哈工大课程设计—发动机热力计算

哈工大课程设计—发动机热力计算
哈工大课程设计—发动机热力计算

H a r b i n I n s t i t u t e o f T e c h n o l o g y

课程设计说明书(论文)

课程名称:

设计题目:发动机气动热力计算

院系:能源学院

班级:

设计者:

学号:

指导教师:

设计时间:

哈尔滨工业大学

哈尔滨工业大学课程设计任务书

一、课程设计的目的和意义

航空发动机技术已经成为衡量国家科技工业水平和综合国力的重要标志,是各大国大力发展、高度垄断、严密封锁的关键技术之一。当今世界各强国为了满足不断提高的战术指标,倾注了大量的人力、物力和财力,执行了一系列旨在提高航空发动机性能的基础研究计划。

第三代军用航空发动机,是目前世界发达国家现役主力战斗机所装备的发动机,如:F100、F110、F104、RB199、M53、RD-33、AL-31F等。

第四代军用航空发动机,是为满足先进战斗机的超声速巡航能力、良好隐身能力、高亚声速和超声速机动能力、敏捷性、远航程和短距起落能力、高可靠性、易可维修性、强生存力、低全寿命期费用而研制的。典型第四代军用发动机有F119、F120、EJ200、F135、F136、AL-41F等。

第五代军用航空发动机是目前正在研制的推重比12~15 的小涵道比加力涡扇发动机。根据IHPTET计划、VAATE计划等的研究情况,预计将在2020年研制出可实现推重比12~15一级的涡扇发动机]1[。

根据第三、第四和第五代军用航空发动机的技术特征,军用航空发动机总体性能发展趋势见表1。

表1 军用航空发动机总体性能发展趋势]2[

序号发动机主要特点典型飞机装备时间

第一代涡轮喷气发动机,如J57J,

BK-1

推重比3~4

涡轮前温度1200~1300K

F-86F-100,米格-15,

米格-19

40年代末

第二代加力涡轮喷气和涡轮风扇

发动机,如J79,TF30,

M53-P2,P29-300

推重比5~6

涡轮前温度1400~1500K

F-4,F-104,米格-21,

米格-23,幻影-F1

60年代中

第三代加力涡轮风扇发动机,如

F100,F110,F404,RB199,

M88-2

推重比7~8

涡轮前温度1600~1700K

F-15,F-16,F-18,

米格-29,苏-27,狂

风幻影-2000

70年代初

第四代高推重比涡轮风扇发动机,

如F119,EJ200,M88-3

推重比9~10

涡轮前温度1850~2000K

F-22,JSF,EF2000,

I.42,S-37/54

21世纪初

可见,航空推进技术正呈现加速发展的态势,未来军用航空发动机的设计研制周期将明显缩短,成本将大幅降低,而技术性能将显著提高。

未来军用发动机的发展主要有两个趋势:

一种是自适应变循环发动机。未来发动机要具有基本的两个工作点:高速大推力状态和低油耗的经济工作状态。变循环发动机则采用涡轮风扇体制,将气流分在三个涵道,但这三个涵道可以变换大小口径,通过组合搭配成就最佳的工作模式。而所谓自适应发动机技术,是由于传感器技术和全权限数字电子控制技术的成熟,使工作点的控制更连续,容易实现对飞行阶段全过程的适应性控制与调节。

另一种是高超声速飞行器动力。高超声速飞行器具有极重要的战略地位:它响应快速,被攻击目标来不及反应,战略目标无法转移;拦截困难,高超音速的突防能力优于现有任何一种隐身技术,且与战略导弹相比,机动灵活,无固定弹道;高超声速将超越空间限制,不需依赖于海外基地,具备“发现即摧毁”的能力。如何降低发射成本和选择合适的动力装置是高超声速飞行器的主要问题。

本次课程设计主要是掌握航空双转子涡轮风扇发动机热力计算的过程和方法,通过各参数选择调试及发动机结构安排,加深对发动机气动性能和热力性能的理解,使我们能更好的从事这方面工作。

二、课程设计中选用发动机的背景介绍

2.1设计背景

本次设计的F101-GE-102型发动机是美国通用公司研究生产的军用涡扇发动机,装备美军第三代B-1B战略轰炸机,图1是其外观三视图。

图1 B-1B三视图

罗克韦尔B-1“枪骑兵”(英语:Rockwell B-1 Lancer,或音译为“兰斯”)轰炸机,是美国空军在冷战末期开始使用的超音速可变后掠翼重型长程战略轰炸机,美国通用电气公司为其研制的中等涵道比加力涡扇发动机就是F101-GE-100。在70年代末,美国空军曾试验过B-1A原型机,B-1A的主要作战方式为超音速高空突防,但由于美空军战略的改变和高空突防方式不足以应付强大的苏联防空火力网,因此A型很快下马。

1981年,美国里根政府决定重新生产100架B-1B战略轰炸机。于是,1982年美国空军让通用电气公司研制F101的改型机,用于性能和结构完整性试验。F101-GE-102型是F101-GE-100型的改进品,与-100型基本相同,但耐久性有进一步提高,并根据B-1B

的作战任务作了一些小的修改。

如图2,B-1B安装4台带加力的F101-GE-102涡扇发动机,安装在B-1B翼根下方的双联发动机短舱中。由于取消了B-1A的2马赫的速度要求,所以B-1B改用固定进气道,双联发动机短舱斜切进气口背靠背面向两侧,进气口内有一组挡板来折射雷达波,防止直接照射发动机风扇叶片。

图2 B-1B发动机起飞工作状态

2.2 F101-GE-100型的结构和系统(近似F101-GE-102型)

进气口:环形。20个进口导流叶片,前缘固定,起支板作用,后缘可调。热空气防冰。

风扇:2级轴流式。实心钛合金工作叶片带冠,水平对开钛合金蜂窝结构机匣。压比2.0,转速7710r/min。

压气机:9级轴流式。零级和前5级静子叶片可调。前3级转子叶片为钛合金,后6级为A286钢。转子为惯性焊接盘鼓式,前3级盘为钛合金,后6级为DA718钢。转子和静子叶片均可单独更换。水平对开机匣,前段为钛合金,后段为IN718。压比12.5。

燃烧室:短环形。火焰筒由Hastelloy X合金经机加工制成。燃油经20个双锥喷嘴和小涡流杯在高能气流剪切作用下雾化,实现无烟燃烧。

高压涡轮:单级轴流式。高负荷气冷叶片,用冲击和气膜冷却。转子叶片材料为DSR80H,盘为DA718。机匣内衬扇形段,通冷却空气进行主动间隙控制。转子和静子叶片可单独更换。

低压涡轮:2级轴流式。叶尖带冠,非冷却。转子叶片均可单独更换,导向叶片分段更换。盘材料为DA718。

加力燃烧室:混合流型。盘旋式混合器使内、外涵气流有效混合并燃烧。筒体材料为IN625。

尾喷管:收扩式。由铰接的鱼鳞板组成主、副喷管,由作动筒、移动杯、凸轮和连

杆组成液压机械式作动机构。

控制系统:机械液压式。带电子式调整器,可以对风扇转速、涡轮转子叶片温度和尾喷管面积进行控制。此外,还有中央综合测试系统,不断监控发动机性能。

燃油系统:维克斯公司的主燃油泵和喷管液压泵。森德斯特兰德公司的燃油增压泵。派克-汉尼兹公司的燃油活门组件和燃油喷嘴。伍德沃德公司的燃油控制器和传感器。

滑油系统:整体式滑油和液压油箱]3[。

图3 F101-GE-102型涡扇发动机

2.3 技术参数

本次设计的主要参数采用F101-GE-102型的实际参数,具体数据见表2。

表2 F101-GE-100及102的主要参数

F101-GE-100 F101-GE-102

最大起飞推力(海平面,静态)13600kg(加力)

7710kg(中间)

13950kg(加力)

7710kg(中间)

起飞耗油率 2.2kg/(N·h)(加力)

0.55kg/(N·h)(不加力)

不明推重比7.50 7.69 空气流量159kg/s

涵道比 2.01

总增压比26.5

涡轮进口温度1371℃

最大直径1397mm

长度(含进气锥)4600mm

质量1814kg

三、热力计算步骤和结果

热力计算中采用如图4所示的发动机基准截面符号。

图4 F101-GE-102型涡扇发动机基准截面符号

3.1 已知参数

飞行高度—11km ;飞行马赫数—1.6;涵道比—2.01;总增压比—26.5;涡轮进口温度—1644.15K

取风扇增压比 2.5CL π= 则压气机增压比26.5

10.62.5

C CH CL πππ=

== 预设部件效率或损失系数 进气道总压恢复系数98.0max =i σ 风扇绝热效率918.0=CL η

高压压气机效率928.0=CH η 燃烧效率99.0=b η

燃烧室总压恢复系数98.0=b σ 高压涡轮效率94.0=TH η 低压涡轮效率96.0=TL η 混合室总压恢复系数98.0=m σ 加力燃烧室效率98.0=ab σ

加力燃烧室总压恢复系数(加力)97.01=ab σ

加力燃烧室总压恢复系数(不加力)99.02=ab σ 尾喷管总压恢复系数99.0=c σ 高压轴机械效率99.0=mH η 低压轴机械效率99.0=mL η 功率提取轴机械效率99.0=mp η 空气定熵指4.1=k

空气定压比热容()K kg kJ c p ?=/005.1 燃气定熵指数3.1=g k

燃气定压比热容()K kg kJ c pg ?=/244.1 气体常数()K kg kJ R ?=/287.0 燃油低热值kg kJ H f /42900= 冷却高压涡轮空气量系数15%δ= 飞机引气系数%0.1=β 3.2 计算步骤

设计点热力计算从0截面逐个部件依次进行,直至9截面,然后计算总性能。主要步骤和计算公式如下: 1. 0-0截面的温度和压力 由于 H=11km

静温 0288.15 6.5216.65T H K =-=

静压 5.2553

550 1.01331100.226171044.308H P Pa ?

?=-?=? ?

??

声速 0295.0423/a m s === 气流速度 000a =295 1.6=472.0677m /s c a M =??

总压 1+22 3.555k 1

0001 1.41(1a )=0.22617( 1.6)10=0.9613010a 22

k

t k P p M P ---=+???? 总温 (1+M 216.65(1+ 1.6327.5748K 22t000k 1 1.41=a )=)=22

T T --??

2.进气道出口总温和总压

由于 0 1.6Ma =

总压恢复系数 M -1)-1)1.35 1.35i 0=0.97[10.075(a ]=0.97[10.075(1.6]0.9431σ--?= 总压 552i t0=0.94310.961310=0.9066310t P P Pa σ=??? 总温 20327.5748t t T T K == 3.风扇出口参数

风扇出口总压 55222=2.50.9066310=2.266610t CL t P P Pa π=??? 风扇总温 10.285722

21 2.51

(1)327.5748(1)434.36250.918

k k CL

t t CL T T K π

η---=+=?+=

风扇消耗的功 222() 1.005(434.3625327.5748)107.3216/CL p t t L c T T kJ kg =-=?-= 4.高压压气机出口总温和总压

认为其进口总压等于风扇的出口总压,所以: 总压 55322 2.26661010.624.02610t t CH p p Pa π==??=?

总温 10.285732217.641

(1)434.3625(1)885.15840.928

k k CH

t t CH T T K π

η---=+=?+=

压气机消耗的功 322() 1.005(885.1584434.3625)453.0499/CH p t t L c T T kJ kg =-=?-= 5.燃烧室出口参数

油气比 43

4

1.2441644.15 1.005885.1584

0.02860.9842900 1.2441644.15

pg t p t b f pg t c T c T f H c T η-?-?=

=

=-?-?

总压 55430.9924.0261023.54510t b t P P Pa σ==??=? 总温 41644.15t T K = 6.涡轮出口参数

34

4.54(1)(1)/(1)(1)(10.010.15)(10.0248) 1.0050.1588

5.1584/(1.2441644.15)

0.9164

(10.010.15)(10.0286)0.15

p t pg t t m t a f c T c T T T f βδδτβδδ--++==

--++--++???=

=--++

445441644.150.91641506.723.54510t a t m t a t T T K p P Pa τ==?===?

高压涡轮出口总温,由高压转子的功率平衡计算:

(

)()3224.5

44()111p t t t t a mH pg t a c T T T T f c T βδδη-=-

--++???? []1.005(885.1584434.3625)

10.7592(10.010.15)(10.0286)0.150.98 1.2441506.7-=-

=--++???

4.5

45440.75921506.71143.9t t t a t a

T T T k T =

=?= 高压涡轮膨胀比: []

1

4.333

4 4.5

4.541(1)/1(10.7592)/0.94 3.6048g g k k t a t TH

TH t t a p T p T πη-

--??==--=--=????

5

544523.54510 6.5315103.6048

t a

t TH

p p Pa π?=

==?

7.低压涡轮参数计算

低压涡轮出口总温与进口总温之比

[][]()()222054545()/(1)1(1)(1)1.005(434.3625327.5748) 3.0/0.99(1 2.01)10.7675

0.99 1.2441143.910.010.1510.02860.1p t t T mp t t mL pg t c T T c B T T c T f ηηβδδ??-++?

?=---++-++=-

=??--++????

低压涡轮出口总温:

5

5440.76751143.9877.9578t t t c t c

T T T K T =

=?= 低压涡轮膨胀比:

[]

1

4.333

54511/1(10.7675)/0.96 3.3261g g k k t TL

TL t T T πη---????=--=--=?? ?????

低压涡轮出口总压:

55545/ 6.531510/3.3261 1.963810t t TL p p Pa π==?=?

8.混合室出口参数 混合室的涵道比为 552.01

1.9822

(1)(1)

0.8491.02860.15

II m W B

B W f βδδ=

===--++?+ 6p c 为混合气流的定压比热容,可用质量平均值计算:

6 1.244 1.9822 1.005

1.0851/()11 1.9822

p g m p p m c B c c k J

k g K

B ++?===?++、

2256561/()11.2441 1.9822 1.005434.3625/(1.244877.9578)

0.6890

1.08511 1.9822pg m p pg t t t p m c B c T c T T T c B +=++???=

=+

6

655

0.6890877.9578604.8848t t t t T T T K T =

=?= 混合室出口气流总压:

6522

55611.9638 1.98220.98 2.2666

0.98

10 2.0922101 1.9822

t m m

t m II t

m m

t p p p B p p B p Pa

σσ=+??=

++??=?=?+

9.加力燃烧室参数计算

加力燃烧室出口总温

71721844.15604.8848t t T K T K ==(不加力)

加力)

(

加力时的加力油气比ab f 为

7766

771(1)()

110.010.15 1.2441844.15 1.085604.8848

(10.0286)()0.0415

1 2.010.010.9842900 1.2441844.15

p t p t ab ab f p t c T c T f f B H c T βδβη---=++----?-?=+?

=+-?-?

加力总油气比

01(1)(1)(10.010.15)0.0286(1 2.010.01)0.04150.0494

11 2.01ab f B f f B βδβ--++---++-?===++

不加力总油气比

02(1)(10.010.15)0.02860.008011 2.01

f f B βδ----===++

加力燃烧室出口气流总压

75

557155720.97 1.963810 2.0294100.99 1.963810 2.071310t ab t t t p p p Pa p Pa σ==??=?=??=?(不加力)(加力)

10.尾喷管出口参数

尾喷管出口总压:

97t c t p p σ=

55915

5

920.99 2.029410 2.0091100.99 2.071310 2.050610t t p Pa p Pa =??=?=??=?

尾喷管出口总温:

91719272

1844.15604.8848t t t t T T K T T K ====(不加力)

加力)

(

尾喷管出口马赫数:

9Ma =

9192 2.0903

2.1027

Ma Ma =

===(不加力)加力)(

尾喷管出口界面温度:

219991(1)2

g t k T T Ma --=+

21912192 1.31

1844.15(1 2.0903)11142

1.31604.8848(1

2.1027)36

3.68412T K

T k

---=?+

?=-=?+?=(不加力)

加力)(

尾喷管出口声速:

9a =

9192644.7024/368.362/a m s a m s

====(不加力)加力)

(

排气速度:

999c a Ma =

9192644.7024 2.09031347.6/368.302 2.1027774.5622/c m s c m s =?==?=

11.发动机单位性能参数013600/ab sab sfc f F = 090

(1)1s F f C C B

β

=+--+ 0.15

(10.0494)1347.6472937.6098/()

1 2.01

0.15(10.008)774.5622472306.1009/()

1 2.01sab s F N kg s F N kg s =+-

?-=?+=+-?-=?+(不加力)

加力)(

0102360036000.0494

0.1896/()937.6098

360036000.008

0.0938/()306.1009

ab sab s f sfc kg N h F f sfc kg N h F ?===??=

==?

四、热力计算结论

经过详细计算,加力耗油率为0.1896/()kg N h ?,不加力耗油率为0.0938/()kg N h ?达到了要求。

参考文献

[1]刘勤,周人治,王占学.军用航空发动机特征分析[J].燃气涡轮试验与研究,2014,27(2): 59-62. [2]陈懋章.航空发动机技术的发展[J].科学中国人,2015,10:12-15. [3]林左鸣.世界航空发动机手册.2012,12:409-412.

附录计算程序

%已知参数

PAIc=26.5

PAIcl=1:0.01:26.5

PAIch=PAIc./PAIcl

H=11

Ma0=1.6

B=2.01

Tt4=1644.15

Tt71=Tt4+200

%预设部件效率或损失系数

%进气道总压恢复系数

Ximax=0.98

%风扇绝热效率

Ycl=0.918

%高压压气机效率

Ych=0.928

%燃烧效率

Yb=0.99

%燃烧室总压恢复系数

Xb=0.98

%高压涡轮效率

Yth=0.94

%低压涡轮效率

Ytl=0.96

%混合室总压恢复系数

Xm=0.98

%加力燃烧室效率

Yab=0.98

%加力燃烧室总压恢复系数(加力) Xab1=0.97

%加力燃烧室总压恢复系数(不加力) Xab2=0.99

%尾喷管总压恢复系数

Xc=0.99

%高压轴机械效率

Ymh=0.99

%低压轴机械效率

Yml=0.99

%功率提取轴机械效率

Ymp=0.99

%空气定熵指数

k=1.4

%空气定压比热容

cp=1.005

%燃气定熵指数

kg=1.3

%燃气定压比热容

cpg=1.244

%气体常数

R=287

%燃油低热值

Hf=42900

%冷却高压涡轮空气量系数

Z=0.15

%飞机引气系数

beit=0.01

%0-0截面的温度和压力

T0=288.15-6.5*H

p0=1.0133*(1-H/44.308)^5.2553*10^5 a0=(k*R*T0)^0.5

c0=a0*Ma0

pt0=p0*(1+0.2*Ma0^2)^3.5

Tt0=T0*(1+0.2*Ma0^2)

%进气道出口总温和总压

Xi=Ximax*(1-0.075*(Ma0-1)^1.35)

pt2=pt0*Xi

Tt2=Tt0

%风扇出口参数

pt22=pt2.*PAIcl

Tt22=Tt2.*(1+(PAIcl.^(0.4/k)-1)./Ycl) Lcl=cp.*(Tt22-Tt2)

%高压压气机出口总温和总压

pt3=pt22.*PAIch

Tt3=Tt22.*(1+(PAIch.^(0.4/k)-1)./Ych)

Lch=cp.*(Tt3-Tt22)

%燃烧室出口参数

f=(cpg*Tt4-cp.*Tt3)./(Yb*Hf-cpg*Tt4)

pt4=pt3.*Xb

%高压涡轮

tm=((1-beit-Z).*(1+f)+cp.*Z.*Tt3./(cpg*Tt4))./((1-beit-Z).*(1+f)+Z)

Tt4a=Tt4.*tm

pt4a=pt4

t4a=1-Lch./(((1-beit-Z).*(1+f)+Z).*Ymh.*cpg.*Tt4a)

Tt45=Tt4a.*t4a

PAIth=(1-(1-t4a)./Yth).^(-(kg/(kg-1)))

pt45=pt4a./PAIth

%低压涡轮参数计算

t45=1-((Lcl+3.0/Ymp).*(1+B))./(((1-beit-Z).*(1+f)+Z).*Yml.*cpg.*Tt45)

Tt5=Tt45.*t45

PAItl=(1-(1-t45)./Ytl).^(-(kg/(kg-1)))

pt5=pt45./PAItl

%混合室出口参数

Bm=B./((1-beit-Z).*(1+f)+Z)

cp6=(cpg+Bm.*cp)./(1+Bm)

t5=(cpg./cp6).*(1+Bm.*cp.*Tt22./(cpg.*Tt5))./(1+Bm)

Tt6=Tt5.*t5

pt6=Xm*(pt5+Bm.*0.98.*pt22)./(1+Bm)

%加力燃烧室参数计算

Tt72=Tt6

fab=(1+f.*(1-beit-Z)./(1+B-beit)).*(cpg*Tt71-cp6.*Tt6)./(Yab*Hf-cpg*Tt71) f01=((1-beit-Z).*f+(1+B-beit).*fab)./(1+B)

f02=((1-beit-Z).*f)./(1+B)

pt71=pt6.*Xab1

pt72=pt6.*Xab2

%尾喷管出口参数

pt91=pt71.*Xc

pt92=pt72.*Xc

Tt91=Tt71

Tt92=Tt72

p9=p0

Ma91=((2/(kg-1)).*((pt91./p0).^((kg-1)/kg)-1)).^0.5 Ma92=((2/(kg-1)).*((pt92./p0).^((kg-1)/kg)-1)).^0.5 T91=Tt91.*(1+((kg-1)/2).*Ma91.^2).^(-1)

T92=Tt92.*(1+((kg-1)/2).*Ma92.^2).^(-1)

a91=(kg.*R.*T91).^0.5

a92=(kg.*R.*T92).^0.5

c91=a91.*Ma91

c92=a92.*Ma92

%发动机单位性能参数

Fsab=(1+f01-beit/(1+B)).*c91-c0

Fs=(1+f02-beit/(1+B)).*c92-c0

sfcab=3600.*f01./Fsab

sfc=3600.*f02./Fs

plot(PAIcl,sfcab)

hold on

plot(PAIcl,sfc)

武汉理工大学《工程热力学与传热学》课程设计说明书

学号:01211 课程设计 题目船舶柴油机高温淡水冷却器设计 学院能源与动力工程学院 专业能源动力系统及自动化 班级 姓名 指导教师 2013年 1 月17日

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位:能源与动力工程学院 题目:船舶柴油机高温淡水冷却器设计 初始条件: (1)高温淡水进口水温为:85℃; (2)高温淡水出口水温为:72℃; (3)高温冷却淡水流量为:58m3/h; (4)低温淡水进口水温为:33℃; (5)低温淡水出口水温为:45℃; (6)允许最大压力降:0.1Mpa; (7)冷却器结构类型:壳管式换热器或板式换热器任选其一。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要 求) 1.编制设计书1份,内容包括: (1)设计依据; (2)设计原理; (3)设计步骤; (4)热力计算过程(采用平均温差法或传热有效度_传热单元数法); (5)阻力计算过程等。 2.设计图纸(选做):1)外形结构图(2号图纸);2)流体流程图(3号图纸)。 3.设计说明书撰写严格按照附件中的格式书写要求执行。 时间安排: 指导教师签名:年月日 系主任(或责任教师)签名:年月日

摘要 船舶柴油机高温淡水冷却器被广泛的应用在油轮,液化气船,集装箱船,散货船和工程船上,在船舶的航行过程中起到重要的作用。是提高船舶能源利用率的主要设备之一,随着国内对于工业企业提高能效、降低能耗要求的日趋迫切,传热系数高,抗结垢能力强,显著提高热能利用效率,实现小温差传热,节能降耗的高效换热器必将成为加快国内节能减排的利器之一。 本文根据设计要求,选取一台1-2型固定管板式管壳换热器,采用逆流布置,管侧走冷流体,壳侧走热流体。采用平均温差法设计换热器,利用热平衡方程和传热方程计算传热量、传热面积。首先,假定换热系数以及管道中流体流速,根据已知条件以及相应的国家标准设计出一台结构确定的换热器;再由设计出来的换热器计算其传热系数,并与假定的比较;然后由实际的传热系数计算出所需要的传热面积,进而校核传热系数、传热面积、管程和壳程的压力降。 学习、研究、设计换热器,能够增强对所学专业的热爱,加深对工程热力学及传热学相关知识的理解,有助于今后的理论研究。 关键词:固定管板式换热器平均温差法压力降结构设计

热力发电厂课程设计说明书(国产600MW凝汽式机组全厂原则性热力系统设计计算)

国产600MW 凝汽式机组全厂原则性热力系统设计计算 1 课程设计的目的及意义: 电厂原则性热力系统计算的主要目的就是要确定在不同负荷工况下各部分汽水流量及参数、发电量、供热量及全厂的热经济性指标,由此可衡量热力设备的完善性,热力系统的合理性,运行的安全性和全厂的经济性。如根据最大负荷工况计算的结果,可作为发电厂设计时选择锅炉、热力辅助设备、各种汽水管道及附件的依据。 2 课程设计的题目及任务: 设计题目:国产600MW 凝汽式机组全厂原则性热力系统设计计算。 计算任务: ㈠ 根据给定的热力系统数据,在h - s 图上绘出蒸汽的汽态膨胀线 ㈡ 计算额定功率下的汽轮机进汽量0D ,热力系统各汽水流量j D ㈢ 计算机组和全厂的热经济性指标(机组进汽量、机组热耗量、机组汽耗率、机组热耗率、 绝对电效率、全厂标准煤耗量、全厂标准煤耗率、全厂热耗率、全厂热效率) ㈣ 按《火力发电厂热力系统设计制图规定》绘制出全厂原则性热力系统图 3 已知数据: 汽轮机型式及参数

锅炉型式及参数 锅炉型式英国三井2027-17.3/541/541 额定蒸发量Db:2027t/h 额定过热蒸汽压力P b17.3MPa 额定再热蒸汽压力 3.734MPa 额定过热蒸汽温度541℃ 额定再热蒸汽温度541℃ 汽包压力:P du18.44MP 锅炉热效率92.5% 汽轮机进汽节流损失4% 中压缸进汽节流损失2% 轴封加热器压力P T98kPa 疏水比焓415kJ/kg 汽轮机机械效率98.5% 发电机效率99% 补充水温度20℃ 厂用电率0.07 4 计算过程汇总: ㈠原始资料整理:

《综合课程设计》教学大纲(完整资料).doc

此文档下载后即可编辑 《综合课程设计》教学大纲 课程名称:综合课程设计 英文名称:Integrated Course Project for Communication Systems 总学时:3周,理论学时:实验学时:学分:3 先修课程要求: 电路分析、模拟电子技术、数字电子技术、高频电子线路、通信原理、FPGA原理与应用、Matlab与通信仿真技术、微机原理与接口技术、单片机技术及应用、计算机网络等 适用专业:通信工程 教学参考书: 樊昌信等编,《通信原理(第六版)》,国防工业出版社,2006年 马淑华等编,《单片机原理及应用》,北京航空航天大学出版社,第1版 褚振勇等编,《FPGA原理与应用》,西安电子科技大学出版社,第2版 谢希仁等编,《计算机网络》,电子工业出版社,第4版 1课程设计在培养方案中的地位、目的和任务 《综合课程设计》是配合本科通信工程专业的专业基础课程《通信原理》、《FPGA原理与应用》、《Matlab与通信仿真分析》、《单片机技术及应用》、《计算机网络》而开设的重要专业实践环节。目的是培养学生科学理论结合实际工程的能力,通

过该课程设计,要求学生在掌握通信基本理论的基础上,运用Matlab、FPGA、NS-2等工具对通信子系统或计算机网络进行仿真与设计,并计算基本性能指标,从而提高学生的综合设计实践能力。 另一方面,也可通过课程设计使学生深入理解单片机的基本原理,硬件结构和工作原理。掌握程序的编制方法和程序调试的方法,掌握常用接口的设计及使用。掌握一般接口的扩展方法及接口的调试过程。为学生将来在通信工程、电子信息工程、测试计量技术及仪器、电子科学与技术及其它领域应用单片机技术打下良好基础及应用实践能力。 2 课程设计的基本要求 1. 学习基本设计方法;加深对课堂知识的理解和应用。 2. 完成指定的设计任务和实验任务,理论联系实际,实现书本知识到工程实践的过渡。 3. 学会设计报告的撰写方法。 3 课程设计的内容 1. 无线收发信机部件设计 2. 数字调制与解调器的设计 3. 特殊信号产生器的设计 4. 同步信号提取 5. 编码译码器

声控灯地设计与制作-哈工大-电子技术课程设计

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:电子技术课程设计 设计题目:声控开关的设计与制作 院系:电气工程及其自动化 班级:1406111 设计者:元胜 学号:1140610319 指导教师:吕超 设计时间:2016年12月5-18日 工业大学

工业大学课程设计任务书

*注:此任务书由课程设计指导教师填写。

声控灯的设计与制作 1设计任务及原理 设计任务基本要求:设计一个声控开关,控制对象为发光二极管,接收到一定强度的声音后,声控开关点亮发光二级管,灯亮时间可调。控制延时时间用数字显示。 扩展要求:发光二极管点亮时间延时显示。 1.1设计原理 声控灯是将声音信号转换为电信号、电信号再转换为光信号的装置。 输入部分可由一个驻极体话筒实现。话筒的高分子极化膜生产时就注入了一定的永久电荷。在声波的作用下,极化膜随着声音震动,电容是随声波变化。于是电容两极间的电压就会成反比的变化。将电容两端的电压取出来,就可以得到和声音对应的电压了。但是这个电压信号非常小,不能驱动LED灯。对这个电压信号进行放大、整形,才能得到足够大的电压。 声控灯的延时可以由一个单稳态触发电路实现。单稳态电路的暂态时间就是发光二极管的发光持续时间。用前面经放大的电压作为触发脉冲输送给单稳态触发电路,会得到一个持续特定时间的电压输出。这个输出来驱动发光二极管,就达到了声控、发光的目的。 计数器部分首先需要一个时钟源。时钟源脉冲可由多谐振荡器获得。将单稳态电路的输出与时基脉冲结合,控制计数器的计数与清零,就可以使计数部分与发光部分同步工作。 计数结果再经译码输送给共阳极数码管,显示出来。 2设计过程 2.1声控灯电路原理: 当驻极体话筒接受到一定强度的声音信号时,声音信号转换为电压信号,经三极管放大、施密特触发器整形后,触发单稳态延时电路,产生一个宽度可调的脉冲信号,驱动发光二极管发光。同时,该脉冲信号作为选通信号,使计数器计数,并用数码管显示延时时间。电路的流程图如图 1所示:

热力发电厂课程设计

学校机械工程系课程设计说明书热力发电厂课程设计 专业班级: 学生姓名: 指导教师: 完成日期:

学校机械工程系 课程设计评定意见 设计题目:国产660MW凝汽式机组全厂原则性热力系统计算 学生姓名:专业班级 评定意见: 评定成绩: 指导教师(签名): 2010年 12 月9日 评定意见参考提纲: 1.学生完成的工作量与内容是否符合任务书的要求。 2.学生的勤勉态度。 3.设计或说明书的优缺点,包括:学生对理论知识的掌握程度、实践工作能力、表现出的创造性和综合应用能力等。

《热力发电厂》课程设计任务书 一、课程设计的目的(综合训练) 1、综合运用热能动力专业基础课及其它先修课程的理论和生产实际知识进行某660MW凝气式机组的全厂原则性热力系统的设计计算,使理论和生产实际知识密切的结合起来,从而使《热力发电厂》课堂上所学知识得到进一步巩固、加深和扩展。 2、学习和掌握热力系统各汽水流量、机组的全厂热经济指标的计算,以及汽轮机热力过程线的计算与绘制方法,培养学生工程设计能力和分析问题、解决问题的能力。 3、《热力发电厂》是热能动力设备及应用专业学生对专业基础课、专业课的综合学习与运用,亲自参与设计计算为学生今后进行毕业设计工作奠定基础,是热能动力设备及应用专业技术人员必要的专业训练。 二、课程设计的要求 1、明确学习目的,端正学习态度 2、在教师的指导下,由学生独立完成 3、正确理解全厂原则性热力系统图 4、正确运用物质平衡与能量守恒原理 5、合理准确的列表格,分析处理数据 三、课程设计内容 1. 设计题目 国产660MW凝汽式机组全厂原则性热力系统计算(设计计算) 2. 设计任务 (1)根据给定的热力系统原始数据,计算汽轮机热力过程线上各计算点的参数,并在h-s图上绘出热力过程线; (2)计算额定功率下的汽轮机进汽量Do,热力系统各汽水流量Dj、Gj; (3)计算机组和全厂的热经济性指标; (4)绘出全厂原则性热力系统图,并将所计算的全部汽水参数详细标在图中(要求计算机绘图)。 3. 计算类型 定功率计算 4. 热力系统简介 某火力发电厂二期工程准备上两套660MW燃煤气轮发电机组,采用一炉一机的单元制配置。其中锅炉为德国BABCOCK公司生产的2208t/h自然循环汽包炉;汽轮机为Geg公司的亚临界压力、一次中间再热660MW凝汽式汽轮机。 全厂的原则性热力系统如图1-1所示。该系统共有八级不调节抽汽。其中第一、第二、第三级抽汽分别供高压加热器,第五、六、七、八级抽汽分别供低压加热器,第四级抽汽作为0.9161Mpa压力除氧器的加热汽源。 第一、二、三级高压加热器均安装了留置式蒸汽冷却器,上端差分别为-1.7oC、0oC、-1.7oC。第一、二、三、五、六、七级回热加热器装设疏水冷却器,下端差均为5.5oC。

综合课程设计

可用C++(Visual C++ 6.0),JA V A(JSP,STRUTS),C#(https://www.360docs.net/doc/a211891663.html, ,Visual Studio 2005),试题目而定。 1、综合购物频道(限最多3人选) 项目描述:是一个在线销售系统,是一个B-C模式的电子商务系统,由前台的B/S模式购物系统和后台的C/S模式的管理系统两部分组成。该电子商务系统可以实现会员注册、浏览商品、查看商品详细信息、选购商品、取消订单和查看订单等功能,前台系统的详细功能。目的:了解项目开发的一个基本流程以及如何运用现行的框架搭建一个大型的综合型系统2、某大型企业内部OA(限最多3人选) 项目描述:采用网络办公自动化系统,不仅能快速提高企业的运作效率,节省大量的办公费用,能全面提升企业的核心竞争力和生产力以及提高工作效率。该企业内部OA系统采用模型组件与WEB技术结合的方式,具有强大的功能,广泛的适用性、可靠安全性和可扩展性。目的:学习运用当前热门的前台技术。 3、产品展示厅(限最多3人选) 项目描述: 在互联网发达的今天,当您想客户宣传自己的产品时,最好的方式是拥有自己的网站,通过网络来传播和展示您的产品信息。产品展示系统,为客户详细介绍自己的产品,提供了一个功能强大的平台。 系统界面友好、功能强大、操作简便,用户可以方便迅速掌握系统的操作。 4人事管理系统(限最多3人选) 项目描述:人事档案完整资料、人事分类管理(员工户口状况、员工政治面貌、员工生理状况、员工婚姻状况、员工合同管理、员工投保情况、员工担保情况)、考勤管理、加班管理、出差管理、人事变动管理(新进员工登记、员工离职登记、人员变更记录)、员工培训管理(员工培训、员工学历)、考核奖惩、养老保险等几大模块。系统具有人事档案资料完备,打印灵活,多样、专业的报表设计,灵活的查询功能等特点。 主要技能:掌握项目的开发流程:需求分析、详细设计、测试等;熟悉VC的多文档的开发技能和技巧;利用ADO技术操作SQL Server数据库;掌握数据库的开发和操作技能。 5、即时通讯系统(限最多3人选) 项目描述:系统采用UDP协议,具有:收发在线和离线消息、添加/删除好友、服务器端存储好友列表、在客户端存储好友资料和聊天记录、添加/删除好友组、可以群发消息、收发文件等功能。 主要技能:掌握项目的开发流程:需求分析、详细设计、测试等;熟悉VC的网络通信的开发技能和技巧,包括:TCP和UDP协议、线程等;利用ADO技术操作SQL Server数据库; 6、推箱子(限最多3人选) 【规则】本游戏的目的就是把所有的箱子都推到目标位置上。箱子只能推动而不能拉动。一次只能推动一个箱子。 经典的推箱子是一个来自日本的古老游戏,目的是在训练你的逻辑思考能力。在一个狭小的仓库中,要求把木箱放到指定的位置,稍不小心就会出现箱子无法移动或者通道被堵住的情况,所以需要巧妙的利用有限的空间和通道~! 7、贪吃蛇(限最多3人选) 【规则】: A 用键盘的方向键控制蛇的上下左右移动。 B 游戏分为三种难度,SLUG为慢速,每吃一朵花得1分;WORM 为中速,每吃一朵花得2分;PYTHON为快速,每吃一朵花得3分。 C 游戏目标:操纵屏幕上那条可爱的小蛇,在黑框中不停吃花,而每吃一朵

工程热力学课程教案完整版

工程热力学课程教案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

《工程热力学》课程教案 *** 本课程教材及主要参考书目 教材: 沈维道、蒋智敏、童钧耕编,工程热力学(第三版),高等教育出版社,2001.6手册: 严家騄、余晓福着,水和水蒸气热力性质图表,高等教育出版社,1995.5 实验指导书: 华北电力大学动力系编,热力实验指导书,2001 参考书: 曾丹苓、敖越、张新铭、刘朝编,工程热力学(第三版),高等教育出版社,2002.12 王加璇等编着,工程热力学,华北电力大学,1992年。 朱明善、刘颖、林兆庄、彭晓峰合编,工程热力学,清华大学出版,1995年。 曾丹苓等编着,工程热力学(第一版),高教出版社,2002年 全美经典学习指导系列,[美]M.C. 波特尔、C.W. 萨默顿着郭航、孙嗣莹等 译,工程热力学,科学出版社,2002年。 何雅玲编,工程热力学精要分析及典型题精解,西安交通大学出版社,2000.4 概论(2学时) 1. 教学目标及基本要求 从人类用能的历史和能量转换装置的实例中认识理解:热能利用的广泛性和特殊性;工程热力学的研究内容和研究方法;本课程在专业学习中的地位;本课程与后续专业课程乃至专业培养目标的关系。 2. 各节教学内容及学时分配 0-1 热能及其利用(0.5学时) 0-2 热力学及其发展简史(0.5学时) 0-3 能量转换装置的工作过程(0.2学时) 0-4 工程热力学研究的对象及主要内容(0.8学时) 3. 重点难点 工程热力学的主要研究内容;研究内容与本课程四大部分(特别是前三大部分)之联系;工程热力学的研究方法 4. 教学内容的深化和拓宽 热力学基本定律的建立;热力学各分支;本课程与传热学、流体力学等课程各自的任务及联系;有关工程热力学及其应用的网上资源。 5. 教学方式 讲授,讨论,视频片段 6. 教学过程中应注意的问题

热力发电厂课程设计报告dc系统

东南大学 热力发电厂课程设计报告 题目:日立250MW机组原则性热力系统设计、计算和改进 能源与环境学院热能与动力工程专业 学号 姓名 指导教师 起讫日期 2015年3月2日~3月13日 设计地点中山院501 2015年3月2日

目录 1 本课程设计任务 (1) 2 ******原则性热力系统的拟定 (2) 3 原则性热力系统原始参数的整理 (2) 4 原则性热力系统的计算 (3) 5 局部热力系统的改进及其计算 (6) 6 小结 (8) 致谢 (9) 参考文献 (9) 附件:原则性热力系统图

一本课程设计任务 1.1 设计题目 日立250MW凝汽机组热力系统及疏水热量(DC系统)利用效果分析。 1.2 计算任务 1、整理机组的参数和假设条件,并拟定出原则性热力系统图。 2、根据给定热力系统数据,计算气态膨胀线上各计算点的参数, 并在h-s 图上绘出蒸汽的气态膨胀线。 3、对原始热力系统计算其机组内效率,并校核。 4、确定原则性热力系统的改进方案,并对改进后的原则性热力系 统计算其机组内效率。 5、将改进后和改进前的系统进行对比分析,并作出结论。 1.3设计任务说明 对日立MW凝汽机组热力系统及疏水热量(DC系统)利用效果分析,我的任务是先在有DC系统情况下通过对抽汽放热量,疏水放热量,给水吸热量等的计算,求出抽汽份额,从而用热量法计算出此情况下的汽机绝对内效率(分别从正平衡和反平衡计算对比,分析误差)。然后再在去除DC系统的情况下再通过以上参量计算出汽轮机绝对内效率(也是正平衡计算,反平衡校核对比)。最后就是对两种情况下的绝对内效率进行对比,看去除DC系统后对效率有无下降,下降多少。

综合课程设计报告

综合课程设计报告

摘要 本报告介绍了一个运用c++设计一个个人的记账软件具体过程。实现了添加、查询、删除、修改等功能。能够大致的记录个人的收入支出情况。 开发背景 个人理财在中国得到大众的认可和金融机构的重视是近几年的事情。人们对个人理财的重视程度,与我过市场经济制度不断完善、资本市场的长足发展、金融产品的日趋丰富以及居民总体收入水平的上升等等是分不开的。可是比起发达国家我们的理财观念还远远不足。 可是理财并不困难,并非非要靠个人理财专业人士的建议才能身体力行。只要了解收支状况、设定财务目标、拟定策略、编列预算、执行预算到分析成果这六大步骤,便能够轻松的达成个人的财务管理。至于要如何预估收入掌握支出进而检讨进则有赖于平日的财务记录,也就是需要一款便于记账的软件。 最近越来越多的人具有记账的习惯。家庭、个人的收入支出结构在日益变化,单纯的靠本子记录收入支出无法满足对于收入支出结构的统计分析,因此以个人用户为目标的记账软件应运而生。相应的各种面向家庭以及个人的理财软件也越来越多。可是众多个人理财软件操作专业,对于个人用户而言功能过于强大,分析

数据用语也不易理解。因此开发一个操作简便、统计结果直观并对个人用户理财有参考价值的记账软件无疑能为广大个人用户提供方便。 总而言之,在不久的将来家庭使用理财软件也将成为国内家庭的必须品。能提供简单明了的功能以及操作的记账软件更是被广泛需要。这种软件也会为提升人们的胜过品质发挥它最大的作用。 技术背景 C语言是国内广泛使用的一种计算机语言,学会使用c语言进行程序设计是计算机工作者的一项基本功。对于我们大学生来说,学习这样一门c程序课程更是有必要。此次课程设计我所采用的环境是vc++,使用基本控制结构,如循环和选择,着重实现管理系统的增删改以及查询等典型的功能。程序设计是一门实践性很强的课程,既要掌握概念又要动手编译,更多的是要上机去调试,虽然初学时很麻烦,可是养成习惯后我相信受益匪浅。 开发环境 Vc++,win7. 设计目标 为了满足用户的需要,本系统将实现以下功能: 记录日常收支情况,查找某天的收支情况,插入忘记的收支功

工程热力学实验报告

水的饱和蒸汽压力和温度关系 实验报告

水的饱和蒸汽压力和温度关系 一、实验目的 1、通过水的饱和蒸汽压力和温度关系实验,加深对饱和状态的理解。 2、通过对实验数据的整理,掌握饱和蒸汽P-t关系图表的编制方法。 3、学会压力表和调压器等仪表的使用方法。 二、实验设备与原理 456 7 1. 开关 2. 可视玻璃 3. 保温棉(硅酸铝) 4. 真空压力表(-0.1~1.5MPa) 5. 测温管 6. 电压指示 7. 温度指示8. 蒸汽发生器9. 电加热器10. 水蒸汽11.蒸馏水12. 调压器 图1 实验系统图 物质由液态转变为蒸汽的过程称为汽化过程。汽化过程总是伴随着分子回到液体中的凝结过程。到一定程度时,虽然汽化和凝结都在进行,但汽化的分子数与凝结的分子数处于动态平衡,这种状态称为饱和态,在这一状态下的温度称为饱和温度。此时蒸汽分子动能和分子总数保持不变,因此压力也确定不变,称为饱和压力。饱和温度和饱和压力的关系一一对应。 二、实验方法与步骤 1、熟悉实验装置及使用仪表的工作原理和性能。 2、将调压器指针调至零位,接通电源。 3、将调压器输出电压调至200V,待蒸汽压力升至一定值时,将电压降至30-50V保温(保温电压需要随蒸汽压力升高而升高),待工况稳定后迅速记录水蒸汽的压力和温度。 4、重复步骤3,在0~4MPa(表压)范围内实验不少于6次,且实验点应尽量分布均匀。 5、实验完毕后,将调压器指针旋回至零位,断开电源。 6、记录室温和大气压力。

四、数据记录 五、实验总结 1. 绘制P-t关系曲线将实验结果绘在坐标纸上,清除偏离点,绘制曲线。

热力发电厂课程设计计算书详解

热力发电厂课程设计

指导老师:连佳 姓名:陈阔 班级:12-1 600MW 凝汽式机组原则性热力系统热经济性计算 计算数据选择为A3,B2,C1 1.整理原始数据的计算点汽水焓值 已知高压缸汽轮机高压缸进汽节流损失:δp 1=4%,中低压连通管压损δp 3=2%, 则 )(MPa 232.232.24)04.01('p 0=?-=; p ’4=(1-0.02)x0.9405=0.92169; 由主蒸汽参数:p 0=24.2MPa ,t 0=566℃,可得h0=3367.6kJ/kg; 由再热蒸汽参数:热段: p rh =3.602MPa ,t rh =556℃, 冷段:p 'rh =4.002MPa ,t 'rh =301.9℃, 可知h rh =3577.6kJ/kg ,h'rh =2966.9kJ/kg ,q rh =610.7kJ/kg 。 1.2编制汽轮机组各计算点的汽水参数(如表4所示)

1.1绘制汽轮机的汽态线,如图2所示。

1.3计算给水泵焓升: 1.假设给水泵加压过程为等熵过程; 2.给水泵入口处水的温度和密度与除氧器的出 口水的温度和密度相等; 3.给水泵入口压力为除氧器出口压力与高度差产生的静压之和。 2.全厂物质平衡计算 已知全厂汽水损失:D l =0.015D b (锅炉蒸发量),锅炉为直流锅炉,无汽包排污。 则计算结果如下表:(表5) 3.计算汽轮机各级回热 抽汽量 假设加热器的效率η=1

(1)高压加热器组的计算 由H1,H2,H3的热平衡求α1,α2,α3 063788.0) 3.11068.3051()10791.1203(111fw 1=--?==ητααq 09067.06 .9044.2967)6.9043.1106(063788.0/1)1.8791079(1h h -212fw 221=--?--?=-=q d w d w )(αηταα154458 .009067.0063788.0212=+=+=αααs 045924 .02.7825.3375) 2.7826.904(154458.0/1)1.7411.879(h h -332s23fw 3=--?--=-=q d d w w )(αηταα200382 .0154458.0045924.02s 33=+=+=αααs (2)除氧器H4的计算 进除氧器的份额为α4’;176 404.0587.43187.6) 587.4782.2(200382.0/1)587.4741.3(h h -453s34fw 4=--?--=-=q w w d )(’αηταα 进小汽机的份额为αt 根据水泵的能量平衡计算小汽机的用汽份额αt

热力发电厂课程设计

1000 MW凝汽式发电机组全厂原则性热力系统的设计 学院:交通学院 专业:热能与动力工程 姓名:高广胜 学号: 1214010004 指导教师:李生山 2015年 12月

1000MW 热力发电厂课程设计任务书 1.2设计原始资料 1.2.1汽轮机形式及参数 机组型式:N1000-26.25/600/600(TC4F ) 超超临界、一次中间再热、四缸四排气、单轴凝汽式、双背压 额定功率:P e =1000MW 主蒸汽参数:P 0=26.25MPa ,t 0=600℃ 高压缸排气:P rh 。i =6.393MPa ,t rh 。I =377.8℃ 再热器及管道阻力损失为高压缸排气压力的8%左右。 MPa 5114.0MPa 393.608.0p rh =?=? 中压缸进气参数:p rh =5.746MPa ,t rh =600℃ 汽轮机排气压力:P c =0.0049MPa 给水温度:t fw =252℃ 给水泵为汽动式,小汽轮机汽源采用第四段抽汽,排气进入主凝汽器;补充水经软化处理后引入主凝汽器。 1.2.2锅炉型式及参数 锅炉型式:HG2953/27.46YM1型变压运行直流燃煤锅炉 过热蒸汽参数:p b =27.56MPa ,t b =605℃ 汽包压力:P drum =15.69MPa 额定蒸发量:D b =2909.03t/h 再热蒸汽出口温度:603t 0 .rh b =℃ 锅炉效率:%8.93b =η 1.2.3回热系统 本热力系统共有八级抽汽,其中第一、二、三级抽汽分别供给三台高压加热器,第五、六、七、八级分别供给四台低压加热器,第四级抽汽作为高压除氧器的气源。七级回热加热器均设置了疏水冷却器,以充分利用本机疏水热量来加热本级主凝结水。三级高压加热器和低压加热器H5分别都设置内置式蒸汽冷却器,为保证安全性三台高压加热器的疏水均采用逐级自流至除氧器,四台低压加热器是疏水逐级自流至凝汽器。 汽轮机的主凝结水经凝结水泵送出,依次流过轴封加热器、四台低压加热器、除氧器,然后由汽动给水泵升压,在经过三级加热器加热,最终给水温度为252℃。 1.2.4其它小汽水流量参数 高压轴封漏气量:0.01D 0,送到除氧器; 中压轴封漏气量:0.003D 0,送到第七级加热器; 低压轴封漏气量:0.0014D 0,送到轴封加热器; 锅炉连续排污量:0.005D b 。 其它数据参考教材或其它同等级汽轮机参数选取。 1.3设计说明书中所包括的内容 1.原则性热力系统的拟定及热力计算; 2.全面性热力系统设计过程中局部热力系统的设计图及其说明; 3.全面性热力系统过程中管道的压力、工质的压力、温度、管道的大小、壁厚的计算; 4.全面性热力系统的总体说明。

哈工大综合课程设计2

哈尔滨工业大学“综合课程设计II”任务书

综合课程设计II 项目总结报告 题目:卧式升降台铣床主传动系统设计 院(系)机电工程学院 专业机械设计制造及其自动化 学生 学号 班号1208108 指导教师 填报日期2015年12月16日 哈尔滨工业大学机电工程学院制 2014年11月

目录1.项目背景分析4 2.研究计划要点与执行情况4 3.项目关键技术的解决4 3.1确定转速系列4 3.2确定结构式4 3.3绘制转速图、传动系统图及核算误差5 4.具体研究内容与技术实现5 4.1确定转速系列5 4.2绘制转速图6 4.3确定变速组齿轮传动副的齿数及定比传动副带轮直径8 4.4绘制传动系统图10 4.5核算主轴转速误差10 4.6传动轴的直径的确定11 4.7齿轮模数的初步计算12 4.8选择带轮传动带型及根数13 5.技术指标分析14 5.1第2扩大组的验证计算14 5.2传动轴2的验算16 5.3主轴组件的静刚度验算18 6.存在的问题与建议21

参考文献22 1.项目背景分析 铣床系指主要用铣刀在工件上加工各种表面的机床。通常铣刀旋转运动为主运动,工件(和)铣刀的移动为进给运动。它可以加工平面、沟槽,也可以加工各种曲面、齿轮等。铣床是用铣刀对工件进行铣削加工的机床。铣床除能铣削平面、沟槽、轮齿、螺纹和花键轴外,还能加工比较复杂的型面,效率较刨床高,在机械制造和修理部门得到广泛应用。 铣床是一种用途广泛的机床,在铣床上可以加工平面(水平面、垂直面)、沟槽(键槽、T 形槽、燕尾槽等)、分齿零件(齿轮、花键轴、链轮、螺旋形表面(螺纹、螺旋槽)及各种曲面。此外,还可用于对回转体表面、内孔加工及进行切断工作等。铣床在工作时,工件装在工作台上或分度头等附件上,铣刀旋转为主运动,辅以工作台或铣头的进给运动,工件即可获得所需的加工表面。由于是多刃断续切削,因而铣床的生产率较高。简单来说,铣床可以对工件进行铣削、钻削和镗孔加工的机床。 2.研究计划要点与执行情况 本设计机床为卧式铣床,其级数12Z =,最小转数 min 28/min n r =,转速公比为 41.1=?,驱动电动机功率 5.5N kW =。主要用于加工钢以及铸铁有色金属;采用高速钢、硬质合金、陶瓷材料做成的刀具。 第一周:准备图版等工具,齿轮和轴的计算完成,进行初步计算并开始画展开草图。 第二周:完成截面草图,验算、加粗。 第三周:撰写项目总结报告。 3.项目关键技术的解决 3.1确定转速系列 根据已知要求的公比,查表得到系统转速系列: 28 40 56 80 112 160 224 315 450 630 900 1250 r/min 3.2确定结构式 13612322=??

工程热力学实验一

工程热力学实验一 二氧化碳临界状态观测及p-v-t关系测定实验 [实验目的] 1、了解CO2临界状态的观测方法,增加对临界状态概念的感性认识。 2、增加对课堂所讲的工质热力状态、凝结、汽化、饱和状态等基本概念的理解。 3、掌握CO2的p-v-t关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧。 4、学会活塞式压力计,恒温器等热工仪器的正确使用方法。 [实验设备及原理] 整个实验装置由压力台、恒温器和实验台本体及其防护罩等三大部分组成(如图一所示)。 图一试验台系统图 试验台本体如图二所示。其中:1—高压容器;2 —玻璃杯;3—压力机;4—水银;5—密封填料;6 —填料压盖;7—恒温水套;8—承压玻璃杯;9—CO2 空间;10—温度计。 对简单可压缩热力系统,当工质处于平衡状态 时,其状态参数p、v、t之间有: F(p,v,t)=0 或t=f(p,v) (1) 本实验就是根据式(1),采用定温方法来测定 CO2的p-v-t关系,从而找出CO2的p-v-t关系。 实验中,压力台油缸送来的压力由压力油传入高 压容器和玻璃杯上半部,迫使水银进入预先装了CO2 气体的承压玻璃管容器,CO2被压缩,其压力通过压 力台上的活塞杆的进、退来调节。温度由恒温器供给 的水套里的水温来调节。 实验工质二氧化碳的压力值,由装在压力台上的 压力表读出。温度由插在恒温水套中的温度计读出。 比容首先由承压玻璃管内二氧化碳柱的高度来测量, 而后再根据承压玻璃管内径截面不变等条件来换算 图二实验台本体 得出。 [实验内容] 1、测定CO2的p-v-t关系。在p-v坐标系中绘出低于临界温度(t=20℃)、临界温度(t=31.1℃)和高于临界温度(t=50℃)的三条等温曲线,并与标准实验曲线及理论计算值相比较,并分析其差异原因。 2、测定CO2在低于临界温度(t=20℃、27℃)饱和温度和饱和压力之间的对应关系,

热力发电厂课程设计计算书

热 力 发 电 厂 课 程 设 计 指导老师:连佳 姓名:陈阔 班级:12-1

600MW 凝汽式机组原则性热力系统热经济性计算 计算数据选择为A3,B2,C1 1.整理原始数据的计算点汽水焓值 已知高压缸汽轮机高压缸进汽节流损失:δp 1=4%,中低压连通管压损δp 3=2%, 则 )(MPa 232.232.24)04.01('p 0=?-=; p ’4=(1-0.02)x0.9405=0.92169; 由主蒸汽参数:p 0=24.2MPa ,t 0=566℃,可得h0=3367.6kJ/kg; 由再热蒸汽参数:热段: p rh =3.602MPa ,t rh =556℃, 冷段:p 'rh =4.002MPa ,t 'rh =301.9℃, 可知h rh =3577.6kJ/kg ,h'rh =2966.9kJ/kg ,q rh =610.7kJ/kg 。 1.2编制汽轮机组各计算点的汽水参数(如表4所示)

1.1绘制汽轮机的汽态线,如图2所示。 1.假设给水泵加压过程为等熵过程; 2.给水泵入口处水的温度和密度与除氧器的出 口水的温度和密度相等; 3.给水泵入口压力为除氧器出口压力与高度差 产生的静压之和。 2.全厂物质平衡计算 已知全厂汽水损失:D l=0.015D b(锅炉蒸发量),锅炉为直流锅炉,无汽包排污。 则计算结果如下表:(表5)

3.计算汽轮机各级回热抽汽量 假设加热器的效率η=1 (1)高压加热器组的计算 由H1,H2,H3的热平衡求α1,α2,α3 063788.0) 3.11068.3051() 10791.1203(111fw 1=--?== ητααq 09067 .06 .9044.2967)6.9043.1106(063788.0/1)1.8791079(1h h -2 12fw 22 1 =--?--?= -= q d w d w )(αηταα154458 .009067.0063788.0212=+=+=αααs 045924 .02 .7825.3375) 2.7826.904(154458.0/1)1.7411.879(h h -3 32s23fw 3=--?--= -= q d d w w )(αηταα200382.0154458.0045924.02s 33=+=+=αααs (2)除氧器H4的计算 进除氧器的份额为α4’; 176 404.0587.4 3187.6) 587.4782.2(200382.0/1)587.4741.3(h h -4 53s34fw 4=--?--= -= q w w d )(’αηταα 进小汽机的份额为 αt 根据水泵的能量平衡计算小汽机的用汽份额αt 1 .31)(4t =-pu mx t h h ηηα 即 056938 .09 .099.0)8.25716.3187(1 .31=??-=t α 0.1011140.0569380.044173t 44=+=+=ααα’ 根据除氧器的物质平衡,求αc4 αc4+α’4+αs3=αfw 则αc4=1-α’4-αs3=0.755442 表6 小汽机参数表

哈工大综合课程设计:卧式升降台铣床

机械制造装备课程设计项目总结报告题目:工作台面积320×1250mm2 卧式升降台铣 床主传动系统设计 院(系)机电工程学院 专业机械设计制造及其自动化 学生 学号 班号 指导教师韩振宇 填报日期2014年12月10 哈尔滨工业大学机电工程学院制

2014年4月 哈尔滨工业大学机械制造装备课程设计任务书

目录1.项目背景分析 1.1. 综合课程设计II的目的 1.2. 金属切削机床在国内外发展趋势 2. 研究计划要点与执行情况 2.1. 设计任务 2.2. 进度安排 3. 项目关键技术的解决 4. 具体研究内容与技术实现 4.1.机床的规格及用途 4.2.运动设计 1.确定极限转速: 2.确定结构网或结构式: 3.绘制转速图: 4.绘制传动系统图 1)确定变速组齿轮传动副的齿数 2)核算主轴转速误差 4.3.动力设计 1.传动件的计算转速 2.传动轴直径初定 3.主轴轴颈直径的确定 4.齿轮模数的初步计算 4.4.结构设计 4.5.零件的验算 1直齿圆柱齿轮的应力计算 2齿轮精度的确定 3传动轴的弯曲刚度验算 4主轴主件静刚度验算 5. 存在的问题与分析 6. 技术指标分析 参考文献

1. 项目背景分析 1.1.综合课程设计II的目的 机床课程设计,是在金属切削机床课程之后进行的实践性教学环节。其目的在于通过机床主运动机械变速传动系统的结构设计,使学生在拟定传送和变速的结构方案中,得到设计构思、方案分析、结构工艺性、机械制图、零件计算、编写技术文件和查阅技术资料等方面的综合训练,树立正确的设计思想,掌握基本的设计方法,并培养学生具有初步的结构分析、结构设计和计算能力。 1.2.金属切削机床在国内外发展趋势 机床作为加工的母机,总是要保证和提高加工质量和生产率,随着科技的不断进步,各种机床也相应地不断发展与更新,如性能参数的提高、功能的扩大、切削功率的加大,自动化程度的提高,机床动态性能的不断改善,加工精度的不断提高,基础元件的不断创新,控制系统的更新等等。 我国机床工业的发展趋势:根据机床工具工业局对振兴我国机床工业的设想,要在以后相当长时期内限制和压缩落后机床的生产,要化大力气发展高性能、高效率、高水平的适合国民经济需要的“高档”产品,改善机床品种的构成比。重点发展机、电、仪结合的产品。注意在冲压、电加工、激光、等离子加工中应用数控技术。 国外机床工业的发展,特别讲究机床的精度、效率,讲究机床制造工艺技术水平,试验分析与理论研究。从七十年代以来,国外已普遍推广使用数控机床。日本和美国已建成柔性自动化生产车间和柔性自动化工厂,整个机床制造的技术水平和自动检测控制技术已有大幅度提高。 2. 研究计划要点与执行情况 2.1.设计任务 机械制造及其自动化专业的“综合课程设计II”,是以车床和铣床主传动系统

【建筑工程管理】工程热力学实验指导书

《工程热力学》实验指导书 喷管特性实验 一、实验目的 1、验证并进一步加深对喷管中气流基本规律的理解,树立临界压力、临界流速和最大流量等喷管临界参数的概念; 2、比较熟练地掌握用热工仪表测量压力(负压)、压差及流量的方法; 3、明确在渐缩喷管中,其出口处的压力不可能低于临界压力,流速不可能高于音速,流量不可能大于最大流量。 二、实验装置 喷管实验台 1.进气管 2.空气吸气口 3.孔板流量计 4.U形管压差计 5.喷管 6.支架 7.测压探压针 8.可移动真空表 9.手轮螺杆机构10.背压真空表11.背压用调节阀12.真空罐13.软管接头 渐缩喷管 三、实验原理 1、喷管中气流的基本规律

,来流速度,喷管为渐缩喷管. 2、气流动的临界概念 当某一截面的流速达到当地音速(亦称临界速度)时,该截面上的压力称为临界压力()。临界压力与喷管初压()之比称为临界压力比,有: 当渐缩喷管出口处气流速度达到音速,通过喷管的气体流量便达到了最大值(),或称为临界流量。可由下式确定: 式中:—最小截面积(本实验台的最小截面积为:19.625 mm2)。 3、气体在喷管中的流动 渐缩喷管因受几何条件的限制,气体流速只能等于或低于音速();出口截面的压力只能高于或等于临界压力();通过喷管的流量只能等于或小于最大流量()。根据不同的背压(),渐缩喷管可分为三种工况: A—亚临界工况(),此时m<, B—临界工况(),此时m=, C—超临界工况(),此时m, 四、操作步骤

1、用“坐标校准器”调好“位移坐标板”的基准位置; 2、打开罐前的调节阀,将真空泵的飞轮盘车一至二圈。一切正常后,全开罐后调节阀,打开冷却水阀门。而后启动真空泵; 3、测量轴向压力分布:用罐前调节阀调节背压至一定值(见真空表读数),并记录;然后转动手轮,使测压探针向出口方向移动。每移动5mm便停顿下来,记录该点的位置及相应的压力值,一直测至喷管出口之外; 4、流量的测量:把测压探针的引压孔移至出口截面之外,打开罐后调节阀,关闭罐前调节阀,启动真空泵,然后用罐前调节阀调节背压,每次改变50mmHg柱,稳定后记录背压值和U形管差压计的读数。当背压升高到某一值时,U形管差压计的液柱便不再变化(即流量达到了最大值),此后尽管不断提高背压,但U形管差压计的液柱仍保持不变; 5、打开罐前调节阀,关闭罐后调节阀,让真空罐充气;3分钟后停真空泵并立即打开罐后调节阀,让真空泵充气(目的是防止回油),最后关闭冷却水阀门。

热力发电厂课程设计样本

热力发电厂 课程设计计算书 题目: 600MW凝汽式机组全厂原则性热力系统计算 专业: 火电厂集控运行 班级: 火电062班 学号: 姓名: 王军定 指导教师: 周振起 目录

1.本课程设计的目的..................... 错误!未定义书签。 2.计算任务............................. 错误!未定义书签。 3.计算原始资料......................... 错误!未定义书签。 4.计算过程............................. 错误!未定义书签。 4.1全厂热力系统辅助性计算........... 错误!未定义书签。 4.2原始数据整理及汽态线绘制......... 错误!未定义书签。 4.3全厂汽水平衡..................... 错误!未定义书签。 4.4各回热抽汽量计算及汇总........... 错误!未定义书签。 4.5汽轮机排汽量计算与校核........... 错误!未定义书签。 4.6汽轮机汽耗量计算................. 错误!未定义书签。 5.热经济指标计算....................... 错误!未定义书签。 5.1.汽轮机发电机组热经济性指标计算 .. 错误!未定义书签。 5.2.全厂热经济指标计算.............. 错误!未定义书签。 6.反平衡校核........................... 错误!未定义书签。 7.参考文献............................. 错误!未定义书签。

《综合课程设计》教学大纲

《综合课程设计》教学大纲 课程名称:综合课程设计 英文名称:Integrated Course Project for Communication Systems 总学时:3周,理论学时:实验学时:学分:3 先修课程要求: 电路分析、模拟电子技术、数字电子技术、高频电子线路、通信原理、FPGA原理与应用、Matlab与通信仿真技术、微机原理与接口技术、单片机技术及应用、计算机网络等 适用专业:通信工程 教学参考书: 樊昌信等编,《通信原理(第六版)》,国防工业出版社,2006年 马淑华等编,《单片机原理及应用》,北京航空航天大学出版社,第1版 褚振勇等编,《FPGA原理与应用》,西安电子科技大学出版社,第2版 谢希仁等编,《计算机网络》,电子工业出版社,第4版 1课程设计在培养方案中的地位、目的和任务 《综合课程设计》是配合本科通信工程专业的专业基础课程《通信原理》、《FPGA原理与应用》、《Matlab与通信仿真分析》、《单片机技术及应用》、《计算机网络》而开设的重要专业实践环节。目的是培养学生科学理论结合实际工程的能力,通过该课程设计,要求学生在掌握通信基本理论的基础上,运用Matlab、FPGA、NS-2等工具对通信子系统或计算机网络进行仿真与设计,并计算基本性能指标,从而提高学生的综合设计实践能力。 另一方面,也可通过课程设计使学生深入理解单片机的基本原理,硬件结构和工作原理。 掌握程序的编制方法和程序调试的方法,掌握常用接口的设计及使用。掌握一般接口的扩展 方法及接口的调试过程。为学生将来在通信工程、电子信息工程、测试计量技术及仪器、电 子科学与技术及其它领域应用单片机技术打下良好基础及应用实践能力。 2 课程设计的基本要求 1. 学习基本设计方法;加深对课堂知识的理解和应用。 2. 完成指定的设计任务和实验任务,理论联系实际,实现书本知识到工程实践的过渡。 3. 学会设计报告的撰写方法。 3 课程设计的内容 1. 无线收发信机部件设计

相关文档
最新文档