mxt0-集合之间的关系与运算

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2集合之间的关系与运算

1.2.1集合之间的关系与运算

教学目标:

(1)了解两个集合包含、相等关系的含义;

(2)理解子集、真子集的概念,了解全集、空集的意义,

(3)掌握有关子集、全集的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;

(4)会求已知集合的子集、真子集;

(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;

(6)培养学生用集合的观点分析问题、解决问题的能力.

教学重点:

子集、真子集的概念

教学难点:

弄清元素与子集、属于与包含之间的区别

教学用具:

幻灯机

教学过程设计

(一)导入新课

上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.

【提出问题】已知,,,问:

1.哪些集合表示方法是列举法.

2.哪些集合表示方法是描述法.

3.将集M、集从集P用图示法表示.

4.分别说出各集合中的元素.

5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.

6.集M中元素与集N有何关系.集M中元素与集P有何关系.

【找学生回答】

1.集合M和集合N;(口答)

2.集合P;(口答)

3.(笔练结合板演)

4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)5.,,,,,,,(笔

练结合板演)

6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)思考1:类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?

【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.(二)新授知识

1.子集

(1)子集定义:一般地,对于两个集合A与B,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A包含于集合B,或集合B包含集合A。

记作:读作:A包含于B或B包含A

当集合A不包含于集合B,或集合B 不包含集合A时,则记作:A B或B A.性质:①(任何一个集合是它本身的子集)

②(空集是任何集合的子集)

用Venn图表示两个集合间的“包含”关系:

【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?

【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合.因为B的子集也包括它本身,而这个子集是由B的全体元素组成的.空集也是B的子集,而这个集合中并不含有B中的元素.由此也可看到,把A 是B的子集解释成A是由B 的部分元素组成的集合是不确切的.

(2)真子集:对于两个集合A 与B,如果,并且,我们就说集合A

是集

合B的真子集,记作:(或),读作A真包含于B或B真包含A。

【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.”

集合B同它的真子集A

合A,B.

(3)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B

的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。

例:,可见,集合,是指A、B的所有元素完全相同.(4)空集定义:不含有任何元素的集合称为空集(empty set),记作:∅。

用适当的符号填空:

∅{}0;0 ∅;∅{}∅;{}0{}∅

(5)几个重要的结论:

1、空集是任何集合的子集;B

A

2、空集是任何非空集合的真子集;

3、任何一个集合是它本身的子集;

4、对于集合A,B,C,如果A B

⊆。

⊆,且B C

⊆,那么A C

说明:

1、注意集合与元素是“属于”“不属于”的关系,集合与集合是“包含于”“不包含于”的关系;

2、在分析有关集合问题时,要注意空集的地位。

【提问】

(1)写出数集N,Z,Q,R的包含关系,并用文氏图表示。

(2)判断下列写法是否正确

① A ② A ③④A A

例1 写出集合的所有子集,并指出其中哪些是它的真子集.

解:集合的所有的子集是,,,,其中,,是的真子集.

【注意】(1)子集与真子集符号的方向。

(2)易混符号

①“”与“”:元素与集合之间是属于关系;集合与集合之间是包含关系。如

R,{1}{1,2,3}

②{0}与:{0}是含有一个元素0的集合,是不含任何元素的集合。

如:{0}。不能写成={0},∈{0}

例2 判断下列说法是否正确,如果不正确,请加以改正.

(1)表示空集;

(2)空集是任何集合的真子集;

(3)不是;

(4)的所有子集是;

(5)如果且,那么B必是A的真子集;

(6)与不能同时成立.

解:(1)不表示空集,它表示以空集为元素的集合,所以(1)不正确;

(2)不正确.空集是任何非空集合的真子集;

(3)不正确.与表示同一集合;

(4)不正确.的所有子集是;

(5)正确

(6)不正确.当时,与能同时成立.

例3 用适当的符号(,)填空:

(1);;;

(2);;

(3);

(4)设,,,则A B C.

解:(1)00;

(2)=,;

(3),∴;

(4)A,B,C均表示所有奇数组成的集合,∴A=B=C.

用适当的符号(,)填空:

(1);(5);

(2);(6);

(3);(7);

(4);(8).

解:(1);(2);(3);(4);(5)=;(6);(7);(8).

例4.若集合 B A,求m的值。

例5.已知集合且,求实数m的取值范围。

1.2.2集合的运算

教学目标:

相关文档
最新文档