数字信号处理的应用与发展前景
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理的应用
随着电子技术和集成电路技术的飞速发展,加之从60年代末以来数字信号处理理论和技术的成熟和完善,数字信号处理已逐渐取代模拟信号处理,并广泛应用于语音、图像处理,通信和多媒体等领域中。
广义来说,数字信号处理是研究用数字方法对信号进行分析、变换、滤波、检测、调制、解调以及快速算法的一门技术学科,主要研究数字滤波技术、离散变换快速算法和谱分析方法。
随着数字电路与系统技术以及计算机技术的发展,数字信号处理技术也相应地得到发展,其应用领域十分广泛。
数字滤波器
数字滤波器的实用型式很多,大略可分为有限冲激响应型和无限冲激响应型两类,可用硬件和软件两种方式实现。
在硬件实现方式中,它由加法器、乘法器等单元所组成,这与电阻器、电感器和电容器所构成的模拟滤波器完全不同。
数字信号处理系统很容易用数字集成电路制成,显示出体积小、稳定性高、可程控等优点。
数字滤波器也可以用软件实现。
软件实现方法是借助于通用数字计算机按滤波器的设计算法编出程序进行数字滤波计算。
离散傅里叶变换的快速算法
1965年J.W.库利和T.W.图基首先提出离散傅里叶变换的快速算法,简称快速傅里叶变换,以FFT表示。
自有了快速算法以后,离散傅里叶变换的运算次数大为减少,使数字信号处理的实现成为可能。
快速傅里叶变换还可用来进行一系列有关的快速运算,如相关、褶积、功率谱等运算。
快速傅里叶变换可做成专用设备,也可以通过软件实现。
与快速傅里叶变换相似,其他形式的变换,如沃尔什变换、数论变换等也可有其快速算法。
谱分析
在频域中描述信号特性的一种分析方法,不仅可用于确定性信号,也可用于随机性信号。
所谓确定性信号可用既定的时间函数来表示,它在任何时刻的值是确定的;随机信号则不具有这样的特性,它在某一时刻的值是随机的。
因此,随机信号处理只能根据随机过程理论,利用统计方法来进行分析和处理,如经常利用均值、均方值、方差、相关函数、功率谱密度函数等统计量来描述随机过程的特征或随机信号的特性。
实际上,经常遇到的随机过程多是平稳随机过程而且是各态历经的,因而它的样本函数集平均可以根据某一个样本函数的时间平均来确定。
平稳随机信号本身虽仍是不确定的,但它的相关函数却是确定的。
在均值为零时,它的相关函数的傅里叶变换或Z变换恰恰可以表示为随机信号的功率谱密度函数,一般简称为功率谱。
这一特性十分重要,这样就可以利用快速变换算法进行计算和处理。
在实际中观测到的数据是有限的。
这就需要利用一些估计的方法,根据有限的实测数据估计出整个信号的功率谱。
针对不同的要求,如减小谱
分析的偏差,减小对噪声的灵敏程度,提高谱分辨率等。
已提出许多不同的谱估计方法。
在线性估计方法中,有周期图法,相关法和协方差法;在非线性估计方法中,有最大似然法,最大熵法,自回归滑动平均信号模型法等。
谱分析和谱估计仍在研究和发展中。
数字信号处理的应用领域十分广泛。
就所获取信号的来源而言,有通信信号的处理,雷达信号的处理,遥感信号的处理,控制信号的处理,生物医学信号的处理,地球物理信号的处理,振动信号的处理等。
若以所处理信号的特点来讲,又可分为语音信号处理,图像信号处理,一维信号处理和多维信号处理等。
数字信号处理在其他方面还有多种用途,如雷达信号处理、地学信号处理等,它们虽各有其特殊要求,但所利用的基本技术大致相同。
在这些方面,数字信号处理技术起着主要的作用。
数字信号处理在其他方面还有多种用途,如雷达信号处理、地学信号处理等,它们虽各有其特殊要求,但所利用的基本技术大致相同。
在这些方面,数字信号处理技术起着主要的作用。
可以说,数字信号处理技术应用到我们生活的每一个角落,从军用到民用,从航空航天到生产生活,都越来越多地使用数字信号处理。
数字信号处理技术在航空航天方面,主要用于雷达和声纳信号处理;在通信方面,主要用于移动电话、IP电话、ADSL和HFC的信号传输;在控制方面,主要用于电机控制、光驱和硬盘驱动器;在测试/测量方面,主要用于虚拟仪器、自动测试系统、医疗诊断等;在电子娱乐方面,主要用于高清晰度电视(HDTV)、机顶盒(STB)、AC-3、家庭影院、DVD等应用;还有数字相机、网络相机等等都应用了数字信号处理技术。
一、数字化移动电话
数字化移动电话尽管花样繁杂,但基本上可划为两大类:高速移动电话和低速移动电话。
其中,高速移动电话顾名思义是在高速移动体里使用的电话,诸如可在飞机、轮船和汽车等里自由通话的电话。
虽然数字化高速移动通过标准很多,但当今普遍应用的是欧洲GSM标准。
自从推出数字化蜂窝式电话机以来,现已遍布全球70多个国家广泛应用。
俗称GSM标准的数字化蜂窝电话,叫做数字化大哥大,它具备国际漫游功能,SIMC给用户带来使用大哥大的方便。
现正在扩展数据通信服务能力以及它与ISDN系统兼容性,例如,英国BT公司的Cellnet部已经利用GSM提供数字化数据和传真服务,于是东芝笔记本电脑也安上了数字化的大哥大。
所谓低速移动电话,当然在高速移动体里完全不能应用,然而在步行速度下却很好用,价格远比数字化大哥大便宜,因此称为穷人的大哥大。
低速移动电话就其实质而论。
它是数字化无绳电话,仍然保持模拟式无绳电话的子母式结构:子机亦称为手机,可以距母机为百米左右半径内的空间里自由步行移动情况下实现通过话;母机也称为基地站,可作为家庭里
的留守电话,也可悬挂在商店的墙壁上,街道的电线柱上,广为分布。
由统一的交换设施进行管理,实现无缝交递功能。
这类低速移动电话式标准很多。
例如,欧洲较为普遍应用的DECI,日本、南韩东南亚应用的以及Philips和我国联合开发的DCCT。
其中,尤以PHS和DECT制式低速移动电话发展较快,我国的DCCT由于缺乏关键性的DSP技术仍处于设计阶段。
数字化移动电话(包括高速和低速)的每个手机,都要用至少1个DSP 器,因此,高速发展的数字化移动电话急需极为大量的DSP器件。
二、数据调制解调器
众所周知,数字信号处理器的传统应用领域之一,就是调制解调器。
如今,调制解调器作为联系通信与多媒体信息处理系统的纽带,日益受到重视。
特别是近年来Internet热潮,方兴未艾,普通百姓在Internet上冲浪蔚然成风。
利用PC机通过调制解调器经由电话线路,实现拨号连接Internet已是最简便的访问形式。
由于Internet用户急剧增加,一度致使28.8Kbps的调制解调器成为市场上的脱销产品。
特别是由PC机上利用浏览程序调用活动图像信息时,期望使用数据传送速度更高的调制解调器。
为适应这种新需求,国际上已制订出高速(33.6Kbps)调制解调器国际标准。
这就意味,在高速调制解调器里需要更高性能的DSP器件。
这种33.6Kbps 的调制解调器(V.34)是为传送数据而设计的,在此基础上发展出DSVD
调制解调器,它既可传送数据又可传送声音。
无疑,这样一来将需要更高功能的DSP器件。
随着高性能调制解调器不断出现,似乎低速的调制解调器如像V.17(14.4Kbps)再也没有用武之地。
事实上,刚刚相反,如今信息家电抬头,例如PHS母机留守电话与个人FAX一体化的产品大量上市。
这就是说,V.17(14.4Kbps)型的调制解调器仍有市场。
于是,各种调制解调器里要求的DSP也是多种多样的。
三、磁盘/光盘控制器需求
随着多媒体信息化的发展,各种信息存储媒体产品都应运而生,诸如磁盘存储器、CD-ROM和DVD-ROM新产品纷纷上市。
今日的磁盘驱动器HDD,存储容量已相当可观,大型HDD姑且不谈,就连普通PC机的HDD的存储容量已高在1GB以上,详见照片4。
小型HDD向高密度、高存储容量和高速存取方向发展,其控制器必须具备高精度和高速响应特性,它所用的DSP性能也是今非昔比,高速DSP是必不可少的关键性器件。
日本的HDD技术不能超过美国,于是把主攻方向集中到光盘技术,在1996年日本第35届ElectronicsShow'96上,终于把DVD-ROM产品公布于众。
而且,日本并不以此为满足,志在夺取可擦写的DVD-RAM。
仅就DVD -ROM而论,单面1片12cm盘片记录4.7GB信息量,相当于直径12cm的软盘FD片3200张之多,比CD-ROM存储容量高出6倍。
如此高密度的DVD -ROM,读出控制的精细程度可想而知。
HDD和光盘机的控制器里之所以必须利用高速DSP,主要是利用其高速“积和”处理能力。
因为,盘片旋转控制、磁头定位控制和光盘中的激光束聚焦控制,都是采用数字伺服与系统控制技术。
这是现在控制技术,建立在数学模型基础之上。
通过复杂的矩阵运算实现控制。
没有高速运算的DSP,是绝对不行的。
四、图形图像处理需求
DVD里应用的活动图像压缩/解压缩用MPEG2编码/译码器,同时也广泛地应用于视频点播VOD、高品位有线电视和卫星广播等诸多领域。
在这些领域里,应用的DSP应该具备更高的处理速度和功能。
而且,活动图像压缩/解压技术也日新月异,例如,DCT变换域编码很难提高压缩比与重构图像质量,于是出现了对以视觉感知特性为指导的小波分析图像压缩方法。
新的算法出现,要求相应的高性能DSP。
最近,日本各大学和高技术企业对于开发虚拟现实VR系统,投入相当力量,利用现代计算机图像学CG生成3维图形,迫切需要多个DSP并行处理系统。
其中,系统里的结点DSP单元,要求采用与并行处理相适应的体系结构。
彩色静止图像压缩/解压,现在普遍应用JPEG标准,其核心算法也是离散余弦变换。
JPEG编码/译码器的应用,除了数字化照相机之外,估计彩色打印机和彩色扫描器也将要应用。
因此,对于普通DSP的用量,必将日益增长。
五、汽车电子系统及其它应用领域
汽车电子系统日益兴旺发达起来,诸如装设红外线和毫米波雷达,将需用DSP进行分析。
如今,汽车愈来愈多,防冲撞系统已成为研究热点。
而且,利用摄像机拍摄的图像数据需要经过DSP处理,才能在驾驶系统里显示出来,供驾驶人员参考。
应用DSP的领域可以说是不胜枚举,电视会议系统里,也大量应用DSP 器件。
视听机器里也都应用DSP。
随着科学技术的发展,将会出现许许多多的DSP新应用领域。
由于数字信号处理器DSP可以高速处理极为大量的数字化数据,在各种电子机日益数字化的今天,DSP将要继续高速增长,其应用仍将扩大。
根据新的需求发展,DSP将要向低价格、高性能、专用化和扩充有快闪ROM功能方向发展。
SOC芯片系统、无线应用、嵌入式DSP都是未来DSP的发展方向和趋势。
可以说,没有DSP就没有对互联网的访问,也不会有多媒体,也没有无线通信。
因此, DSP仍将是整个半导体工业的技术驱动力。
目前,DSP处理器仍被TI、AGERE、ADI等占领,产品受外国大企业控制。
国内发展DSP的厂商并不多,而主要的应用产品是DVD与无线电话等,因此国内DSP的产值并不高。
而在产品应用上,目前重要的DSP应用产品,如移动电话、调制解调器、HDD等个人计算机与通讯领域应用产品,都是采
用国际大厂的DSP solution。
在未来的发展上,国内的业者要进入DSP领域,在目前这个垄断市场情况相当明显的情势之下,应避免与国际大厂在其擅长的领域正面交锋,若能另辟市场,例如消费性电子产品市场,则更有利于自己的发展。