是其中的一种常用方法,它利用“正交表”选择试验条件,并利用正交表的特点进行数据分析,找出最好的或最满意的试验条件。 (二)正交表 表2.3-1是一张典型的正交表L9(34),这里“L”是正交表的代号,“9”表示表的行数,在试验中表示用这张表安排试验的话,要做9个不同条件的试验,“4”表示表的列数,在试验中表示用这张表安排试验的话,最多可以安排4个因子,“3”表示表的主题只有3个不同的数字:1,2,3,在试验中它代表因子水平的编号,即用这张表安排试验时每个因子应取3个不同水平。 表2.3-1 L9(34)

正交表具有正交性,这是指它有如下两个特点: (1)每列中每个数字重复次数相同。在表L9(34)中,每列有3个不同数字:1,2,3,每一个出现3次; (2)将任意两列的同行数字堪称一个数对,那么一切可能数对重复次数相同。在表L9(34)中,任意两列有9中可能的数对:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),每一对出现一次。 如果将试验条件堪称试验空间(一起可能试验条件组成的集合)中的一点,那么正交表的这两个特点使所选择的试验点在试验空间中的分布是均匀分散的,并将看到试验结果具有综合可比性,以为以后的统计分析带来了便利。 常用的正交表有两大类。若计一般的正交表为L n(q p),则: 一类正交表的行数n,列数p,水平数q间有如下关系: n=q k,k=2,3,4,…,p=(n-1)/(q-1)(2.3-1)如二水平正交表L4(23),L8(27),L16(215),L32(231)等,三水平正交表L9(34),L27(313)等,四水平正交表L16(45)等,五水平正交表L25(56)等,这一类正交表不仅可考察各因子对试验指标的影响,有的还可考察因子间的交互作用的影响。 另一类正交表的行数,列数,水平数之间不满足(2.3-1)中的两个关系,往往只能考察各因子的影响,不能用这些正交表来考察因子间的交互作用。如二水平正交表L12(211),L20(219)等,三水平正交表L18(37),L36(313)等,混合水平正交表L18(2×37),L36(23×313)等。 附录2给出了常用的正交表。 二、无交互作用的政教实验设计与数据分析 下面通过一个例子来叙述利用正交表安排试验与进行数据分析的步骤。

单因素实验设计报告

单因素实验设计报告 :因素实验报告设计单因素实验设计举例正交实验单因素实验设计方案篇一:实验报告单因素方差分析 5.1、实验步骤: 1(建立数据文件。 定义2个变量:PWK和DCGJSL,分别表示排污口和大肠杆菌数量。 2. 选择菜单“分析?比较均值?单因素”,弹出“单因素方差分析”对话框。在对话 框左侧的变量列表中,选择变量“DCGJSL”进入“因变量”列表框,选择变量“PWK”进入“因子”列表框。 3(单击“确定”按钮,得到输出结果。 结果解读: 由以上结果可以看到,观测变量大肠杆菌数量的总离差平方和为460.438;如果仅考虑“排污口”单个因素的影响,则大肠杆菌数量总变差中,排污口可解释的变差为308.188,抽样误差引起的变差为152.250,它们的方差(平均变差)分别为102.729和12.6 88,相除所得的F统计量的观测值为8.097,对应的概率P值为0.003。在显著性水平α为0.05的情况下。由于概率P值小于显著性水平α,则应拒绝零假设,认为不同的排污口对大肠杆菌数量产生了显著影响,它对大肠杆菌数量的影响效应不全为0。 因此,可判断各个排污口的大肠杆菌数量是有差别的。 5.2、实验步骤: 1(建立数据文件。 定义2个变量:Branch和Turnover,分别表示分店和日营业额。将Branch的值定义为1=第一分店,2=第二分店,3=第三分店,4=第四分店,5=第五分店。

2. 选择菜单“分析?比较均值?单因素”,弹出“单因素方差分析”对话框。在对话 框左侧的变量列表中,选择变量“Turnover”进入“因变量”列表框,选择变量“Branch”进入“因子”列表框。 3(单击“确定”按钮,得到输出结果。 结果解读: 由以上结果可以看到,观测变量日营业额的总离差平方和为1187668.733;如果仅考虑“分店”单个因素的影响,则日营业额总变差中,分店可解释的变差为366120.900,抽样误差引起的变差为821547.833,它们的方差(平均变差)分别为91530.225和14937.233,相除所得的F统计量的观测值为6.128,对应的概率P 值近似为0。在显著性水平α为0.05的情况下,由于概率P值小于显著性水平α,则应拒绝零假设,认为不同的分店对日营业额产生了显著影响,它对日营业额的影响效应不全为0。 因此,在α,0.05的显著性水平下,“这五个分店的日营业额相同”这一假设不成立。 5.3、实验步骤: 1(建立数据文件。 定义3个变量:weight和method,分别表示幼苗干重(mg)和处理方式。将method的值定义为1=HCI,2=丙酸,3=丁酸,4=对照。 2. 选择菜单“分析?比较均值?单因素”,弹出“单因素方差分析”对话框。在对话 框左侧的变量列表中,选择变量“,method”进入“因变量”列表框,选择变量“weight”进入“因子”列表框。在“两两比较”选项中选择LSD、Bonferroni和Scheffe方法。 3(单击“确定”按钮,得到输出结果。

实验报告 单因素方差分析

5.1、实验步骤: 1.建立数据文件。 定义2个变量:PWK和DCGJSL,分别表示排污口和大肠杆菌数量。 2. 选择菜单“分析→比较均值→单因素”,弹出“单因素方差分析”对话框。在对话 框左侧的变量列表中,选择变量“DCGJSL”进入“因变量”列表框,选择变量“PWK”进入“因子”列表框。

3.单击“确定”按钮,得到输出结果。 结果解读: 由以上结果可以看到,观测变量大肠杆菌数量的总离差平方和为460.438;如果仅考虑“排污口”单个因素的影响,则大肠杆菌数量总变差中,排污口可解释的变差为308.188,抽样误差引起的变差为152.250,它们的方差(平均变差)分别为102.729和12.688,相除所得的F统计量的观测值为8.097,对应的概率P值为0.003。在显著性水平α为0.05的情况下。由于概率P值小于显著性水平α,则应拒绝零假设,认为不同的排污口对大肠杆菌数量产生了显著影响,它对大肠杆菌数量的影响效应不全为0。 因此,可判断各个排污口的大肠杆菌数量是有差别的。 5.2、实验步骤: 1.建立数据文件。 定义2个变量:Branch和Turnover,分别表示分店和日营业额。将Branch的值定义为1=第一分店,2=第二分店,3=第三分店,4=第四分店,5=第五分店。 2. 选择菜单“分析→比较均值→单因素”,弹出“单因素方差分析”对话框。在对话 框左侧的变量列表中,选择变量“Turnover”进入“因变量”列表框,选择变量“Branch”进入“因子”列表框。

3.单击“确定”按钮,得到输出结果。

结果解读: 由以上结果可以看到,观测变量日营业额的总离差平方和为1187668.733;如果仅考虑“分店”单个因素的影响,则日营业额总变差中,分店可解释的变差为366120.900,抽样误差引起的变差为821547.833,它们的方差(平均变差)分别为91530.225和14937.233,相除所得的F统计量的观测值为6.128,对应的概率P值近似为0。在显著性水平α为0.05的情况下,由于概率P值小于显著性水平α,则应拒绝零假设,认为不同的分店对日营业额产生了显著影响,它对日营业额的影响效应不全为0。 因此,在α=0.05的显著性水平下,“这五个分店的日营业额相同”这一假设不成立。 5.3、实验步骤: 1.建立数据文件。 定义3个变量:weight和method,分别表示幼苗干重(mg)和处理方式。将method 的值定义为1=HCI,2=丙酸,3=丁酸,4=对照。 2. 选择菜单“分析→比较均值→单因素”,弹出“单因素方差分析”对话框。在对话 框左侧的变量列表中,选择变量“,method”进入“因变量”列表框,选择变量“weight”进入“因子”列表框。在“两两比较”选项中选择LSD、Bonferroni 和Scheffe方法。

单因素实验设计

单因素试验设计是指只有一个因素(或仅考查一个因素)对试验指标构成影响的试验。单因素试验设计要求对试验水平进行布局和优化,是一种水平试验设计。 单因素试验设计方法可分为两类:同时试验设计和序贯试验设计。同时试验设计就是一次给出全部试验水平,一次完成全部试验并得到最佳试验结果,如穷举试验设计。序贯试验设计要求分批进行试验,后批试验需根据前批试验结果进一步优化后序贯进行,直到获取最佳试验结果,如平分试验设计、黄金分割试验设计。 一、试验范围与试验精度 (一)试验范围 试验范围指试验水平的范围。试验设计时需预先确定试验范围,一般采用两种方法:○ 1经验估计。可凭经验估计试验范围,并在试验过程中作调整。○2预先试验。要求在较大范围 内进行探索,通过试验逐步缩小范围。 (二)试验间隔与试验精度 试验间隔是指试验水平的间距,试验精度是指试验结果逼近最佳水平的程度。显然,试验间隔与试验精度是一对矛盾,试验间隔越大,试验精度越低。在保证试验精度的条件下,试验水平变化而引起的试验结果变动必须显著地超过试验误差。 (三)试验顺序 在确定试验顺序时,往往习惯于按照试验水平高低依次做试验。这样,随着试验的进行,有些因素会发生缓慢变化甚至影响试验结果。因此,正确的做法是采用随机化方法来确定试验顺序。在试验工作量较少或者试验准确度要求较低时,也可以采用按水平高低或者选取中间试验点的方法来进行试验排序。 需强调指出,以上不仅对单因素试验设计,而且对所有试验设计方法都适用。 二、单因素试验设计 (一)平分试验设计 平分试验设计就是平分试验范围,把其中间点作为新试验点,然后不断缩小试 验范围直到找到最佳条件。当试验结果呈单向变化时,也就是说最佳试验点只可能在试验中间点的一侧,可采用平分试验设计。该方法简便易行,但要注意单向性特征。 (二)穷举试验设计与均分试验设计 穷举试验设计是将所有可能的试验点在一批试验中全部进行试验。均分试验设 计是根据试验精度要求,均分整个试验范围以获得所有试验点。显然,均分试验设计不仅充分体现了穷举试验设计的思想,而且也明确了具体试验设计方法。 如试验起始点为a ,终点为b ,试验点的间隔区间为L ,则均分试验设计的试 验点数n 为 1L a b n +-= (1-1) 该试验设计的特点是对所试验的范围进行“普查”,试验点数量较多,宜用于 对目标函数性质没有掌握或很少掌握的情况。 (三)黄金分割试验设计 黄金分割试验设计就是在预定试验范围内采用0.618黄金分割原理安排新试验 点,直到找到最佳试验结果为止,因而又称0.618试验设计。黄金分割就是在特定范围内寻求黄金分割点(k )及对称点(1-k )。在0~1的试验范围内,黄金分割点(k )为0.618,其对称点(1-k )为0.382。 黄金分割点试验设计涉及两个层面,一是已知试验范围内的黄金分割点的寻 求,二是新试验范围的确定与进一步寻优。如图1-1所示,首先在试验范围(a ,b )内,按照0.618黄金分割原理安排两个试验点x 1、x 2;然后根据试验结果确定进一

单因素实验设计

单因素实验设计 单因素实验设计是指在实验中只有一个研究因素,即研究者只分析一个因素对效应指标的作用,但单因素实验设计并不是意味着该实验中只有一个因素与效应指标有关联。单因素实验设计的主要目标之一就是如何控制混杂因素对研究结果的影响。常用的控制混杂因素的方法有完全随机设计、随机区组设计和拉丁方设计等。 一、完全随机设计 1.概念与特点 又称单因素设计或成组设计,是医学科研中最常用的一种研究设计方法,它是将同质的受试对象随机地分配到各处理组进行实验观察,或从不同总体中随机抽样进行对比研究。该设计适用面广,不受组数的限制,且各组的样本含量可以相等,也可以不相等,但在总体样本量不变的情况下,各组样本量相同时的设计效率最高。 例如:为了研究煤矿粉尘作业环境对尘肺的影响,将18只大鼠随机分到甲、乙、丙3组,每组6只,分别在地面办公楼、煤炭仓库和矿井下染尘,12周后测量大鼠全肺湿重(g),通过评价不同环境下大鼠全肺平均湿重推断煤矿粉尘对作用尘肺的影响,具体的随机分组可以如下实施: 第一步:将18只大鼠编号:1,2,3, (18) 第二步:可任意设置种子数,但应作为实验档案记录保存(本例设置spss11.0软件的种子数为200); 第三步:用计算机软件一次产生18个随机数,每个随意数对应一只老鼠(本例用spss11.0软件采用均匀分布最大值为18时产成的18个随机数); 第四步:最小的6个随机数对应编号的大鼠为甲组,排序后的第7个至第12个随机数随因编号为乙组,最大的6个随机数对应编号的大鼠为丙组(结果见表1)。 表1 分配结果 编号 1 2 3 4 5 6 7 8 9 3.75 8.75 16.29 11.12 5.49 3.98 13.64 16.71 1.69 随机 数 组别甲乙丙乙乙甲丙丙甲 编号10 11 12 13 14 15 16 17 18 13.62 16.36 2.12 4.74 11.54 3.98 0.13 17.35 16.38 随机 数 组别丙丙甲乙乙甲甲丙丙 2.随机数的产生方法 (1)随机数字表:如附表13(马斌荣,医学统计学,第4版),这是一个由0~9十个数字组成60行25列的数字表。说这些数字是随机的,是因为十个数字出现的频率近似相同,且出现的次序也没有规律。欲获得随机数,则事先根据研究性质确定随机数的位数,然后任意指定行和列,按事先确定的方向和方法读取随机数。如:将符合实验要求的20只动物随

(完整word版)单因素重复测量设计

单因素重复测量实验设计 一、单因素重复测量实验设计的基本特点 在单因素完全随机实验中,组内变异实际上是由两部分组成的:实验中测量误差引起的变异和未控制的无关变量带来变异,其中订是被试个体差异带来的变异。减少误差变异的一个方法是控制个体差异引起的无关变量,达到这个目标的途径之一是使用随机区组设计,而控制个体差异的一个更有效的方法是重复测量实验设计,也叫被试内设计。 在一个非重复测量实验设计,或被试间设计中,例如我们在前面介绍的完全随机设计、随机区组设计和拉丁方设计中,一个共同的特点是实验中每个被试仅接受一个处理水平,被试的个体差异带来的变异混杂在误差变异中。重复测量实验设计的基本方法是:实验中每个被试接受所有的处理水平。这种实验设计的目的是利用被试自己做控制,使被试各方面特点在所有的处理中保持恒定,以最大限度地控制由被试的个体差异带来的变异。 使用重复测量设计的前提是研究者必须事先假设,当若干处理水平连续实施给同一被试时,被试接受前面的处理对接受后面的处理没有长期影响。重复测量设计在有些情况下是不合适的,当处理的实施对被试有长期影响时,如学习、记忆效应,不能使用重复测设计。例如,在一个教学研究中,要比较两种教学方法对学生学习成绩的影响。我们不可能使用同一班学生先后接受两种教学方法,然后比较它们对学生学习成绩的影响,因为前一种教法的教学不可避免地对学生接受后一种教法的教学产生影响。在心理与教育研究中,许多实验处理会对被试产生学习、记忆效应,因此使用重复测量设计要特别谨慎。 另外,顺序效应也是重复设计中应特别注意的问题。被度连续接受处理时,练习、疲劳等效应是难免的,因此重复测量设计中需要考虑平衡顺序效应的问题。 与完全随机和随机区组设计非常不同的是,重复测量实验设计使用少量的被试,它们的图解比较如下: (a (b (c 图2-4-1 单因素完全随机、随机区组、复重 测量实验设计中分配被试的比较 从三个图的比较中可以看出,在同样的有一个自变量、自变量有4个水平的实验中,完全随机设计使用16个随机选择的被试,随机区组设计使用4组、每组4个同质被试,因此也是16个被试,而重复测量设计仅用4个被试,每个被试接受所有的实验处理。 二、单因素重复测量实验设计与计算举例 (一)研究的问题与实验设计 我们继续以4种文章的生字密度对学生阅读理解的影响的研究为例。为了更好地控制被试变量,研究者仅用8名被试,每个被试阅读4篇生字密度不同的文章,并测他们各篇文章的阅读理解分数。选择使用重复测量实验设计是由于研究者假设,当实验安排合适时,被试阅读一篇文章举对阅读另一篇文章产生影响。但是,在这种实验设计中,疲劳效应和顺序效应是必须考虑的。为了减少疲劳效应,研究者决定将4篇文章在下午分4次施测。平衡顺序效应的方式有两种:以随机顺序实施4种生字密度的文章,或以拉丁方实施4 区组区组区组区组被试1 被试2 被试3 被试4

二水平全因子doe试验设计

试验设计 试验设计通过有目得地改变一个过程(或活动)得输入变量(因子),以观察输出变量(响应变量)得相应变化。 试验设计就是识别关键输入因子得最有效方法。 试验设计就是帮助我们了解输入因子与响应变量关系得最有效途径。 试验设计就是建立响应变量与输入因子之间得数学关系模型得方法。 试验设计就是确定优化输出并减少成本得输入设定值得途径。 试验设计就是设定公差得科学方法。 响应变量:所关注得可测量得输出结果,如良率、强度等。 因子:可控得变量,通过有意义得变动,可确定其对响应变量得影响,温度、时间等。 水平:因子得取值或设定。 处理:某次实验得整套因子。 重复:指在不重新组合实验设定得情况下,连续进行实验并收集数据。 复制:意谓每个数据值在重新设定测试组合之后收集。 随机化:适当安排实验次序,使每个实施被选出得机会都相等。 实验设计步骤 1、陈述问题(通过实验设计解决得问题就是什么) 2、设立目标 3、确定输出变量 4、识别输入因子(可控因子/噪声因子) 5、选定每个因子得水平 6、选择实验设计得类型 7、计划并为实施实验做准备 8、实施实验并记录数据 9、分析数据并得出结论 10、必要时进行确认实验。 可控(控制)因子就是我们在工序得正常操作时能设定维持在期望水平得因子。 噪音因子就是在正常得操作期间变化得因子,而且我们不能够控制它们:或者我们宁愿不控制它们,因为这么做会很昂贵。 全因子实验:组合所有因子与每个所有水平得实验 一个因子得主效果定义为一个因子在多水平下得变化导致输出变量得平均变化。参考下表,其中两个因子,浓度与催化剂。输出变量就是良率。 主效果图能够判定出因子对输出变量影响得大小。 主效果图得斜率越大反应出因子对输出变量得影响越大,但不能说明该因子就是对输出变量得显著因子。

minitab实验之试验设计

Minitab_专业论坛 https://www.360docs.net/doc/a19902954.html,
Minitab 实验之试验设计
实验目的: Minitab_专业论坛
https://www.360docs.net/doc/a19902954.html,/
本实验主要引导学生利用 Minitab 统计软件进行试验设计分析,包括全因子 设计、部分因子设计、响应曲面设计、混料设计、田口设计以及响应优化,并能 够对结果做出解释。
实验仪器:Minitab 软件、计算机 实验原理:
“全因子试验设计” (full factorial design)的定义是:所有因子的所有水平 的所有组合都至少要进行一次试验的设计。由于包含了所有的组合,全因子试验 所需试验的总次数会比较多, 但它的优点是可以估计出所有的主效应和所有的各 阶交互效应。所以在因子个数不太多,而且确实需要考察较多的交互作用时,常 常选用全因子设计。一般情况下,当因子水平超过 2 时,由于试验次数随着因子 个数的增长而呈现指数速度增长,因而通常只作 2 水平的全因子试验。 进行 2 水平全因子设计时, 全因子试验的总试验次数将随着因子个数的增加 而急剧增加,例如,6 个因子就需要 64 次试验。但是仔细分析所获得的结果可 以看出,建立的 6 因子回归方程包括下列一些项:常数项、主效应项有 6 项、二 阶交互作用项 15 项、三阶交互项 20 项,…,6 阶交互项 1 项,除了常数项、主 效应项和二阶交互项以外,共有 42 项是 3 阶以及 3 阶以上的交互作用项,而这 些项实际上已无具体的意义了。 部分因子试验就是在这种思想下诞生的,它可以 使用在因子个数较多, 但只需要分析各因子和 2 阶交互效应是否显著,并不需要 考虑高阶的交互效应,这使得试验次数大大减少。 在实际工作中,常常要研究响应变量 Y 是如何依赖于自变量,进而能找到 自变量的设置使得响应变量得到最佳值(望大、望小或望目) 。如果自变量的个 数较少 (通常不超过 3 个) , 则响应曲面方法 (response surface methodology, RSM) 是最好的方法之一, 本方法特别适合于响应变量望大或望小的情形。通常的做法 是: 先用 2 水平因子试验的数据, 拟合一个线性回归方程 (可以包含交叉乘积项) , 如果发现有弯曲的趋势, 则希望拟合一个含二次项的回归方程。 其一般模型是 (以 两个自变量为例) :
2 2 y ? b0 ? b1 x1 ? b2 x2 ? b11 x1 ? b22 x2 ? b12 x12 ? ?
这些项比因子设计的模型增加了各自的变量的平方项。 由于要估计这些项的 回归系数, 原来因子设计所安排的一些设计点就不够用了,需要再增补一些试验 点。这种先后分两阶段完成全部试验的策略就是“序贯试验”的策略。适用于这 种策略的方法有很多种,其中最常用的就是中心复合设计( central composite

二水平全因子doe试验设计

试验设计 试验设计通过有目的地改变一个过程(或活动)的输入变量(因子),以观察输出变量(响应变量)的相应变化。 试验设计是识别关键输入因子的最有效方法。 试验设计是帮助我们了解输入因子和响应变量关系的最有效途径。 试验设计是建立响应变量与输入因子之间的数学关系模型的方法。 试验设计是确定优化输出并减少成本的输入设定值的途径。 试验设计是设定公差的科学方法。 响应变量:所关注的可测量的输出结果,如良率、强度等。 因子:可控的变量,通过有意义的变动,可确定其对响应变量的影响,温度、时间等。 水平:因子的取值或设定。 处理:某次实验的整套因子。 重复:指在不重新组合实验设定的情况下,连续进行实验并收集数据。 复制:意谓每个数据值在重新设定测试组合之后收集。 随机化:适当安排实验次序,使每个实施被选出的机会都相等。 实验设计步骤 1、陈述问题(通过实验设计解决的问题是什么) 2、设立目标 3、确定输出变量 4、识别输入因子(可控因子/噪声因子) 5、选定每个因子的水平 6、选择实验设计的类型 7、计划并为实施实验做准备 8、实施实验并记录数据 9、分析数据并得出结论 10、必要时进行确认实验。 可控(控制)因子是我们在工序的正常操作时能设定维持在期望水平的因子。 噪音因子是在正常的操作期间变化的因子,而且我们不能够控制它们:或者我们宁愿不控制它们,因为这么做会很昂贵。 全因子实验:组合所有因子和每个所有水平的实验 一个因子的主效果定义为一个因子在多水平下的变化导致输出变量的平均变化。参考下表,其中两个因子,浓度与催化剂。输出变量是良率。 主效果图能够判定出因子对输出变量影响的大小。 主效果图的斜率越大反应出因子对输出变量的影响越大,但不能说明该因子是对输出变量的显著因子。

单因素实验优秀论文模板

毕业论文(设计) 题目竹叶中多糖的提取方法研究指导老师汪洪 专业班级食品营养与检测112 姓名戴晓鹏 学号 20117100203 2014年5月28日

摘要:本研究以竹叶为研究对象,通过单因素试验和正交试验观察了温度、时间、固液比、提取次数对多糖提取率的影响,比较了水提、超声波提取和微波提取三种提取方法对竹叶多糖得率的影响。结果表明,水提最佳浸提参数:温度80℃,时间90min,固液比1:25,浸提次数3次。超声波提取最佳浸提参数为:温度70℃,时间20min,固液比1:20,浸提次数3次。微波提取最佳浸提参数为:微波功率500W,固液比1:15,时间2min,浸提次数3次。最佳提取工艺方法是超声波提取,条件是温度70℃,时间20min,固液比1:20,浸提3次。 关键词:水提;超声波;微波;沉淀;提取次数

目录 引言 (1) 1材料与仪器 (2) 1.1实验材料 (2) 1.2实验试剂 (2) 1.3实验仪器 (2) 2 实验方法 (3) 2.1竹叶多糖提取工艺流程 (3) 2.2样品中多糖含量的测定 (3) 2.3浸提条件对多糖提取效果的影响 (4) 2.3.1单因素试验 (4) 2.3.2浸提工艺正交试验 (4) 2.3.3不同浸提方法的比较研究 (5) 2.4分析方法 (5) 3 结果与分析 (5) 3.1 单因素试验结果 (5) 3.1.1温度对多糖得率的影响 (5) 3.1.2时间对多糖得率的影响 (6) 3.1.3固液比对多糖得率的影响 (6) 3.1.4提取次数对多糖得率的影响 (7) 3.1.5乙醇浓度对多糖得率的影响 (8) 3.2正交试验 (9) 3.2.1水提工艺正交试验效果 (9) 3.2.2超声波提取工艺正交试验结果 (10) 3.2.3微波提取工艺正交试验效果 (11) 3.3竹叶多糖不同提取方法的比较效果 (12) 结论 (12) 参考文献 (13)

5全因子试验设计

第五章全因子试验设计 第一节概述 第二节单因子四水平试验 第三节三因子两水平试验 第四节二因子四水平试验 第一节概述 一.什么是全因子试验设计 将每一个因子的不同水平组合做同样数目的试验 二.特点及使用场合 1.特点 A.所有因子和水平的完全组合 B.试验次数为e k次,即K因子E水平 C.完全组合,结果真实可靠 2.适用场合 水平数和因子数不多,以获得精确的结论 第二节单因子四水平试验设计例 冰箱故障增加,有四家供应商提供压缩机,项目小组怀疑某家供应商的MTBF比其它供应商短,为此进行实验。 1.实验目标 不同供应商对冰箱寿命的影响 2.确定测量指标即输出变量 冰箱的MTBF 3.确定影响因子X’S 4.确定噪音因子 5.列出计划表 可控因素表

噪音因子表 ○中等影响,相对易改变●重大影响,易改变Δ影响小,难改变 实验次数Y RESI1 FITS1 1 10200 -16756.5 26956.5 1 98500 71543.5 26956.5 1 11300 -15656.5 26956.5 1 12530 -14426.5 26956.5 2 11900 -8067.4 19967.4 2 12890 -7077.4 19967.4 2 12100 -7867.4 19967.4 2 10910 -9057.4 19967.4 3 13930 951.7 12978.3 3 10210 -2768.3 12978.3 3 8300 -4678.3 12978.3 3 9500 -3478.3 12978.3 4 12400 6410.9 5989.1 4 10290 4300.9 5989.1 4 896 5 2975.9 5989.1 4 9640 3650.9 5989.1 One-way ANOVA: Y versus 实验次数 Source DF SS MS F P 实验次数 3 1486663555 495554518 1.04 0.411>0.05供应商不是显著因子Error 12 5726234644 477186220 Total 15 7212898198 S = 21845 R-Sq = 20.61%<90%相关性不强R-Sq(adj) = 0.76% 与R-Sq相差远,不能很好模拟实验结果. Individual 95% CIs For Mean Based on Pooled StDev Level N Mean StDev -------+---------+---------+---------+-- 1 4 33133 43589 (-----------*----------) 2 4 11950 814 (-----------*-----------) 3 4 10485 2428 (-----------*-----------) 置信区间有重合,差异不明显 4 4 10324 1486 (-----------*-----------) -------+---------+---------+---------+-- 0 20000 40000 60000 Pooled StDev = 21845

相关文档
最新文档