七年级 第十讲:行程问题经典例题演示教学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级第十讲:行程问题经典例题

第十讲:行程问题分类例析

主讲:何老师

行程问题有相遇问题,追及问题,顺流、逆流问题,上坡、下坡问题等.在运动形式上分直线运动及曲线运用(如环形跑道). 相遇问题是相向而行.相遇距离为两运动物体的距离和.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追及,追及距离慢快S S S +=.顺逆流、顺风逆风、上下坡应注意运动

方向,去时顺流,回时则为逆流.

一、相遇问题

例1:两地间的路程为360km ,甲车从A 地出发开往B 地,每小时行72km ;甲车出发25分钟后,乙车从B 地出发开往A 地,每小时行使48km ,两车相遇后,各自按原来速度继续行使,那么相遇以后,两车相距100km 时,甲车从出发开始共行驶了多少小时?

分析:利用相遇问题的关系式(相遇距离为两运动物体的距离和)建立方程. 解答:设甲车共行使了xh ,则乙车行使了h x

)(60

25-.(如图1)

依题意,有72x+48)(60

25-

x =360+100, 解得x=4.

因此,甲车共行使了4h. 图1

说明:本题两车相向而行,相遇后继续行使100km ,仍属相遇问题中的距离,望读者仔细体会.

例2:一架战斗机的贮油量最多够它在空中飞行4.6h,飞机出航时顺风飞行,在静风中的速度是575km/h,风速25 km/h,这架飞机最多能飞出多少千米就应返回? 分析:列方程求解行程问题中的顺风逆风问题.

顺风中的速度=静风中速度+风速

逆风中的速度=静风中速度-风速

解答:解法一:设这架飞机最远飞出xkm 就应返回. 依题意,有6425

57525575.=-++x x 解得:x=1320.

答:这架飞机最远飞出1320km 就应返回.

解法二: 设飞机顺风飞行时间为th.

依题意,有(575+25)t=(575-25)(4.6-t),

解得:t=2.2.

(575+25)t=600×2.2=1320.

答:这架飞机最远飞出1320km 就应返回.

说明:飞机顺风与逆风的平均速度是575km/h,则有

64575

2.=x ,解得x=1322.5.错误原因在于飞机平均速度不是575km/h,而是

)/(h km v v v v v x v x x

574550600550600222≈+⨯⨯=+⋅=+逆顺逆顺逆顺 例3:甲、乙两人在一环城公路上骑自行车,环形公路长为42km ,甲、乙两人的速度分别为21 km/h 、14 km/h.

(1)如果两人从公路的同一地点同时反向出发,那么经几小时后,两人首次相遇?

(2)如果两人从公路的同一地点同时同向出发,那么出发后经几小时两人第二次

相遇?

分析:这是环形跑道的行程问题.

解答:(1)设经过xh两人首次相遇.

依题意,得(21+14)x=42,

解得:x=1.2.

因此,经过1.2小时两人首次相遇.

(3)设经过xh两人第二次相遇.

依题意,得21x-14x=42×2,

解得:x=12.

因此,经过12h两人第二次相遇.

说明:在封闭的环形跑道上同向运动属追及问题,反向运动属相遇问题.从同一地点出发,相遇时,追及路程或相隔路程就是环形道的周长,第二次相遇,追及路程为两圈的周长.

有趣的行程问题

【探究新知】

例1、甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?

分析与解:出发时甲、乙二人相距30千米,以后两人的距离每小时都缩短6+4=10(千米),即两人的速度的和(简称速度和),所以30千米里有几个10千米就是几小时相遇.

30÷(6+4)

=30÷10

=3(小时)

答:3小时后两人相遇.

本题是一个典型的相遇问题.在相遇问题中有这样一个基本数量关系:路程=速度和×时间.

例2、如右下图有一条长方形跑道,甲从A点出发,乙从C点同时出发,都按顺时针方向奔跑,甲每秒跑5米,乙每秒跑

4.5米。当甲第一次追上乙时,甲跑了多少圈?(第

二届希望杯试题)

分析与解:这是一道环形路上追及问题。在追及问题问题中有一个基本关系式:追击路程=速度差×追及时间。

追及路程:10+6=16(米)

速度差:5-4.5=0.5(米)

追击时间:16÷0.5=32(秒)

甲跑了5×32÷[(10+6)×2]=5(圈)

答:甲跑了5圈。

例3、一列货车早晨6时从甲地开往乙地,平均每小时行45千米,一列客车从乙地开往甲地,平均每小时比货车快15千米,已知客车比货车迟发2小时,中午12时两车同时经过途中某站,然后仍继续前进,问:当客车到达甲地时,货车离乙地还有多少千米?

分析与解:货车每小时行45千米,客车每小时比货车快15千米,所以,客车速度为每小时(45+15)千米;中午12点两车相遇时,货车已行了(12—6)小时,而客车已行(12—6-2)小时,这样就可求出甲、乙两地之间的路程.最后,再来求当客车行完全程到达甲地时,货车离乙地的距离.

解:①甲、乙两地之间的距离是:

45×(12—6)+(45+15)×(12—6—2)

=45×6+60×4

=510(千米).

②客车行完全程所需的时间是:

510÷(45+15)

=510÷60

=8.5(小时).

③客车到甲地时,货车离乙地的距离:

510—45×(8.5+2)

=510-472.5

=37.5(千米).

答:客车到甲地时,货车离乙地还有37.5千米.

例4、两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长?

相关文档
最新文档