马尔可夫预测方法

合集下载

5.7 马尔可夫预测

5.7 马尔可夫预测

第7节马尔可夫预测方法对事件的全面预测,不仅要能够指出事件发生的各种可能结果,而且还必须给出每一种结果出现的概率,说明被预测的事件在预测期内出现每一种结果的可能性程度。

这就是对于事件发生的概率预测。

马尔可夫(Markov)预测法,就是一种预测事件发生的概率的方法。

它是基于马尔可夫链,根据事件的目前状况预测其将来各个时刻(或时期)变动状况的一种预测方法。

马尔可夫预测法是对事件进行预测的基本方法,它是预测中常用的重要方法之一。

一、几个基本概念为了讨论马尔可夫预测法的应用,下面首先介绍几个基本概念。

(一) 状态、状态转移过程与马尔可夫过程(1) 状态。

在马尔可夫预测中,“状态”是一个重要的术语。

所谓状态,就是指某一事件在某个时刻(或时期)出现的某种结果。

一般而言,随着研究的事件及其预测的目标不同,状态可以有不同的划分方式。

例如,在商品销售预测中,有“畅销”、“一般”、“滞销”等状态;在农业收成预测中,有“丰收”、“平收”、“欠收”等状态;在人口构成预测中,有“婴儿”、“儿童”、“少年”、“青年”、“中年”、“老年”等状态;在经济发展水平预测中,有“落后”、“较发达”、“发达”等状态;在天气变化预测中,有“晴天”、“阴天”、“雨天”等状态;……;等等。

(2) 状态转移过程。

事件的发展,从一种状态转变为另一种状态,就称为状态转移。

譬如,天气变化从“晴天”转变为“阴天”,从“阴天”转变为“晴天”,从“晴天”转变为“晴天”,从“阴天”转变为“阴天”等都是状态转移。

(3) 马尔可夫过程。

在事件的发展过程中,若每次状态的转移都只仅与前一时刻的状态有关,而与过去的状态无关,或者说状态转移过程是无后效性的,则这样的状态转移过程就称为马尔可夫过程。

许多事件发展过程的状态转移是具有无后效性的,对于这样一些事件发展过程,就可以用马尔可夫过程来描述。

(二) 状态转移概率与状态转移概率矩阵118119(1)状态转移概率。

在事件的发展变化过程中,从某一种状态出发,下一时刻转移到其它状态的可能性,称为状态转移概率。

马尔科夫链预测方法

马尔科夫链预测方法

一、几个基本概念
3.马尔可夫过程 若每次状态的转移都只仅与前 一时刻的状态有关、而与过去的状态无关,或 者说状态转移过程是无后效性的,则这样的状 态转移过程就称为马尔可夫过程。
在区域开发活动中,许多事件发展过程中的状 态转移都是具有无后效性的,对于这些事件的 发展过程,都可以用马尔可夫过程来描述。
9月
10月
0.1 0.2 0.7 p( 2) p(0) P 2 (0.3,0.2,0.5) 0 . 1 0 . 7 0 . 2 0.08 0.04 0.88
2
11月
0.1 0.2 0.7 (0.2512 ,0.1816 ,0.5672) p( 3) p(0) P 3 (0.3,0.2,0.5) 0 . 1 0 . 7 0 . 2 0.08 0.04 0.88 (0.2319 ,0.1698 ,0.5983 )
3
1 0.7 1 0.1 2 0.08 3 2 0.1 1 0.7 2 0.04 3 由 得 (0.219,0.156,0.625) 3 0.2 1 0.2 2 0.88 3 1 2 3 1
率及极限分布.
解:频数转移矩阵为
得转移概率矩阵为
336 48 96 N 32 224 64 64 32 704
0.7 P 0.1 0.08
0.1 0.7 0.04
0.2 0.2 0.88
n个月的市场占有率为 p(n)= p(0) Pn
二、马尔可夫预测法
表2-19 某地区1990—2000年农业收成状态概率预测值
二、马ቤተ መጻሕፍቲ ባይዱ可夫预测法
(二)终极状态概率预测

马尔科夫预测法简介

马尔科夫预测法简介

故可用矩阵式表达所有状态:
[S1(k),S2(k), …… ,SN(k)]= [S1(0),S2(0), …… ,SN(0)] P[k]
即 S(k) = S(0) P [k] 当满足稳定性假设时,有
S(k) = S(0) Pk 这个公式称为已知初始状态条件下的市场占有
率k步预测模型.
例:东南亚各国味精市场占有率预测, 初期工作: a)行销上海,日本,香港味精,确定状态1,2,3. b)市场调查,求得目前状况,即初始分布 c)调查流动状况;上月转本月情况,求出一步状 态转移概率. 1)初始向量: 设 上海味精状况为1;
0.5
P = 0.78
0.22
此式说明了:若本季度畅销,则下季度畅销和滞销的可能性 各占一半
若本季度滞销,则下季度滞销有78%的把握,滞销风 险22%
二步状态转移矩阵为:
[2] 2
P=P=
0.5 0.5
0.5 0.5
0.78 0.22 0.78 0.22
0.64
0.36
= 0.5616 0.4384
求T
0.6 0.1 0.3 解:设 U = [U1 U2 U3] = [U1 U2 1-U1-U2]
由 UP = U 有
0.4 0.3 0.3
[U1 U2 1-U1-U2] 0.6 0.3 0.1 = [U1 U2 U3]
0.6 0.1 0.3

-0.2U1 + 0.6 = U1
0.2U1 + 0.2U2 + 0.1 =U2
定理二:设X为任意概率向量,则XT = U 即任意概率向量与稳态概率矩阵之点积为 固定概率向量。
事实上: U1 U2 …… UN
XT = X• : :

第9章马尔可夫预测方法

第9章马尔可夫预测方法

p00 (n)
P1
p10 (n)
pk
0
(n)
p01(n) p11(n)
pk1(n)
p0k (n)
p1k
(n)
pkk
(n)
首页
(4)齐次马氏链
如果马氏链的一步转移概率 pij (n) 与 n 无关,
即 P{X n1 j | X n i} pij
则称此马氏链为齐次马氏链(即关于时间为齐次)
i0
则称 ( j) 为平稳分布 。
9.1.2马尔可夫链预测原理 1.马氏链近期预测原理
9.1.2马尔可夫链预测原理 1.马氏链近期预测原理
定理1 设{Xn}为一个齐次马氏链,其状态空间为I,
绝对概率为 P(n) ( p1(n), p2 (n),L , pN (n)}
n步转移概率为
p(n) ij
,则有:
到 从
甲乙丙

480 120 160

90 360 130
首页

120 180 800
解 (1) 根据市场调查,确定1月份的初始概率分布
P(0) ( p1, p2 , p3 )
A=[760 580 1100];
P0=A./sum(A)
%初始分布
%结果为P0 = 0.3115 0.2377 0.4508
(2) pij (n) 1 , i I jI
(3)一步转移矩阵 如果固定时刻n T
则由一步转移概率为元素构成的矩阵P1 :
称为在时刻n的一步转移矩阵
首页
即 有
p00 (n)
p10
(n)
p01(n)
p11 (n)
P1
pn0 (n)

马尔可夫预测法

马尔可夫预测法

马尔可夫预测法马尔可夫预测法是一种基于马尔可夫过程的预测方法。

马尔可夫过程是在给定当前状态下,下一个状态的概率只与当前状态有关的随机过程。

其本质是利用概率论中的马尔可夫性质,通过已知状态的条件概率预测未来的状态。

马尔可夫预测法广泛应用于各种领域中的预测问题。

马尔可夫预测法的基本思想是利用过去的信息预测未来的状态。

在马尔可夫模型中,当前状态只与前一状态有关,与更早的历史状态无关,这种性质称为“无记忆性”。

因此,在预测未来状态时,只需知道当前状态及其概率分布即可,而无需考虑过去的状态。

这种方法不仅大大降低了计算复杂度,而且在实际应用中也具有很高的准确性。

马尔可夫预测法的应用范围非常广泛,例如天气预报、股票价格预测、自然语言处理、机器翻译等。

其中,天气预报是一个典型的马尔可夫过程应用。

在天气预报中,当前的天气状态只与前一天的天气状态有关,而与更早的天气状态无关。

因此,可以利用马尔可夫预测法预测未来的天气状态。

马尔可夫预测法的实现方法有很多,其中比较常见的是利用马尔可夫链进行预测。

马尔可夫链是一种随机过程,其状态空间是有限的。

在马尔可夫链中,当前状态的转移概率只与前一状态有关。

因此,在利用马尔可夫链进行预测时,只需知道当前状态及其转移矩阵即可。

根据转移矩阵,可以预测未来的状态概率分布。

马尔可夫预测法的优点是计算简单,预测准确性高。

但其缺点也比较明显,即需要满足无记忆性的假设,而实际应用中,往往存在着各种各样的因素影响状态的转移。

因此,在实际应用中,需要对马尔可夫预测法进行适当的修正,以提高预测准确性。

马尔可夫预测法是一种基于马尔可夫过程的预测方法,具有计算简单、预测准确性高等优点。

其在天气预报、股票价格预测、自然语言处理、机器翻译等领域中得到了广泛应用。

在实际应用中,需要充分考虑各种因素的影响,对马尔可夫预测法进行适当的修正,以提高预测准确性。

利用马尔可夫模型进行天气预测的方法

利用马尔可夫模型进行天气预测的方法

天气预测一直是人们关注的话题之一。

无论是日常生活还是农业生产、交通运输等行业,都需要准确的天气预测信息来做出相应的决策。

传统的天气预测方法主要依靠气象观测数据和物理模型,但是这些方法在某些情况下存在一定的局限性。

而利用马尔可夫模型进行天气预测则是一种新的方法,它通过对天气状态之间的转移概率进行建模,可以更好地捕捉天气变化的规律和特点。

首先,我们来了解一下马尔可夫模型。

马尔可夫模型是一种描述随机过程的数学模型,它假设当前时刻的状态只依赖于前一个时刻的状态,与更早时刻的状态无关。

这种假设在一些情况下可以很好地描述实际系统的动态演化过程。

在天气预测中,我们可以将天气状态看作是一个随机过程,利用马尔可夫模型来描述天气状态之间的转移规律。

其次,如何利用马尔可夫模型进行天气预测呢?首先,我们需要构建一个天气状态的马尔可夫链。

天气状态可以用不同的符号或数字来表示,比如晴天可以用1表示,多云可以用2表示,雨天可以用3表示,等等。

然后,我们需要利用历史天气观测数据来估计不同天气状态之间的转移概率。

这可以通过统计方法来实现,比如计算不同状态之间的转移频率,然后归一化得到转移概率。

有了转移概率之后,我们就可以利用马尔可夫模型来预测未来的天气状态了。

假设当前时刻的天气状态已知,根据转移概率可以计算出下一个时刻各种天气状态的概率分布,然后根据这个概率分布来做出天气预测。

利用马尔可夫模型进行天气预测的方法有一些优点。

首先,它可以很好地捕捉天气状态之间的动态变化规律,能够较为准确地反映天气的突然变化和周期性变化。

其次,它不需要太多的气象观测数据和气象物理知识,只需要一些历史观测数据就可以进行建模和预测。

这对于一些地区和场景下缺乏气象观测设备和专业知识的情况来说,是一种比较实用的方法。

当然,利用马尔可夫模型进行天气预测也存在一些局限性。

首先,马尔可夫模型假设当前时刻的状态只与前一个时刻的状态有关,这在某些情况下可能并不成立,比如出现突发性的极端天气。

第八讲 马尔可夫预测

第八讲 马尔可夫预测

P 11 P ( L xnt) ) 21 L Pn1
P L Pn 12 1 P22 L P2n L L L Pn2 L Pnn
例2:已知市场上有A、B、C三种品牌的洗
衣粉,上月的市场占有率分布为(0.3 0.4 0.3),并且转移概率矩阵为:
0.6 0.2 P = 0.1 0.7 0.1 0.1 0.2 0.2 0.8
用 Ri (k) 表示从状态Si开始,经K步转移后的期望利润。那么,当k=1 时,期望利润为
Ri = Pi1ri1 + Pi2ri2 +L+ Pinrin = ∑Pij rij , i =1,2L, n
(1)
n
于是K步转移后的期望利润为两次转移(一步转移和K-1步转移) 期望利润之和,即
j=1
Ri

(k )
= ∑ Pij rij + ∑ Pij R j
j =1 j =1
n
n
( k −1)
R(k) = (R1 , R2 ,LRn )T
(k ) (k ) (k )
则可表为矩阵形式:
R(k ) = R(1) + PR(k−1)
例4:设某商品连续两个月畅销时,可获利8万元;连续滞销时,亏
损2万元;由畅销转滞销时可获利3万元;滞销转畅销时可获利4万 元,试预测4个月后总期望利润。
预测第21月的销售额
• 因为第20月的销售属状态3,而状态3经 过一步转移达到状态1、2、3的概率分别 为2/7、0、5/7,P33>P31>P32,所以第21月 仍处于状态3的概率最大,即销售额超过 100万元的可能性最大。
§2 马尔可夫预测应用
• 一、市场占有率预测

计量地理学第8章 马可尔夫预测方法

计量地理学第8章 马可尔夫预测方法
3 C公司的300名顾客中有255 名继续订货,有25名转向A公司 订货,20名转向B公司订货。
如果三个公司在这个地区的初 始占有率为A=22%,B=49%, C=29% , 且它们都不改变营业 状态和规模,问:
(1)明年和后年,三个公司在这 个地区市场占有率为如何?
(2)稳定状态下,三个公司的 市场占有率?
可能的状态的概率,即 (k) ,从而就得到该事件在
第k个时刻(时期)的状态概率预测。
(1) (0)P
(2) (1)P (0)P2
............
(k) (k 1)P (0)Pk
例题2:
将例题1中1999年的农业收
成状态记为 (0) =[0,1,0] ,将
状态转移概率矩阵,代入递推 公式,可求得2000—2010年可 能出现的各种状态的概率。
2=0.352 5, 3 =0.279 9。 结论:该地区农业收成的变化过程,在无 穷多次状态转移后,“丰收”和“平收”状态 出现的概率都将大于“歉收”状态出现的概率。
归纳:马尔可夫预测方法的应用思路
第一步 求状态转移概率矩阵。 第二步 预测未来某时刻的状态概率。 第三步 预测终极状态概率。
(i, j 1,2,, n) (i 1,2,, n)
一般地,将满足上述条件的任何矩阵都称为随
机矩阵,或概率矩阵。
状态转移概率矩阵的计算 计算状态转移概率矩阵P,就是求从每
个状态转移到其他任何一个状态的状态转移 概率:
Pij (i,j 1,2, , n)
为了求出每一个 Pij (i,j 1,2, , n) ,一般
今年的市场占有率 u=(0.22,0.49,0.29) 明年的市场占有率up=
0.80 0.10 0.10 (0.22,0.49,0.29) 0.07 0.90 0.03

马尔可夫预测算法

马尔可夫预测算法

马尔可夫预测算法马尔可夫预测算法是一种基于马尔可夫链的概率模型,用于进行状态转移预测。

它被广泛应用于自然语言处理、机器翻译、语音识别等领域。

马尔可夫预测算法通过分析过去的状态序列来预测未来的状态。

本文将介绍马尔可夫预测算法的原理、应用以及优缺点。

一、原理1.马尔可夫链马尔可夫链是指一个随机过程,在给定当前状态的情况下,未来的状态只与当前状态有关,与其他历史状态无关。

每个状态的转移概率是固定的,可以表示为一个概率矩阵。

马尔可夫链可以用有向图表示,其中每个节点代表一个状态,每个边表示状态的转移概率。

(1)收集训练数据:根据需要预测的状态序列,收集过去的状态序列作为训练数据。

(2)计算转移概率矩阵:根据训练数据,统计相邻状态之间的转移次数,然后归一化得到转移概率矩阵。

(3)预测未来状态:根据转移概率矩阵,可以计算出目标状态的概率分布。

利用这个概率分布,可以进行下一步的状态预测。

二、应用1.自然语言处理在自然语言处理中,马尔可夫预测算法被用于语言模型的建立。

通过分析文本中的单词序列,可以计算出单词之间的转移概率。

然后利用这个概率模型,可以生成新的文本,实现文本自动生成的功能。

2.机器翻译在机器翻译中,马尔可夫预测算法被用于建立语言模型,用于计算源语言和目标语言之间的转移概率。

通过分析双语平行语料库中的句子对,可以得到句子中单词之间的转移概率。

然后利用这个转移概率模型,可以进行句子的翻译。

3.语音识别在语音识别中,马尔可夫预测算法被用于建立音频信号的模型。

通过分析音频数据中的频谱特征,可以计算出特征之间的转移概率。

然后利用这个转移概率模型,可以进行音频信号的识别。

三、优缺点1.优点(1)简单易懂:马尔可夫预测算法的原理相对简单,易于理解和实现。

(2)适用范围广:马尔可夫预测算法可以应用于多个领域,例如自然语言处理、机器翻译和语音识别等。

2.缺点(1)数据需求大:马尔可夫预测算法需要大量的训练数据,才能准确计算状态之间的转移概率。

马尔科夫链预测方法讲解

马尔科夫链预测方法讲解
按照上述同样的办法计算可以得到
一、几个基本概念
所以,该地区农业收成变化的状态转移概率矩阵为
二、马尔可夫预测法
为了运用马尔可夫预测法对事件发展过程中 状态出现的概率进行预测,还需要再介绍一 个名词:状态概率πj(k)。
πj(k)表示事件在初始(k=0)时状态为已知 的条件下,经过k次状态转移后,第k个时刻 (时期)处于状态Ej的概率。根据概率的性 质,显然有:
则称P为状态转移概率矩阵;(n阶方阵)
一、几个基本概念
如果被预测的某一事件目前处于状态 Ei,那么在下一个时刻,它可能由状 态Ei转向E1,E2,…Ei…En中的任一 个状态。所以Pij满足条件:
非负性;行元素和为1
一、几个基本概念
一般地,我们将满足条件(3)的任何矩阵都称为 随机矩阵,或概率矩阵。不难证明,如果P为概 率矩阵,则对任何数m>0,矩阵Pm都是概率矩 阵。 如果P为概率矩阵,而且存在整数m>0,使得概 率矩阵Pm中诸元素皆非零,则称P为标准概率矩 阵。可以证明,如果P为标准概率矩在事件的发展过程中,从 一种状态转变为另一种状态,就称为状态转 移。譬如,天气变化从“晴天”转变为“阴 天”、从“阴天”转变为“晴天”、从“晴 天”转变为“晴天”、从“阴天”转变为 “阴天”等都是状态转移。
事件的发展,随着时间的变化而变化所作的 状态转移,或者说状态转移与时间的关系, 就称为状态转移过程,简称过程。
客观事物可能有u1,u2,……un共n种状态,其每次 只能处于一种状态,则每一状态都具有n个转向包括 转向自身,即ui→u1,ui→u2 ,… ui→un,将这种转 移的可能性用概率描述,就是状态转移概率 。
一、几个基本概念
2.状态转移概率矩阵 假定某一种被预测 的事件有E1,E2,…,En,共n个可能 的状态。记Pij为从状态Ei转为状态Ej的状 态转移概率,作矩阵

9.马尔可夫预测方法

9.马尔可夫预测方法
2016/11/29
(8.3)
8
例 1 :不可越壁(反 弹壁)的随机游动
1
2
3
4
5
设一质点在线段[1,5 ]上随机游动,状态空间I={1,2, 3,4,5},每秒钟发生一次随机游动,移动的规则是: 1 (1)若移动前在2,3,4处,则均以概率 向左 或向右移动一单位,或停留在原处;3 (2)若移动前在1处,则以概率1移到2处; (3)若移动前在5处,则以概率1移到4处。
齐次马尔柯夫链
如果马氏链的一步转移概率 pij (n) 与 n 无关,

P{X n1 j | X n i} pij
则称此马尔柯夫链为齐次马尔柯夫链(即关于时间为齐次)。
设 p0 (i) P{X 0 i} ,i I ,
初始分布
如果对一切 i I 都有
p0 (i) 0
马尔柯夫链在时刻n处于状态 i 的条件下,到时刻n+1转 移到状态 j 的条件概率,

P{X n1 j | X n i}
记作 pij (n)
称为在时刻n的一步转移概率,
注:
由于概率是非负的,且过程从一状态出发,经过一步 转移后,必到达状态空间中的某个状态 一步转移概率满足
(1) pij (n) 0 , i, j I
(2)
一步转移矩阵
p (n) 1 ,
jI ij
iI
如果固定时刻n T
则由一步转移概率为元素构成的矩阵 P 1 :
称为在时刻n的一步转移矩阵
即 有
p00 ( n) p ( n) 10 P 1 pn 0 ( n )
p01 ( n) p11 ( n) pn1 ( n)

预测方法——马尔可夫预测

预测方法——马尔可夫预测

预测⽅法——马尔可夫预测马尔可夫预测若某⼀系统在已知现在情况的条件下,系统未来情况只与现在有关,与历史⽆直接关系,则称描述这类随机现象的数学模型为马尔可夫模型(马⽒模型)。

时齐马尔可夫链:系统由状态i转移到状态j的转移概率只与时间间隔长短有关,与初始时刻⽆关。

状态转移概率矩阵及柯尔莫哥洛夫定理:概率矩阵:若系统在时刻 t0 处于状态 i,经过 n 步转移,在时刻 tn 处于状态 j 。

那么,对这种转移的可能性的数量描述称为 n 步转移概率。

记为:P(xn =j|x=i)=P(n)ij令P(n)=P11(n)P12(n)⋯P1N(n) P21(n)P22(n)⋯P2N(n)⋯⋯⋯P N1(n)P N2(n)⋯P NN(n)为n部转移概率矩阵。

(P0为初始分布⾏向量)性质:1. P(n)=P(n−1)P2. P(n)=P n转移概率的渐进性质——极限概率分布正则矩阵:若存在正整数k,使得p k的每⼀个元素都是正数,则称该马尔可夫链的转移矩阵P是正则的。

马克可夫链正则阵的性质:1. P有唯⼀的不动点向量W,W的每个分量为正,满⾜WP=W;2. P的n次幂P n随n的增加趋近于矩阵V, V的每⼀⾏向量均等于不动点向量W。

马尔可夫链预测法步骤:1. 划分预测对象可能出现的状态;2. 计算初始概率,由此计算⼀步状态转移概率;3. 计算多步状态转移概率;4. 根据状态转移概率进⾏预测。

()实例:eg:由于公路运输的发展,⼤量的短途客流由铁路转向公路。

历年市场调查结果显⽰,某铁路局发现今年⽐上年相⽐有如下规律:原铁路客流有85%仍由铁路运输,有15%转由公路运输,原公路运输的客流有95%仍由公路运输,有5%转由铁路运输。

已知去年公、铁客运量合计为12000万⼈,其中铁路10000万⼈,公路2000万⼈。

预测明年总客运量为18000万⼈。

运输市场符合马⽒链模型假定。

试预测明年铁、公路客运市场占有率各是多少?客运量是多少?最后发展趋势如何?解:1. 计算去年铁路、公路客运市场占有率将旅客由铁路运输视为状态1,由公路运输视作状态2,则铁、公占有率就是处于两种状态的概率,分别记作a1,a2.以去年作为初始状态,则初始状态概率向量:A(0)=(a1(0),a2(0))=(0.83,0.17)2. 建⽴状态转移矩阵PP=0.850.15 0.050.953. 预测明年铁路,公路客运市场占有率A(2)=(a1(2),a2(2))=A(0)P2=(0.83,0.17)0.850.150.050.952=(0.62,0.38)4. 进后发展趋势lim ()()Loading [MathJax]/jax/element/mml/optable/BasicLatin.js。

马尔可夫预测算法

马尔可夫预测算法

马尔可夫预测算法综述马尔可夫预测法以系统状态转移图为分析对象,对服从给定状态转移率、系统的离散稳定状态或连续时间变化状态进行分析马尔可夫预测技术是应用马尔可夫链的基本原理和方法研究分析时间序列的变化规律,并预测其未来变化趋势的一种技术。

方法由来马尔可夫是俄国的一位著名数学家 (1856—1922),20世纪初,他在研究中发现自然界中有一类事物的变化过程仅与事物的近期状况有关,而与事物的过去状态无关。

针对这种情况,他提出了马尔可夫预测方法,该方法具有较高的科学性,准确性和适应性,在现代预测方法中占有重要地位。

基础理论在自然界和人类社会中,事物的变化过程可分为两类:一类是确定性变化过程;另一类是不确定性变化过程。

确定性变化过程是指事物的变化是由时间唯一确定的,或者说,对给定的时间,人们事先能够确切地知道事物变化的结果。

因此,变化过程可用时间的函数来描述。

不确定性变化过程是指对给定的时间,事物变化的结果不止一个,事先人们不能肯定哪个结果一定发生,即事物的变化具有随机性。

这样的变化过程称为随机过程一个随机试验的结果有多种可能性,在数学上用一个随机变量(或随机向量)来描述。

在许多情况下,人们不仅需要对随机现象进行一次观测,而且要进行多次,甚至接连不断地观测它的变化过程。

这就要研究无限多个,即一族随机变量。

随机过程理论就是研究随机现象变化过程的概率规律性的。

客观事物的状态不是固定不变的,它可能处于这种状态,也可能处于那种状态,往往条件变化,状态也会发生变化状态即为客观事物可能出现或存在的状况,用状态变量表示状态:⎪⎪⎭⎫⎝⎛⋅⋅⋅=⋅⋅⋅==,2,1,,2,1t N i i X t 它表示随机运动系统,在时刻),2,1( =t t 所处的状态为),2,1(N i i =。

状态转移:客观事物由一种状态到另一种状态的变化。

设客观事物有N E E E E ...,,321共 N 种状态,其中每次只能处于一种状态,则每一状态都具有N 个转向(包括转向自身),即由于状态转移是随机的,因此,必须用概率来描述状态转移可能性的大小,将这种转移的可能性用概率描述,就是状态转移概率。

马尔可夫预测方法

马尔可夫预测方法

马尔可夫预测方法1马尔可夫预测的性质及运用对事件的全面预测,不仅要能够指出事件发生的各种可能结果,而且还必须给出每一种结果出现的概率,说明被预测的事件在预测期内出现每一种结果的可能性程度。

这就是关于事件发生的概率预测。

马尔可夫(Markov)预测法,就是一种关于事件发生的概率预测方法。

它是根据事件的目前状况来预测其将来各个时刻(或时期)变动状况的一种预测方法。

马尔可夫预测法是地理预测研究中重要的预测方法之一。

2基本概念(一)状态、状态转移过程与马尔可夫过程1.状态 在马尔可夫预测中,“状态”是一个重要的术语。

所谓状态,就是指某一事件在某个时刻(或时期)出现的某种结果。

一般而言,随着所研究的事件及其预测的目标不同,状态可以有不同的划分方式。

譬如,在商品销售预测中,有“畅销”、“一般”、“滞销”等状态;在农业收成预测中,有“丰收”、“平收”、“欠收”等状态;在人口构成预测中,有“婴儿”、“儿童”、“少年”、“青年”、“中年”、“老年”等状态;等等。

2.状态转移过程 在事件的发展过程中,从一种状态转变为另一种状态,就称为状态转移。

事件的发展,随着时间的变化而变化所作的状态转移,或者说状态转移与时间的关系,就称为状态转移过程,简称过程。

3.马尔可夫过程 若每次状态的转移都只仅与前一时刻的状态有关、而与过去的状态无关,或者说状态转移过程是无后效性的,则这样的状态转移过程就称为马尔可夫过程。

在区域开发活动中,许多事件发展过程中的状态转移都是具有无后效性的,对于这些事件的发展过程,都可以用马尔可夫过程来描述。

(二)状态转移概率与状态转移概率矩阵1.状态转移概率 在事件的发展变化过程中,从某一种状态出发,下一时刻转移到其它状态的可能性,称为状态转移概率。

根据条件概率的定义,由状态E i 转为状态E j 的状态转移概率P (E i →E j )就是条件概率P (E j /E i ),即 P(Ei Ej)=P(Ej/Ei)=Pij → (1)2.状态转移概率矩阵 假定某一种被预测的事件有E 1,E 2,…,E n ,共n 个可能的状态。

管理预测7.3 马尔可夫预测方法应用示例

管理预测7.3 马尔可夫预测方法应用示例

; 50 500 0.1
50 500 0.1
13
11
12
p p p ; ; 20 400 0.05 21
300 400 0.75
22
80 400 0.2
23
p p p 10 100 0.1 ; 10 100 0.1; 80 100 0.8
以预测下一步系统将转向状态 E j 。
例7-16
某商店在最近20个月的商品销售量统计记录见表7-3
表7-3 商品销售量统计表
(单位:千件)
试预测第21个月的商品销售量。
解:按照上述步骤:
第一步:划分状态。按盈利状况为标准选取:①销售量 <60千件,属于销售滞销;②60千件销售量100千件,属于 销售一般;③销售量>100千件,属于销售畅销。
0 ,
1
0 ,
2
0
3


k
21
k
P 31
或 S S P k 0 k
Pk 12
Pk 22
Pk 32
Pk 13 k
P2k3(7-12) P33
即第k期的市场占有率等于初始占有率与k步转移概率
矩阵的乘积。
例7-17 设东南亚各国主要行销我国内地、日本、香港三个产
31
32
33
所以,转移概率矩阵为 0.8 0.1 0.1
P 0.05 0.75 0.2
0.1 0.1 0.8
2.商品销售状态预测
运用马尔可夫链对商品销售状态进行预测,可以按以 下步骤来完成:
第一步:划分预测对象(系统)所出现的状态。从预测目的出发, 并考虑决策者的需要适当划分系统所处的状态。

马尔柯夫预测法.pptx

马尔柯夫预测法.pptx

则称 X n , n 0为马尔柯夫链。
X n 所可能取到的每一个值 E1, E2 ,, Em ; E j 称为状态。
第4页/共75页
第8.1 马尔柯夫链简介
2. 状态转移概率
由定义 8.1.1 可知,马尔柯夫链的概率特性取决于条件概率
P X mk E j X m Ei
(8.1.2)
在概率论中,条件概率 P( A | B) 表达了由状态B向状态A转移的概率,简称为状态
M11 3
M12 4
M13 0
M 21 1
M 22 1
M 23 3
M 31 2
M 32 0
M 33 5
第19页/共75页
从而
p11
3 7
3 p23 5
所以
p12
4 7
p13
0 7
p 21
1 5
2
0
p31 7 p32 7
5 p33 7
3 4 0
7 7
P
1 5
1 5
3 5
k 1 N
p2k pk2
k 1
N
pNk pk 2
N
k 1
N
k 1
N
p1k
p2k
p Nk
pkN pkN pkN
==
p11 p21
pN1
p12 p22
p1N p11 p2N p21
pN 2 pNN pN1
p12 p22
pN2
p1N p2N
转移概率。式(8.1.2)中条件概率的含义是,某系统在时刻 m 处于状态 Ei 的条件下,
到时刻 m k 处于状态 E j 的概率。
定义 8.1.2 称
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年份 序号 状态 年份 序号 状态 年份 序号 状态 年份 序号 状态 1960 1 E1 1970 11 E3 1980 21 E3 1990 31 E1 1961 2 E1 1971 12 E1 1981 22 E3 1991 32 E3 1962 3 E2 1972 13 E2 1982 23 E2 1992 33 E2 1963 4 E3 1973 14 E3 1983 24 E1 1993 34 E1 1964 5 E2 1974 15 E1 1984 25 E1 1994 35 E1 1965 6 E1 1975 16 E2 1985 26 E3 1995 36 E2 1966 7 E3 1976 17 E1 1986 27 E2 1996 37 E2 1967 8 E2 1977 18 E3 1987 28 E2 1997 38 E3 1968 1969 9 E1 1978 19 E3 1988 29 E1 1998 39 E1 10 E2 1979 20 E1 1989 30 E2 1999 40 E2
个时刻( 第k个时刻(时期)的状态概率预测 个时刻 时期)
如果某一事件在第0个时刻(或 时期)的初始状态已知,即π ( 0 ) 已知, 则利用递推公式(3.7.8),就可以求得 它经过k次状态转移后,在第k个时刻 (时期)处于各种可能的状态的概率, 即 ,从而就得到该事件在第k个 π (k ) 时刻(时期)的状态概率预测。
状态转移: 状态转移: 事件的发展,从一种状态转变为另一种状态, 称为状态转移。例如某产品在当前考察时处于畅 销阶段,过了一段时间,我们再来考察时,犹豫 市场竞争等多种因素,产品可能不再畅销,比如 处于滞销,则其状态从1转移到了2;某产品当前 装有是其市场占有率的20%,假如在下一个考察 时间点其市场占有率为25%,则其装有从20%转移 到了25%;某机器设备当前状态处于正常运转, 下一个考察时间点其状态有可能仍然是正常运转, 也可能处于待修状态。
例题2: 例题2:将例题1中1999年的农业收成状态记
为π (0) =[0,1,0] ,将状态转移概率矩阵 (3.7.5)式代入递推公式(3.7.8)式,可 求得2000—2010年可能出现的各种状态的概 率(表3.7.2)。
表3.7.2 某地区1990—2000年农业收成 状态概率预测值
年份 2000 2001 2002 2003 E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3 状态 概率 0.5 0.1 0.3 0.3 0.4 0.2 0.3 0.3 0.2 0.3 0.3 0.2 385 528 077 024 14 837 867 334 799 587 589 779 年 份 状 态 概 率 年份 2004 2005 2006 2007
0 ≤ xi ≤ 1 , ∑ x
i =1
n
i
=1
使得
αP = α
(3.7.4)
这样的向量α称为平衡向量,或终极向 量。这就是说,标准概率矩阵一定存在平 衡向量。
状态转移概率矩阵的计算 计算状态转移概率矩阵P,就是求 从每个状态转移到其他任何一个状态的 状态转移概率 Pij (i,j = 1,2, ⋯ , n) 。 为了求出每一个,一般采用频率近 似概率的思想进行计算。
π (1) = π (0) P π (2) = π (1)P = π (0)P1 ............ π (k ) = π (k −1) P = ⋯ = π (0) Pk
(3.7.8)
式中:π (0) = [π 1 (0), π 2 (0),⋯ , π n (0)] 为初 始状态概率向量。
P(Ei → E j )
P P ⋯ Pn 11 12 1 P P ⋯ P 2n P = 21 22 ⋮ ⋮ ⋮ Pn1 Pn 2 ⋯ Pnn
(3.7.2)
称为状态转移概率矩阵。 概率矩阵
Pm
0 ≤ Pij ≤ 1 n ∑ Pij = 1 j =1
对事件的全面预测,不仅要能够指出事 件发生的各种可能发生的结果,而且还必须 给出每一种结果会出现的概率。 马尔可夫(Markov)预测方法,就是一 种预测事件发生概率的方法。它是基于马尔 可夫链,根据事件的目前状况预测其将来各 个时刻(或时期)变动状况的一种预测方法。 马尔可夫预测法是对地理事件进行预测的基 本方法,它也是地理预测中常用的重要方法 之一。
4 = 0.363 6 11 5 P32 = P( E3 → E2 ) = P( E2 E3 ) = = 0.454 5 11 2 P33 = P( E3 → E3 ) = P( E3 E3 ) = = 0.1818 11 P31 = P( E3 → E1 ) = P( E1 E3 ) =
(2)结论:该地区农业收成变化的 状态转移概率矩阵为
同理可得
7 = 0.538 5 13 2 P22 = P( E2 → E2 ) = P( E2 E2 ) = = 0.153 8 13 4 P23 = P( E2 → E3 ) = P( E3 E2 ) = = 0.307 7 13 P21 = P( E2 → E1 ) = P( E1 E2 ) =
一、几个基本概念
状态 这是用来描述事物现状的名词。比如:某工 厂中的机器正处于损坏待修,那么描述机器的现 状就说机器的状态是损坏待修;某产品目前畅销, 则可以说其状态处于畅销;某产品当前的市场占 有率为20%,则从观察其市场占有率的角度来看, 其状态就是市场占有率为20%等。用Sn表示考察时 点为tn时的状态,考察对象的所有可能的状态集 合用S表示。如果假设用1,2,3表示某产品畅销、 滞销以及一般这三种情况,则S={1、2、3},如 果在当前时点tn产品处于畅销,则tn=1。
0 .200 0 P = 0 .538 5 0 .363 6
0 .466 7 0 .153 8 0 .454 5
0 .333 3 0 .307 7 0 .181 8
(3.7.5)
二、马尔可夫预测方法
状态概率 π j (k ) 表示事件在初始(k=0)状态为已知 的条件下,经过k次状态转移后,在第k 个 时刻(时期)处于状态 E j 的概率。 且
状态转移概率 在事件的发展变化过程中,从某一种状态 出发,下一时刻转移到其他状态的可能性,称 为状态转移概率。由状态Ei转为状态Ej的状态 转移概率 P( Ei → E j ) 就是条件概率 P( E j / Ei ) , 即 P(Ei → E j ) = P(E j / Ei ) = P ij 比如:
(i, j = 1,2, ⋯ , n) (i = 1,2, ⋯ , n)
(3.7.3)
一般地,将满足条件(3.7.3)的任 何矩阵都称为随机矩阵,或概率矩阵。 不难证明,如果P为概率矩阵,则对 于任何整数m>0,矩阵都是概率矩阵。
标准概率矩阵、 标准概率矩阵、平衡向量 如果P为概率矩阵,而且存在整数m>0, m P 使得概率矩阵 中诸元素皆非零,则称P 为标准概率矩阵。可以证明,如果P为标 准概率矩阵,则存在非零向量 α = [ x1 , x2 ,⋯, xn ] ,而且 xi 满足
很多经济现象都属于随即现象。所谓随机 现象就是指在少数几次试验或观察中呈现 的一种不确定性,大量试验中呈现出来某 种规律性的现象。研究随机现象的数学分 支有很多,其中随机过程在研究、描述一 组具有一定关系的随机变量的概率规律性 方面占有重要地位。马尔可夫过程或者马 尔可夫链就是其中的重要内容。首先让我 来介绍几个关于马尔可夫预测的几个概念:
例题1:考虑某地区农业收成变化的3个状 态,即“丰收”、“平收”和“歉收”。 记E1为“丰收”状态,E2为“平收”状态, E3为“歉收”状态。表3.7.1给出了该地区 1960—1999年期间农业收成的状态变化情 况。试计算该地区农业收成变化的状态转 移概率矩阵。
表3.7.1算: 从表3.7.1中可以知道,在15 个从E1出发(转移出去)的状态中: 有3个是从E1转移到E1的(即1→2,24→25, 34→35); 有7个是从E1转移到E2的(即2→3,9→10, 12→13,15→16,29→30,35→36,39→40); 有5个是从E1转移到E3的(即6→7,17→18, 20→21,25→26,31→32) 。
所谓“无后效性” 是指过去对未来无后效, 所谓“无后效性”,是指过去对未来无后效,而不 是指现在对未来无后效。 是指现在对未来无后效。马尔可夫链是与马尔可 夫过程紧密相关的一个概念。 夫过程紧密相关的一个概念。马尔可夫链指出事 物系统的状态由过去转变到现在, 物系统的状态由过去转变到现在, 再由现在转变 到将来,一环接一环像一根链条, 到将来,一环接一环像一根链条,而作为马尔可 夫链的动态系统将来是什么状态,取什么值, 夫链的动态系统将来是什么状态,取什么值, 只 与现在的状态、取值有关, 而与它以前的状态、 与现在的状态、取值有关, 而与它以前的状态、 取值无关。因此, 取值无关。因此,运用马尔可夫链只需要最近或 现在的动态资料便可预测将来。 现在的动态资料便可预测将来。马尔可夫预测法 就是应用马尔可夫链来预测市场未来变化状态。 就是应用马尔可夫链来预测市场未来变化状态。
所以
3 P = P ( E1 → E1 ) = P ( E1 E1 ) = = 0.200 0 11 15
7 P = P ( E1 → E2 ) = P ( E2 E1 ) = = 0.466 7 12 15
5 P = P ( E1 → E3 ) = P ( E3 E1 ) = = 0.333 3 13 15
马尔可夫预测方法 几个基本概念 马尔可夫预测法
我们知道, 我们知道,事物的发展状态总是随着时间的推 移而不断变化的。在一般情况下, 移而不断变化的。在一般情况下,人们要了解 事物未来的发展状态, 事物未来的发展状态,不但要看到事物现在的 状态,还要看到事物过去的状态。 状态,还要看到事物过去的状态。马尔可夫认 为,还存在另外一种情况, 人们要了解事物 还存在另外一种情况, 未来的发展状态, 只须要知道事物现在的状 未来的发展状态, 态,而与事物以前的状态毫无关系。例如,A 而与事物以前的状态毫无关系。例如,A 产品明年是畅销还是滞销, 产品明年是畅销还是滞销, 只与今年的销售 情况有关, 情况有关, 而与往年的销售情况没有直接的 关系。后者的这种情况就称为马尔可夫过程, 关系。后者的这种情况就称为马尔可夫过程, 前者的情况就属于非马尔可夫过程。 前者的情况就属于非马尔可夫过程。
相关文档
最新文档