地下水动力学,稳定井流与非稳定井流

地下水动力学,稳定井流与非稳定井流
地下水动力学,稳定井流与非稳定井流

关于稳定井流和非稳定井流理论的思考

(安徽建筑大学土木工程学院安徽合肥230601)

摘要:在学习了地下水动力学内容,都已讲述稳定井流与非稳定井流理论的探索思考,并且也考虑了相应理论的适用条件,同时也分析了裘布依公式和泰斯公式区别与联系。在抽水与注水的实验时各自理论所使用的条件和得出的结论也会有所不同,探讨稳定井流与非稳定井流理论的区别和联系闲的尤为重要。综合各种因素提出了关于稳定井流和非稳定井流的思考。

关键词:稳定井流;非稳定井流;泰斯公式;裘布依公式;井函数

1 地下水动力学发展史

在18世纪中期开始,一些法国工程师和科学家的杰出成就,奠定了地下水渗流力学]1[的理论基础。这当中主要包括达西定律]1[、裘布依假设]1[、布西涅克斯潜水运动方程]1[。达西定律是法国工程师达西在解决城市给水问题时,根据均质砂中垂直水流实验结果,在1856年总结出线形渗流方程]5[,即地下水的渗流速度v 与水力梯降J 成正比的线形关系;该线形渗流方程也就是著名的达西定律,它的建立是渗流力学诞生的标志。裘布依假设是法国工程师、水力学家裘布依针对缓变流动的潜水,于1863年提出用潜水位h 代替侧压水头,这种处理方法使得同一剖面各点的渗透速度相等。得益于裘布依假设,达西定律在实际中被迅速推广,这也使得渗流力学得以迅速发展。布西涅克斯方程是在1904年法国数学力学家布西涅克斯在认为水是不可压缩的条件下,利用裘布依假设,给出潜水渗流运动的微分方程,这为非稳定流理论

]5

1[ 的发展奠定了基础。他创造性地将坐标原点取在含水层底板上( 以下坐标都是这种设置方法) ,这使得方程中的水位变量与潜水流厚度相等, 这极大地方便了方程在实际中的应用。

2 稳定流理论

稳定流理论]4,2,1[与上述基础理论,都主要是在研究潜水渗流问题时发展起来的。稳定流理论的主要代表性内容有裘布依--福西海默流量公式、裘布依潜水井流公式和泰斯潜水井流公式。裘布依--泰斯潜水井流公式]1[,1863年,裘布依在假定开采井位于圆形潜水含水层中心、四周为定水头边界的条件下,给出了裘布依潜水井流公式]1[。1870年,德国工程师泰斯针对无限延展含水层中的潜水开采井, 定义地下水基本不受开采的影响处的距离为开采的影响半径,并给出了在形式上与裘布依井流公式完全一样的解,但泰斯井流公式可更为准确地解决观测井对开采井的水位响应问题。裘布依--福西海默流量

公式是在1886年,由澳大利亚水利学家福西海默,根据裘布依假设给出了透水边界附近潜水含水层中的潜水渗流量计算公式,该公式还正确地刻画出此水文地质条件下的潜水自由面是抛物线形。稳定流理论的发展,使地下水渗流力学进入到定量研究阶段。但由于不含时间变量, 稳定流理论显然不能刻画渗流的时间变化过程。

3 非稳定流理论

非稳定流理论]4,2,1[是在研究承压水问题的过程中发展起来的,这当中以泰斯为代表的美国水文地质学家的贡献最为突出。1935年,身为美国地质调查局年轻的地质学家,泰斯借鉴热传导问题的研究方法,建立了均质承压含水层完整井抽水问题的非稳定渗流模型]4,1[, 在数学家的帮助下,给出了著名的泰斯公式]5,4,2,1[;1938年,对模型解的数理特征及其相应的水文地质意义,进行了创造性的研究。借鉴泰斯的建模思想和求解方法,汉图森和雅各布给出了越流承压井]1[的解,博尔顿给出了潜水完整井]1[的解。

4 实用分析

在大部分地质报告,无论是抽水试验还是矿井涌水量预测,特别是通过抽水试验来求含水层参数,多数是采用稳定井流解析法。但是一些地质报告在采用这种方法是时却忽视对水问地质条件的分析,忽视当地是否存在稳定井流的可能性,似乎以为“稳定井流”是一种不受条件限制的、可以任意选用的计算方法,但是这是一种错误的观点。

有人认为,随着抽水(定流量)时间的延续,水位降速逐渐减小,则井流趋于稳定,或者说井中水位降深必定存在一极限值

max

S。但是这种情况仍然存在两种可能的结果。例如,无界的泰斯系统,其水头降速为:

at

r

e

t

Q

4

t

s

2

1

πT

4

-

=

?

?

,在

4a

r

2

t时段,水位的

降速随时间的延续是不断地减慢,但是对于这种系统,不存在补给的增加量和排泄的减少量,抽取的是静储量,因而不具备稳定井流的条件,从它的降深方法来讲:

dx

x

Q x

aT

r

-

?

=

e

πT

4

s∞

4

2,当∞

→s

t,

时,

不存在一个极限值,水位持续下降,直至最后破坏其基本条件而告终,如承压井流转变为承压--无压井流:定流量无压井流由于井中水位降至底板而不能维持定流量抽水等等。因此,把水位降速逐渐减小与井流逐渐趋向稳定等价起来是错误的。重要的是分析水文地质条件,看地下水补量的增加量是否与排泄量的减少量之和是否等于抽水量而定。

其实并不能否定在自然条件下抽水形成稳定井流的可能性,但是,像裘布依圆形定水头边界条件的稳定井流理论的、在自然条件下是极为罕见的。然而以往地质报告利用抽水试验资料计算含水层参数和涌水量预测中大量地、普遍地引用裘布依稳定井流公式却是值得探讨的问题。抽水实验作为求取水文地质参数的重要手段愈来愈多地应用于各

个领域,含水层渗透系数又是其重中之重。抽水试验计算随机性很大,原始数据的选取对参数计算有很大影响,如何能最大限度地接近实际是计算科学、准确、可靠的保证。笔者结合鲁山县段店铝土矿区实际情况,采用稳定流和非稳定流方法分别计算含水层渗透系数,并进行综合分析,力求最大限度的切合实际。

在这探讨个拟稳定流的问题,定义是流场中流速不随时间变化而变化,而水头随时间变化的一种不稳定流动。这种在某些因素上就具有了稳定流动的特征,即有抽水降落漏斗曲线的集合形状属于对数曲线,与裘布依稳定井流在形式上就一样了。正是由于这一点,再由泰斯公式出发,当满足条件

01.04r

2

≤aT

时,可以导出公式:1

2

21r r ㏑)

πT(s 2s Q -=

,显然,此公式在形式上与裘布依公式相同,但是,我们绝不能由此得出结论:这时泰斯不稳定井流转变为裘布依稳定井流了。因为这时是属于拟稳定流动,它在本质上不属于稳定流动,因为在流场上的水头仍在随时间的延续而下降,降落漏斗仍在发展。我们也不能因为泰斯不稳定井流与裘布依稳定井流在这方面存在相似性,便笼统的说裘布依公式可以应用于无限含水层,而不考虑圆形定水头边界条件。

这上面是关于井流解析法的一些思考,在自然条件进行抽水时,采用何种方法应根

据水文地质条件进行区别对待。

5 结论

理论推导与实际算例表明文中提出的非稳定井流试验数据分析方法是可行的。与现有的方法相比较,具有:(1)不论稳定与非稳定井流的情况下均可以应用;(2)仅要求计算井损参数的情况下,可以不考虑非稳定流井函数的具体形式;(3)非线性指数 不论是否已知的情况下均可以应用;(4)全部数据分析过程可以程序化,利用计算机完成全部计算过程等优点。

参考文献

[1] 陈崇希,林敏.地下水动力学.武汉:中国地质大学出版社,1999.10

[2] 任鸿飞,曾文青,王小涣.稳定流和非稳定流方法计算含水层渗透系数实例与分析.地下水,2009年5月第31卷第3期

[3] 陈崇希.地下水不稳定井流计算方法.北京:地质出版社, 1985

[4] 岳正喜,赵岩.关于稳定井流与非稳定井流理论的思考.西部探矿工程,2007年第九期

[5] 陶月赞,姚梅.地下水渗流力学的发展进程与动向.吉林大学学报(地球科学版)2007年3月第37卷第2期

抽水试验确定渗透系数的方法及步骤要点

抽水试验确定渗透系数的方法及步骤 1.抽水试验资料整理 试验期间,对原始资料和表格应及时进行整理。试验结束后,应进行资料分析、整理,提交抽水试验报告。 单孔抽水试验应提交抽水试验综合成果表,其内容包括:水位和流量过程曲线、水位和流量关系曲线、水位和时间(单对数及双对数)关系曲线、恢复水位与时间关系曲线、抽水成果、水质化验成果、水文地质计算成果、施工技术柱状图、钻孔平面位置图等。并利用单孔抽水试验资料编绘导水系数分区图。 多孔抽水试验尚应提交抽水试验地下水水位下降漏斗平面图、剖面图。 群孔干扰抽水试验和试验性开采抽水试验还应提交抽水孔和观测孔平面位置图(以水文地质图为底图)、勘察区初始水位等水位线图、水位下降漏斗发展趋势图(编制等水位线图系列)、水位下降漏斗剖面图、水位恢复后的等水位线图、观测孔的S-t、S-lg t曲线[注]、各抽水孔单孔流量和孔组总流量过程曲线等。 注意:(1)要消除区域水位下降值;(2)在基岩地区要消除固体潮的影响;3)傍河抽水要消除河水位变化对抽水孔水位变化的影响。 多孔抽水试验、群孔干扰抽水试验和试验性开采抽水试验均应编写试验小结,其内容包括:试验目的、要求、方法、获得的主要成果及其质量评述和结论。 2. 稳定流抽水试验求参方法 求参方法可以采用Dupuit 公式法和Thiem公式法。 (1) 只有抽水孔观测资料时的Dupuit 公式 承压完整井: 潜水完整井: 式中K——含水层渗透系数(m/d); Q——抽水井流量(m3/d); sw——抽水井中水位降深(m); M——承压含水层厚度(m); R——影响半径(m); H——潜水含水层厚度(m); h——潜水含水层抽水后的厚度(m); rw——抽水井半径(m)。 (2) 当有抽水井和观测孔的观测资料时的Dupuit 或Thiem公式

试井分析复习

试井分析复习 第一章绪论 1、什么是试井?试井有哪些分类? 答:(一)试井:以油气渗流力学为理论基础,以压力、温度、和产量测试为手段,研究油气藏地质和油气井工程参数的一种方法。 (二)分类:两大类,产能试井和不稳定试井。 (1)产能试井:回压试井、等时试井、修正等时试井、一点法试井。 (2)不稳定试井:单井试井(压力降落试井、压力恢复试井、探边试井)、多井试井(干扰试井、脉冲试井)。 2、什么是产能试井?什么是不稳定试井? 答:(一)产能试井:是改变若干次测试井的工作制度,测量在各个不同工作制度下的稳定产量及与相应的井底压力,利用稳定试井分析理论研究测试井生产能力的一种动态方法。(确定测试井(或测试层)的产能方程和无阻流量)(二)不稳定试井:改变测试井的产量,并测量由此而引起的井底压力随时间的变化,利用不稳定试井分析理论研究测试井测试层特性参数的一种动态方法。 3、阐述产能及不稳定试井的主要用途。 答:(一)产能试井:确定测试井的产能;对单井进行动态预测。 (二)不稳定试井:确定油气藏类型(孔隙结构性质);确定原始地层压力;确定地下流体流动能力;判断完井效果;确定措施井及层位,确定是否需要采取增产改造措施;判断增产改造措施的效果;推算探测范围和估算单井控制储量;判断边界性质、距离、形状和方位等;判断井间连通情况,确定连通厚度及连通渗透率大小;判断地层渗透率的方向性发育情况。(10条) 4、产能及不稳定试井的类型有哪些?(同上) 5、目前试井存在的问题 答:由于油气藏及其中流体流动的复杂性,因此,目前在许多复杂流体流动和复杂介质中的试井分析理论与方法还没有得到很好的解决。(水驱油藏、水驱气藏、非牛顿流体、低渗油气藏、异常高压油气藏、凝析气藏、复杂结构井、数值试井、井筒动力学对试井的影响) 多相流动:目前已投入开发的绝大多数油气藏都进入了高含水期,油(气)水关系复杂,多井干扰问题突出,储层孔隙结构可能已发生变化。多层合采:多个小层合采、层间存在干扰。低孔低渗:低渗透油气田大量投入开发,由于低渗透油气田本身的特点,使得目前成熟的试井分析理论可能不再适合。非均质性:孔隙结构复杂、非均质性严重(缝洞型油气藏、断块油气藏)复杂结构井:水平井、分支井、大斜度井、丛式井 第二章产能试井分析方法(产能试井概念:) 1、(一)产能试井测试程序:关井测地层静压;从小到大改变工作制度,测稳定产量,井底流压和其他相关数据;关井测地层静压。 (二)产能试井分析步骤:整理试井资料;确定产能方程;作流入动态关系曲线;确定合理工作制度。

抽水试验方案

一任务来源 大连地铁三十里堡隧道区间结构施工受到本线第四系孔隙潜水影响,需求取该层地下水水文地质参数。 二试验目的 通过现场试验获取试验特性曲线,选择适合水文地质条件的计算公式求取水文地质参数,为确定基坑降排水设计方案提供可靠依据,合理优化施工降水方案,保护水资源。 三试验任务 al+pl)粉质粘土层进行带拟针对第四系全新统冲洪积层(Q由于试验场地条件限制,4观测孔的单井抽水试验。试验场区位置及试验井孔平面布置见附图一。 四试验工作布置 (一)水文地质钻探工作 共布置抽水试验孔1眼,井深暂定33m,实际中钻至震旦系石灰岩终孔,井径Φ600mm,管径Φ219mm(井结构见附图二);抽水专门观测孔2眼,井深暂定33m,实际中钻至震旦系石灰岩终孔,井径Φ600mm,管径Φ400mm(井结构见附图二),6m间距布设1眼,20m间距布设1眼。 (二)抽水试验 利用单孔抽水带多个观测孔进行的抽水试验,可精确求取水文地质参数。本次试验在钻孔成井后,利用单孔抽水,同时观测2眼观测井,稳定时间分别为8、16小时,小落程出水量为大落程出水量的1/2—2/3。 (三)抽水试验观测频率、精度要求及全部试验工作时间 1.抽水试验技术要求 抽水试验的布置应满足国家现行规范的规定,同时应观测水位和水量;抽水稳定延续时间不小于8H。抽水结束后应进行恢复水位观测直至稳定。 2.静水位观测 每小时观测一次,三次所测水位相同或4小时内水位相差不超过2厘米,即为静止水位。. 3.抽水试验稳定标准 动水位无持续上升或下降趋势,若有观测孔则以距抽水主孔最远端的观测孔判定;同时考虑区域该时段的自然水位变化情况,若与区域自然水位变化一致,同样判定稳定。 4.水跃值的确定

稳定流抽水试验规程

稳定流抽水试验 一、抽水孔(主孔)的布置要求 布置抽水孔的主要根据是抽水试验的任务和目的,目的任务不同其布置原则也不同。 二、水位观测孔的布置要求 不同目的的抽水试验,其水位观测孔布置的原则是不同的。 为求取含水层水文地质参数,一般应和抽水主孔组成观测线,所求水文地质参数应具有代表性。一般应根据抽水时可能形成的水位降落漏斗的特点,来确定观测线的位置。 三、稳定流抽水试验的主要技术要求 1.对水位降深的要求 正式的稳定流抽水试验,一般要求进行三次不同水位降深(落程)的抽水,以确定Q–s间的关系,要求各次降深的抽水连续进行;对于富水性较差的含水层或非开采含水层,可只做一次最大降深的抽水试验。 2.抽水试验流量的设计 最大出水量,可根据同一含水层中已有水井的出水量推测,或根据含水层的经验渗透系数值和设计水位降深值估算,也可根据洗井时的水量来确定。欲作为生产水井使用的抽水试验钻孔,其抽水试验的流量最好能和需水量一致。 3.对水位降深和流量稳定后延续时间的要求 稳定延续时间必须从抽水孔的水位和流量均达到稳定后计算起。根据《供水水文地质勘察规范》(中华人民共和国国家标准,GB50027-2001): (1)卵石、圆砾和粗砂含水层8h; (2)中砂、细砂和粉砂含水层16h; (3)基岩含水层(带)为24h 4.水位和流量观测时间的要求 抽水主孔的水位和流量与观测孔的水位,都应同时进行观测,应由密到疏。《供水水文地质勘察规范》(中华人民共和国国家标准,GB50027-2001):抽水开始后的第5、10、15、20、 25、30min各测一次,以后每隔30min或60min测一次。 四、抽水试验设备及用具 1.抽水设备 选择抽水设备时,应考虑吸程、扬程、出水量、能否满足设计要求;还要考虑孔深、孔径是否满足水泵等设备下入的要求,以及搬迁难易及花费大小等。 (1)水量较大,地下埋藏浅,降深小时可用离心式水泵。 (2)埋深或降深大、精度要求高,井径足够大时可使用深井泵。 (3)精度要求不高,井径较小,则可选用空气压缩机(风泵)。 (4)井径小、埋藏较深、涌水量较小,可采用射流泵。 2.测水用具 抽水时用的测水用具包括水位计及流量计。 水位计:在抽水试验中,常用的是电测水位计、万用表水位计。 对自流水,若水位高出地表不多,可接套管测定水位;否则需安置压力计测定水位。 流量计:目前生产中所用的主要是堰箱,堰箱是前方为三角形或梯形切口的水箱。水自箱后部进入,从前方切口流出。适用于100L/s以内的流量的测定。 五、稳定流抽水试验现场资料整理的要求 对于稳定流抽水试验,除及时绘制出Q-t 和s-t 曲线外,尚需绘制出Q-s和q-s关系

试井分析13

1、试井: 是一种以渗流力学为基础,以各种测试仪表为手段,通过油井、气井或水井生产动态的测试来研究油、气、水层和测试井的生产能力、物理参数,以及油、气、水层之间的连通关系的方法。 2、特种识别曲线: 特种识别曲线:在某一情形或某一流动阶段在某种坐标系(半对数坐标系或直角坐标系)下的独特的曲线,称为“特种识别曲线”。 3、叠加原理: 如果某一线性微分方程的定解条件是线性的,并且它们都可以分解成若干部分,即分解成若干个定解问题,而这几个定解问题的微分方程和定解条件相应的线性组合,正好是原来的微分方程和定解条件,那么,这几个定解问题的解相应的线性组合就是原来定解问题的解。4、井筒储集系数: 用来描述井筒储集效应的强弱程度,即井筒靠其中原油的压缩等原因储存原油或靠释放井筒中压缩原油的弹性能量等原因排出原油的能力。 5、无限导流性垂直裂缝: 具有一条裂缝,裂缝宽度为0,沿着裂缝没有压力损失。 无量纲量:不具有量纲的量。 井筒储集系数:用来描述井筒储集效应的强弱程度,即井筒靠其中原油的压缩等原因储存原油或靠释放井筒中压缩原油的弹性能量等原因排出原油的能力。 干扰试井:是一种多井试井,是在一口井上改变工作制度,以使油层中压力发生变化,在另一口井加入高度压力计测量压力变化的试井方法。 6、表皮效应:在井筒周围有一个很小的环状区域,由于各种原因,其渗透率与油层不相同,当原油从油层流入井筒时,在这里产生一个附加压降,这种现象称为表皮效应。 37、产能试井:改变若干次油井、气井或水井的工作制度,测量在各个不同工作制度下的稳定产量及与之相对应的井底压力,从而确定测试井(或测试层)的产能方程、无阻流量、井底流入动态曲线和合理产量等的方法。 38、常规试井解释方法:以Horner方法为代表的,利用压力特征曲线的直线段斜率或截距反求地层参数的试井方法。 简答题 1、说明使用早期资料画成的特种识别曲线不通过原点的原因,如何纠正? 答:在记录开(关)井时间时有误差,导致使用早期资料画成的特种识别曲线不通过原点。 纠正办法是在直角坐标系中画出Δp-t关系曲线是一条直线,这条直线与横坐标的交点就是时间误差的大小,将直线平移到通过原点,就能将时间误差校正。 2、简述使用无量纲的优点并写出P D、t D、C D的表达式 答:1、由于若干有关的因子已经包含在无因次量的定义之中,所以往往使得关系式变得很简单,因而易于推导、记忆和应用。 2、由于使用的是无因次量,所以导出的公式不受单位制的影响和限制,因而使用更为方便。

稳定试井和不稳定试井

稳定试井与不稳定试井 第一部分油气井试井 第一章稳定试井 第一节油井稳定试井 一、原理 达西定律告诉我们:平面径向流的井产量大小主要决定于油藏岩石和流体的性质(即Kh),以及生产压差。因此,测出井的产量和相应压力,就可以推断出井和油藏的流动特性, 这就是稳定试井所依据的原理。 稳定试井也可称为产能试井。其具体做法是:依次改变井的工作制度,待每种工作制度下的生产处于稳定时,测量其产量和压力及其它有关资料;然后根据这些资料绘制指示曲线、系统试井曲线、流入动态曲线;得出井的产能方程,确定井的生产能力、合理工作制度和油藏参数。 本章主要介绍自喷油井的稳定试井。 二、测试方法 (一)定工作制度 1.工作制度的测点数及其分布 每一工作制度以4~5个测点较为合适,但不得少于三个,并力求均匀分布。 2.最小工作制度的确定原则 在生产条件允许情况下,使该工作制度的稳定流压尽可能接近地层压力。 3.最大工作制度的确定原则 在生产条件允许情况下,使该工作制度的稳定油压接近自喷最小油压(例如,取0.3~1.0Mpa)。

4.其它工作制度的分布 在最大、最小工作制度之间,均匀内插2~3个工作 制度。 (二)一般测试程序 1.测地层压力 试井前,必先测得稳定的地层压力。 2.工作制度程序 一般由小到大(也可以由大到小,但不常采用)依 1 图1—1油井指示曲线类型 次改变井的工作制度,并测量其相应的稳定产量、流压和其它有关数据。 3.关井测压 最后一个工作制度测试结束后,关井测地层压力或压力恢复。 三、线性产能方程及其确定 图 1—1直线型指示曲线I可用以下线性方程表示: (6—1) q,J,pp 3式中:q——产量,m/d 3 J——采油指数,m/d?MPa Δp——生产压差,MPa P

基坑降水的非完整井流计算

基坑降水的非完整井流计算 【摘要】用三维边界单元法解决基坑施工中非完整井降水的渗流计算问题,为降水方案设计提供依据,并对降水过程作出预测。 【关键词】基坑降水基坑施工非完整井流计算 【Abstract】The seepage calculation for partly penetrated well dewatering is solved in foundation pit construction by the three dimensional boundary elements method.This provides the basis for the scheme design of dewatering,and can make a prediction for dewatering process. 【key words】foundation dewatering foundation pit construction calculation for partially penetrated well flow. 0前言 在建筑工程的深基坑施工过程中,往往要求将地下水位降到一定的深度之下,目的是使基坑的坑底面不积水,便于施工。另一方面,降低水位是为了减小基坑的水压力,防止坑底土层破坏或防止发生流砂、管涌等现象。同时基坑降水还能减小基坑侧壁的渗透压力,有助增加基坑侧壁的稳定性。因此基坑降水在深基坑工程中占有重要位置。在南方软土地区,由于地下水位浅,土质软弱,基坑降水的作用更加突出。 基坑降水的方案设计必须既科学又经济。降水方案首先要确保降水效果能够达到预期的目的,降水过程能够按预定计划有控制地实行;其次,应考虑降水工程的经济性,做到以尽量少的工程费用实现降水的目的。 节约降水费用的关键是设计最经济的井数、井深及降水井的合理布置。降水井的个数主要取决于单井的降水深度和单井的有效降深范围。由于上海地区浅部土层的渗透性较小,因此降水井附近的降落曲线较陡,使得降水影响范围较小。由于渗透缓慢,一味地增加井的深度并不能明显地增大降水影响范围。因此实际工程中的降水井往往是浅井,没有打穿含水层,使得降水井变成了非完整井。非完整井的渗流情况相当复杂,给计算增加了困难。 在经典理论中,对于非完整井的稳定流,通过作出简化假设,得出了些近似解,如半无限承压含水层中非完整井的В.П.Бабушкин巴布什金公式、含水层厚度有限时承压含水层中的非完整井的Muskat马斯克特公式。而对潜水非完整井,则通过将渗流区分为上下两区,将上段看作潜水完整井,将下段看作承压非完整井的方法来解决。经典

承压-潜水非完整井计算公式

基坑降水、土方、支护工程 降水设计计算书 一、设计计算依据 1、岩土工程勘察报告; 2、《建筑基坑支护技术规程》JGJ120-99; 3、其它相关资料。 二、计算过程 本次计算采取如下程序: 本工程采用承压-潜水非完整井计算基坑涌水量。

公式一: )R (1lg h -M)M -2H 366.10 2r k Q +=( 式中:Q ——基坑涌水量(m 3/d) k ——渗透系数(m/d),10 S ——水位降深(m),7.0m R ——引用影响半径(m),R=kH s 2=230m r 0——基坑半径(m),F F r 564.0/0==π=104.5m F ——基坑面积(m 2),本工程暂取34358m 2 l ——过滤器有效工作部分长度 H ——初始静止水位至井底的距离 h ——基坑底至井底的距离 M ——承压含水层厚度(m),27.0 计算得:Q=2969.9m 3/d 根据我公司多年施工经验,根据规范所计算涌水量往往比实际小很多,本工程根据经验,按两倍理论量计算涌水量,即涌水量为:2969.9×2=5940 m 3/d

公式二: 3 120q k l r s π= 式中:q ——管井的出水量(m 3/d) s r ——过滤器半径(m ) l ——过滤器浸部分段长度(m),2.0 k ——含水层渗透系数(m/d),380 计算得:q =182.40m 3/d 公式三: q Q n 1.1= 计算得井数为:n ≈36 公式四: T y Z ir c h L +++++=0 式中:L ——井深(m) h ——基坑深度(m),5.5 c ——降水水面距基坑底的深度(m),1.0 i ——水力坡度,取0.03 Z ——降水期间地下水位变幅(m),0.5 y ——过滤器工作部分长度(m),2.0

抽水试验规范方法及计算公式

可编辑 第四章抽水试验 抽水试验是确定含水层参数,了解水文地质条件的主要方法。采用主孔抽水、带有多个观测 孔的群孔抽水试验,包括非稳定流和稳定流抽水实验,要求观测抽水期间和水位恢复期间的水位、流量、水温、气温等内容。要求了解试验基地及其所在地区的水文气象、地质地貌及水文地质条件,了解并掌握抽水试验的目的意义、工作程序、现场记录的主要内容、数据采集与处理方法, 掌握相关资料的整理、编录方法和要求,了解对抽水试验工作质量进行评价的一般原则,能够利 用学过的理论及方法进行水文地质参数计算,并对参数的合理性和精确性进行分析和检验。 §4.1 基本要求 掌握抽水试验的目的、分类、方法及抽水试验准备工作。 4.1.1 抽水试验的目的 (1) 确定含水层及越流层的水文地质参数:渗透系数 K、导水系数 T、给水度、弹性释水系数?、导压系数 a、弱透水层渗透系数 K'、越流系数 b、越流因素 B、影响半径 R等。 (2) 通过测定井孔涌水量及其与水位下降(降深)之间的关系,分析确定含水层的富水程度、评价井孔的出水能力。 (3) 为取水工程设计提供所需的水文地质数据,如影响半径、单井出水量、单位出水量、井间干扰出水量、干扰系数等,依据降深和流量选择适宜的水泵型号。 (4) 确定水位下降漏斗的形状、大小及其随时间的增长速度;直接评价水源地的可开采量。 (5) 查明某些手段难以查明的水文地质条件,如确定各含水层间以及与地表水之间的水力联系、边界的性质及简单边界的位置、地下水补给通道、强径流带位置等。 4.1.2 抽水试验分类 抽水试验主要分为单孔抽水、多孔抽水、群孔干扰抽水和试验性开采抽水。 (1)单孔抽水试验:仅在一个试验孔中抽水,用以确定涌水量与水位降深的关系,概略取 得含水层渗透系数。 (2)多孔抽水试验:在一个主孔内抽水,在其周围设置若干个观测孔观测地下水位。通过 多孔抽水试验可以求得较为确切的水文地质参数和含水层不同方向的渗透性能及边界条件等。 (3)群孔干扰抽水试验:在影响半径范围内,两个或两个以上钻孔中同时进行的抽水试验;通过干扰抽水试验确定水位下降与总涌水量的关系,从而预测一定降深下的开采量或一定开采定 额下的水位降深值,同时为确定合理的布井方案提供依据。 (4)试验性开采抽水试验:是模拟未来开采方案而进行的抽水试验。一般在地下水天然补 给量不很充沛或补给量不易查清,或者勘察工作量有限而又缺乏地下水长期观测资料的水源地, 为充分暴露水文地质问题,宜进行试验性开采抽水试验,并用钻孔实际出水量作为评价地下水可 开采量的依据。

单孔抽水试验非稳定流求取参数的方法

单孔非稳定流抽水试验参数计算 :(定流量) 1) 根据单孔稳定流抽水试验水位下降资料(也就是抽水稳定之前的加密数值)计算水文地质参数 本公式适合所有抽水试验前的非稳定加密观测 用Jacob 近似公式: 2.3Q 2.25T 2.3Q t s =lg +lg 4πT μ*4πT r2 (1) 第一步:先画出抽水试验开始非稳定流时的s-lgt 时间曲线。 第二步:求s-lgt 的斜率 我们称之为i 根据(1公式)s-lgt 时间曲线的斜率 就是 根据s-lgt 曲线的形态 去除非点去一段比较缓的短画一条直线,i 就是这条直线的斜率,在excel 中可以实现。(i 就是在lgt 坐标轴上一个周期的s 差值) 第三步:根据第一步代入公式 i= 转换为 2.3Q T =4πi (T 为导水系数、Q 为抽水试验出水量) T=km (m 含水层厚度、k 渗透系数) 最厚专变为 km= 2) 根据单孔稳定流抽水试验水位恢复资料(也就是抽水结束后的加密数值)计算水文地质参数 注:本计算适合以1个稳定流降深点的计算 非稳定流抽水试验水位恢复参数计算公式为: k T Q t K =ln(1+)4πMs t Q……….稳定流抽水的流量(m 3/d) t k ………抽水开始至停止的时间(就是抽水总延续时间) t T ………抽水停止时算起的恢复时间

S………水位恢复时的剩余下降值(m ) M………含水层真厚度(m) g k T Q t K =l (1+)/lg(e)4πMs t 变换后可得: T=Q 0.183i 第一步:先画出抽水试验开始非稳定流时的s-g k T t l (1+ )t 时间曲线。 第二步:求s-g k T t l (1+ )t 的斜率 我们称之为i (i 就是在g k T t l (1+)t 坐标轴一个周期的s 差值。 根据s-g k T t l (1+)t 曲线的形态 去除非点去一段比较缓的短画一条直线,i 就是,这条直线的斜率,在excel 中可以实现。 i Q =4πMKlg(e) 最后转化为T=km=Q 0.183i 因此只要求出i 就可以就得k

稳定试井与不稳定试井

1 第一部分 油气井试井 第一章 稳定试井 第一节 油井稳定试井 一、原理 达西定律告诉我们:平面径向流的井产量大小主要决定于油藏岩石和流体的性质(即 Kh ),以及生产压差。因此,测出井的产量和相应压力,就可以推断出井和油藏的流动特性, 这就是稳定试井所依据的原理。 稳定试井也可称为产能试井。其具体做法是:依次改变井的工作制度,待每种工作制度下的生产处于稳定时,测量其产量和压力及其它有关资料;然后根据这些资料绘制指示曲线、系统试井曲线、流入动态曲线;得出井的产能方程,确定井的生产能力、合理工作制度和油藏参数。 本章主要介绍自喷油井的稳定试井。 二、测试方法 (一)定工作制度 1.工作制度的测点数及其分布 每一工作制度以4~5个测点较为合适,但不得少于三个,并力求均匀分布。 2.最小工作制度的确定原则 在生产条件允许情况下,使该工作制度的稳定流压尽可能接近地层压力。 3.最大工作制度的确定原则 在生产条件允许情况下,使该工作制度的稳定油压接近自喷最小油压(例如,取0.3~1.0Mpa )。 4.其它工作制度的分布 在最大、最小工作制度之间,均匀内插2~3个工作制度。 (二)一般测试程序 1.测地层压力 试井前,必先测得稳定的地层压力。 2.工作制度程序 图1—1油井指示曲线类型

2 一般由小到大(也可以由大到小,但不常采用)依次改变井的工作制度,并测量其相应的稳定产量、流压和其它有关数据。 3.关井测压 最后一个工作制度测试结束后,关井测地层压力或压力恢复。 三、线性产能方程及其确定 图 1—1直线型指示曲线I 可用以下线性方程表示: p p J q ?= (6—1) 式中:q ——产量,m 3/d J ——采油指数,m 3/d ·MPa Δp P ——生产压差,MPa 线性产能方程的确定 根据测试工作制度的产量和压力数据,作图于△p p ~q 的坐标系上得直线,量出直线的 斜率,其倒数即为J 。 四、指数式产能方程及其确定 1.指数式产能方程 2.系数C 、n 的确定 五、二项式产能方程及其确定 六、油井稳定试井资料解释 (一)解释步骤和方法 1. 整理试井资料 (1) 试井数据列表。 (2) 绘制试井曲线。 1) 绘制系统试井曲线,系统试井曲线如图(1—4)。利用这一曲线可确定油井的合理工作制度。 2) 绘制指示曲线,根据表1—1的生产压差p p ?和产量q 作q p p -?图。 2. 确定产能方程 由绘制的指示曲线,判别指示曲线类型;由各所属类型确立产能方程直线型指示曲线 当油藏中流体处于单相(液相)达西流动时,油井指示曲线为直线,以此直线可计算以下参数: 1) 采油指数J 。在直线上任取一点(q ,p p ?),按式1-1求得采油指数:

抽水试验规范方法及计算公式

第四章抽水试验 抽水试验是确定含水层参数,了解水文地质条件的主要方法。采用主孔抽水、带有多个观测 孔的群孔抽水试验,包括非稳定流和稳定流抽水实验,要求观测抽水期间和水位恢复期间的水位、流量、水温、气温等内容。要求了解试验基地及其所在地区的水文气象、地质地貌及水文地质条件,了解并掌握抽水试验的目的意义、工作程序、现场记录的主要内容、数据采集与处理方法, 掌握相关资料的整理、编录方法和要求,了解对抽水试验工作质量进行评价的一般原则,能够利 用学过的理论及方法进行水文地质参数计算,并对参数的合理性和精确性进行分析和检验。 §4.1 基本要求 掌握抽水试验的目的、分类、方法及抽水试验准备工作。 4.1.1 抽水试验的目的 (1) 确定含水层及越流层的水文地质参数:渗透系数 K、导水系数 T、给水度、弹性释水系数?、导压系数 a、弱透水层渗透系数 K'、越流系数 b、越流因素 B、影响半径 R等。 (2) 通过测定井孔涌水量及其与水位下降(降深)之间的关系,分析确定含水层的富水程度、评价井孔的出水能力。 (3) 为取水工程设计提供所需的水文地质数据,如影响半径、单井出水量、单位出水量、井间干扰出水量、干扰系数等,依据降深和流量选择适宜的水泵型号。 (4) 确定水位下降漏斗的形状、大小及其随时间的增长速度;直接评价水源地的可开采量。 (5) 查明某些手段难以查明的水文地质条件,如确定各含水层间以及与地表水之间的水力联系、边界的性质及简单边界的位置、地下水补给通道、强径流带位置等。 4.1.2 抽水试验分类 抽水试验主要分为单孔抽水、多孔抽水、群孔干扰抽水和试验性开采抽水。 (1)单孔抽水试验:仅在一个试验孔中抽水,用以确定涌水量与水位降深的关系,概略取 得含水层渗透系数。 (2)多孔抽水试验:在一个主孔内抽水,在其周围设置若干个观测孔观测地下水位。通过 多孔抽水试验可以求得较为确切的水文地质参数和含水层不同方向的渗透性能及边界条件等。 (3)群孔干扰抽水试验:在影响半径范围内,两个或两个以上钻孔中同时进行的抽水试验;通过干扰抽水试验确定水位下降与总涌水量的关系,从而预测一定降深下的开采量或一定开采定 额下的水位降深值,同时为确定合理的布井方案提供依据。 (4)试验性开采抽水试验:是模拟未来开采方案而进行的抽水试验。一般在地下水天然补 给量不很充沛或补给量不易查清,或者勘察工作量有限而又缺乏地下水长期观测资料的水源地, 为充分暴露水文地质问题,宜进行试验性开采抽水试验,并用钻孔实际出水量作为评价地下水可 开采量的依据。

数值试井技术在不稳定试井资料解释中的应用

数值试井技术在不稳定试井资料解释中的应用 摘要:数值试井技术开拓了新的试井方法,解决困扰常规解析试井分析方法的多相流、复杂边界、复杂井网和储层的平面非均质性等疑难问题,从而使解释精度更高、更可靠。通过在榆46-5井疑难不稳定试井资料评价中的实际应用,收到了良好的成效。 关键词:数值试井榆46-5井不稳定试井资料解释 1 前言 随着气藏分析技术的飞速发展,气藏的研究分析也越来 越精细,解析试井分析技术已经跟不上这些发展的步伐。虽 然比起测井,解析试井所研究的井附近地层,就其范围来说 要宽阔得多,而且所依据的是油气从供给部位流向井底时, 通过扫描地层所携带的地层信息。但是涉及到储层外围的边界、地层非均质变化、井和井之间的关系、以及区块面积等问题,就感到难以做出确切的回答。 复杂的非对称边界和非均质地层长期以来一直是困扰传统试井解释方法的一个难点,并且对新类型井的压力瞬变的描述也是一个很大的难题。随着计算机技术的飞速发展,计算速度和精度都得到大大提高,而把数值模拟技术应用到试井解释中则为上述问题的解决开创了一个良好的开端。利用有限元技术,通过生成有限元网格来描述井和油藏,然后计算压力响应。这个方法的采用,使得对油气井和油藏复杂多变的几何形状的模拟变得更加快捷和方便,同时,也使压力响应得到了计算,模拟的过程可以通过颜色的变化显示出油藏中压力场的变化,然后将压力瞬变响应反馈到解析试井解释软件中与测量的压力数据比较,确认解释结果是否准确,这样大大地提高了试井解释精度。 2 资料解释 2.1 测试井概括 榆46-5井位于陕西省横山县波罗镇杨沙畔村,榆46-5井于2003年11月10日投产,生产层位山2,至投产以来平均配产13.0×104m3,截至07年6月30日累计产气量16629.83×104m3,油压为17.2MPa。 2.2 解析试井分析 2.2.1 双对数分析 榆46-5井于2007年6月30日至8月21日关井测试,取得压力恢复曲线,从压力恢复双对数图可以看出(见图1),早期为井筒储存和表皮效应反映,中期出现了明显的裂缝线性流特征,后期导数曲线上翘后下掉,分析认为是全封闭气藏边界反映。依据以上对压力恢复曲线的认识,常规分析方法选取了“有限导流矩形边界”的试井分析模型进行解释,获得了很好的拟合。 1E-30.010.11101001000 1E+5 1E+6 1E+7 双对数曲线: dm(p)和dm(p)' [psi2/cp]-dt [hr] 图1 榆46-5井双对数曲线 2.2.2 压力历史拟合检验 为了进一步检验分析结果,收集了该井至投产以来的的生产数据及所测的流压数据(见图2),通过拟合压力史发现实测数据和拟合曲线存在差异,模型压力与实测压力相距甚远。始偏离实测曲线,拟合压力曲线比实测压力下降得快,以后偏离越来越大,这说明该井不是完全封闭气藏,具有一定的能量补充。 工作历史曲线 (压力 [MPa], 气体流量 [m3/D]-时间 [hr]) 图2 处于封闭边界时榆46-9井压力历史拟合图 (边界距离L1=L2=L3=L4=800) 通过进一步分析认为影响榆46-5井压力历史的主要因素有: ①榆46-5井附近区域的储层物性优于外围储层,前期测试时由于采出量小,压力扰动范围小,压降漏斗前缘压力降落很小,还不足以使远井地带的流体流动,使得压力响应曲线表现为封闭油藏的特征。随着生产时间的延长,产出量的增加,生产压差逐渐增大,压力扰动范围增大,远井地带压力降落也随之增大,当压力降落到一定程度时,使得远地带流体开始参与流动,这时压力降落速度开始减慢,使得压力拟合曲线偏离实测压力曲线; ②榆46-4井、榆46-6井、榆45-5井、榆45-6和榆47-6井等5口井的试采过程对地层压力产生的影响;

试井名词解释

名词解释: 1.“试井”是一种以渗流力学为基础,以各种测试仪表为手段,过对油井、气井或 水井生产动态(产量、压力、温度)的测试来研究和确定油、气、水层和测试井的生 产能力、物性参数、生产动态,判断测试井附近的边界情况,以及油、气、水层之 间的连通关系的方法。 试井是油藏工程的一个重要分支。 2.试井的分类方法: (1)按测试(试井)系统的井数分为:单井测试(试井)、多井测试(试井);(2)按测试(试井)方法:压力降落试井、压力恢复试井、干扰试井、脉冲试井、产能试井;(3)按油井流动状态,测试(试井)方法分为:稳定试井、不稳定试井。 3.试井的分类: 产能试井:稳定试井,等时试井,修正等时试井 不稳定试井:本井地层参数:压降试井、压恢试井、注水试井、中途测试 井间地层参数:干扰试井、脉冲试井、示踪剂试井 4.表皮系数(或趋肤因子、污染系数)的定义为:将附加压力降(用ΔPs表示)无因次化,得到无因次附加压降,用它表征一口井表皮效应的性质和严重情况,用S表示:S>0,数值越大,表示污染越严重;S=0,井未受污染;S<0,绝对值越大,表示增产效果越好。 5.表皮系数的成因:由于储集层互扰或增产措施引起的表皮系数,气层中由气体的非达西流动,由多相流,由各向异性,由完井,由流体界面,由储集层几何形态 6.采油指数:油井采油指数J表示油井生产能力的大小,它的物理意义是压差为1单位压力时油井的产量 7.表皮效应:由于钻井过程中泥浆侵入地层,固井水泥侵入,射孔不完善等因素,使得完井后的井壁附近受到某种程度伤害,造成附加压力同油层渗透阻力之比。它是当原油从油层流入井筒;产生一个压力降现象 8.常规回压试井:连续以若干个不同的工作制度生产,要求产量稳定,井底流压稳定,测量出各种不同工作制度下油井的井底流压产油量产气量等资料。 9.等时试井:用若干个不同产量生产相同时间,每一产量生产后关机一段时间,使压力恢复到气层静压,最后再以某一定产生产一段较长时间,直至井底流压达到稳定,这种试井方法叫等时试井 10.压力降落试井:指以定产量生产时,连续记录井底压力随时间变化的历史,对这一压力历史进行分析,以求地层参数的方法 11.压力恢复试井:以恒定产量生产一段时后关井,测取关井后的井底恢复压力,并对之一压力历史进行分析,求取地层参数。 12.叠加原理:油藏中任何一个地方压力变化,等于油藏中所有各井的产量变化在该处引起的压力变化的代数和 13.井筒卸载效应:由于井筒中流体的可缩性

抽水试验流程

抽水试验流程 抽水试验 1)抽水试验的方法 (1)单孔孔组抽水试验 ①单孔孔组抽水试验第一段为煤系砂岩裂隙含水层,选取抽水孔群中孔间距较近的一个孔(抽4孔)进行抽水,另一个孔(观1孔)配对进行观测,如此段时间内有同层位钻孔施工至该层位亦可作为观测孔进行观测,进行单孔孔组非稳定流抽水试验。 ②单孔孔组抽水试验第二段为奥陶系峰峰组灰岩含水层,选取抽水孔群中孔间距较近的一个孔(抽4孔)进行抽水,另一个孔(观1孔)配对进行观测,如此段时间内有同层位钻孔施工至该层位亦可作为观测孔进行观测,进行单孔孔组非稳定流抽水试验。 (2)群孔孔组抽水试验 群孔抽水试验段含水层为奥陶系灰岩含水层段,共有5个抽水孔同时进行抽水,5个观测孔同时进行水位观测,进行大型群孔非稳定流抽水试验。 2)抽水试验设备要求 (1)单孔孔组抽水试验设备、观测仪表和工具 ①抽水设备使用空压机、潜水泵或提桶抽水; ②流量使用标准水箱或三角堰观测; ③水位用电测水位计观测; ④水温可用温度计测量。 (2)群孔孔组抽水试验设备、观测仪表和工具 ①抽水设备:抽2、抽3、抽4、抽5四各孔套管为Φ325mm,选用250QJ 型水泵,排量 100m3/h、扬程150m左右;抽1孔套管为Φ219mm,选用150QJ 型水泵,排量30~50m3/h、扬程120~150m左右; ②配置:全套标准配置是指泵体、电机和按扬程配带电缆、配电柜、启动控制柜、出水管、弯头、连接件、连接螺丝、止水密封件等安装用配件材料; ③水量、水位和水温观测仪表和工具 A.抽水时用三角堰观测流量; B.使用电测水位计观测水位;

C.用温度计观测水温。 3)煤系地层抽水试验技术要求 (1)抽水试验前准备工作 ①试验前应对抽水孔(抽4)(钻至13号煤层隔水层底板底部)、观测孔(观1)(进度与抽水孔相等,亦钻进到13号煤层隔水层底板底部)进行洗孔; ②试验开始前2日,必须在每天的同一时间测量抽水孔和观测孔中的水位。并对所有施工完这一段(煤系砂岩裂隙含水层)的抽水孔、观测孔统一进行一次稳定水位观测。 (2)抽水试验技术要求 抽水试验采用1次降深的非稳定流抽水,并进行非稳定流量、水位观测和恢复水位观测。 ①降深 根据SK24孔简易抽水试验资料来看,煤系砂岩裂隙含水层的单位涌水量小于0.005L/s·m,故本次单孔孔组抽水试验作一次最大降深非稳定流抽水,估计水位最大降深S max≧20m。 ②稳定延续时间 当抽水试验形成的渗流场达到近似稳定(水位波动≤降深的1%,空压机抽水时≤20~30cm,涌水量波动不超过抽水量的3%)时,再延续10小时结束。 (3)水位及流量等观测要求 ①抽水前1小时整点对抽水孔(抽2孔)和观测孔(观1孔)观测一次; ②从抽水设备开启时刻,同时观测水位和流量,观测时间要求先密后稀,开始时从0、5、10、15、20、25、30、40、50、60、70、80、100、120、140、160、190、220分钟、……,以后每隔30分钟、一小时、二小时、……观测一次,直至稳定。抽水孔流量、水温和水位亦同时观测; ③达到稳定后,停抽进行抽水孔和观测孔恢复水位观测。亦是先密后稀从0、5、10、15、20、25、30、40、50、60、70、80、100、120、140、160、190、220、……,以后每隔30分钟、一小时、二小时、……观测一次,直到稳定为止; ④水温观测:抽水过程应在出水口每隔4小时同时观测一次气温和水温值;

抽水试验

常州国家级动画产业西太湖基地津通园区D区住宅非稳定流抽水试验报告 工程负责人:王建君 报告编写人:赵雪春 校对:周鹏 审核:潘政 常州市中元建设工程勘察院有限公司 二O一二年五月 目录 文字部分: 一、工程概况与抽水试验目 (1) 二、场地地层条件 (1) 三、场地水文地质条件 (1) 四、试验方案井的结构和试验过程 (1) 五、水文地质参数计算 (2) 六、结论 (3) 图表部分 1.《水位降深、出水量观测资料一览表》……………………2张 2.《水文地质综合柱状图》……………………………………1张 3.《1# 井(观测井)非稳定流抽水试验配线图》………………1张 4.《2# 井(观测井)非稳定流抽水试验配线图》………………1张

一、工程概况与抽水试验目的 拟建常州国家级动画产业西太湖基地津通园区D区住宅位于常州市武进经发区西太湖大道东侧,稻香路北侧,具1层地下室,埋深5米。 拟建项目基坑要在微承压含水层中开挖,为安全施工,必须进行基坑降水与支护措施。本次抽水试验的目的在于查明微承压含水层的水文地质计算参数,为基坑降水施工设计提供可靠的依据。 二、场地地层条件 拟建场地地势较平坦,分布地层为全新世(Q4)沉积物,影响基坑开挖的土层分布情况自上而下简述如下(据抽水井附近静力触探资料): ①层素填土:层厚0.50m,层底埋深0.50m。 ②层粘土:层厚1.40m,层底埋深1.90m。 ④层粉土:层厚2.20m,层底埋深4.10m。 ⑤层粉土夹粉砂:层厚6.00m,层底埋深10.10m。 ⑥层粉砂:层厚6.50m,层底埋深16.60m。 ⑦层粘土:层厚3.40m,层底埋深20.00m。 三、场地水文地质条件 拟建场地在基坑开挖过程中,主要受浅层微承压水影响,浅层微承压水分布于④粉土、⑤层粉土夹粉砂及⑥层粉砂层内,在整个拟建场地分布区域内,此含水层分布较稳定,含水层顶板埋深为1.90米,底板埋深为16.60米,含水层厚度为14.70米,承压水位埋深2.50米(抽水井水位),承压水头相当于青岛黄海标高-1.50米。微承压水接受大气降水的入渗补给。 四、试验方案、试验井的结构和试验过程 1、试验方案 为取得比较可靠的成果,本次抽水试验采用带两个观测井和理论比较完善的完整井非稳定流抽水试验方法,抽水井远离补给和隔水边界。在拟建场地东北部沿西东向布置一条试验线,由三口井组成,一井为抽水井,两井为观测井,抽水井距1#井(观测井)和2#井(观测井)的距离分别为5.0m和10.0m。 2、试验井的结构 抽水井和观测井成孔直径均为350mm,井深均为22.00m,井管全部采用150mmPVC波纹管(结构图见图1)。含水层部位为过滤器,下部接沉砂管,过滤器外缠60目尼龙网布2层,过滤器部位回填粗石英砂,充作滤层。井深6.00米以上回填粘土球并夯实,以防地面水渗漏到试验层中。 3、试验过程 抽水试验严格按定流量非稳定流承压完整井抽水试验有关要求进行,清水井后即下过滤器和井管,动水回填滤层至设计深度厚后填入粘性土,浸泡3小时后,用冲水头活塞洗井,直到水清砂净为止。 试验前进行了试抽,调整好泵量,并初步了解抽水量与动水位变化的情况。 正式抽水历时1440分钟,采用电测水位计测动水位,用水表计流量,测的稳定流量Q为69.6m3/d(2.9m3/h),抽水井最大降深为2.39m;1#井(观测井)最大降深为1.31m;2#井(观测井)最大降深为0.99m。 抽水停泵后即观测恢复水位,以恢复后的稳定水位作为静止水位,静止水位为地面以下2.54m(以抽水井为标准),相当于黄海高程-1.54m。

管井降水计算(潜水非完整井)

一、场地岩土工程情况 本工程位于包头市友谊大街以南,劳动路以东,万青路以西,在地貌上属于大青山山前冲洪积地貌。本场地地层结构和岩性如下: 第①层杂填土,以粉土为主,混少量建筑垃圾和生活垃圾,呈稍湿、松散状态。该层厚度在0.3~3.2m之间,层底标高在1052.62~1057.02m之间。 第②层粉砂,黄褐色,颗粒矿物成分为长石、石英石,均粒结构,天然状态下呈稍湿,稍密状态。该层厚度在0.3~4.2m之间,层底标高在1052.02~1054.06m之间。 第③层粗砂,黄褐色,颗粒矿物成分为长石、石英石,颗粒级配较好,混少量砾,局部分布有粉质粘士薄夹层。天然状态下呈稍湿~饱和,中密状态。该层厚度在3.4~6.6m之间,渗透系数为K=1.66×10-2cm/s。 第③1层细砂,黄褐色,颗粒矿物成分为长石、石英质,均粒结构,天然状态下呈稍湿~饱和,中密状态。该层以夹层或透镜体形式存在于第3层粗砂层中,该层厚度在0.4~2.2m之间,层底标高在1047.91~1050.61m之间,渗透系数为K=5.64×10-3cm/s。 第④层粉砂,黄绿色,颗粒矿物成分为长石、石英质,均粒结构,局部分布有粉土、粉质粘土薄夹层。天然状态下呈饱和,中密状态。该层厚度在4.3~9.4m之间,层底标高1039.21~1041.58m之间,渗透系数为K=2.24×10-3cm/s。 第⑤层粉质粘土,灰黑色,含云母,有光泽,略带腥臭味,含有机质,有机质含量为1.3~6.1%,无摇振反应,切口光滑,干强度中等,韧性中等。天然状态下呈可塑~软塑状态。该层中分布有粉砂、细砂及粉土薄夹层,局部含有薄层钙质胶结层。该层厚度在31.2~33.4m之间,层底标高在1006.57~1009.65m 之间,渗透系数为K=3.89×10-6cm/s。 地下水埋藏于自然地表下5.2~6.5m,标高在1049.64~1050.73m之间,属潜水。由于临近场地正在进行降水施工,水位受其影响,现场水位偏低,根据该区域的水文地质资料,该地下水年幅度变化在1.0~1.5M之间。

相关文档
最新文档