聚碳硅烷可纺性与纺丝工艺探讨

合集下载

Si(Al)C纤维先驱体聚铝碳硅烷的合成

Si(Al)C纤维先驱体聚铝碳硅烷的合成

Si(Al)C纤维先驱体聚铝碳硅烷的合成袁钦;宋永才【摘要】采用低分子量固态聚碳硅烷和乙酰丙酮铝为原料,利用Si-H与乙酰丙酮铝之间的交联反应合成适于熔融纺丝的聚铝碳硅烷.研究了反应条件对产物数均分子量、软化点和组成结构的影响及交联反应程度与可纺性之间的关系.实验结果表明:随着反应温度的升高和反应时间的延长,反应程度提高,残余乙酰丙酮基减少,Si-O-Al交联支化结构增多,分子量和软化点增大,可纺性随之下降.当乙酰丙酮铝投料比为8 %时,在370 ℃下反应4~6 h,可得到软化点为206~221 ℃,Al wt%=0.68%,具有良好可纺性的聚铝碳硅烷.%A melt-spinnable polyaluminocarbosilane was synthesized via the crosslink reaction between Si-H and acetylacetone aluminum(Ⅲ) by using low-molecular-weight solid polycarbosilane and acetylacetone aluminum(Ⅲ) as starting materi als.The effects of reaction conditions on the number-average molecular weight, softening point and structure of polyaluminocarbosilane were investigated, and the relationship between the extent of crosslink reaction to the spinnability of polyaluminocarbosilane was also discussed.It was found that elevating the reaction temperature or prolonging reaction time would lead to an enhanced extent of reaction, a gradually decreased acetylacetonate and an increased crosslinked structure of Si-O-Al, resulting in poorer spinnabilty.Polyaluminocarbosilane with softening point of 206~221 ℃, Al wt%=0.68% and good spinnability was successful synthesized at the optimized reaction conditions of the temperature at 370 ℃, the reaction time at 4~6 h and the mass ratio of acet ylacetone aluminum(Ⅲ) at 8 wt%.【期刊名称】《国防科技大学学报》【年(卷),期】2017(039)001【总页数】7页(P182-188)【关键词】聚铝碳硅烷;SiC纤维;交联反应;可纺性【作者】袁钦;宋永才【作者单位】国防科技大学新型陶瓷纤维及其复合材料重点实验室, 湖南长沙410073;国防科技大学新型陶瓷纤维及其复合材料重点实验室, 湖南长沙 410073【正文语种】中文【中图分类】O631先驱体聚合物转化法利用有机高分子聚合物易于成型加工的优点,可以制得一般传统陶瓷材料制备方法所难以制备的低维陶瓷材料,如陶瓷纤维和薄膜等[1-5]。

一种液态聚碳硅烷的制备方法[发明专利]

一种液态聚碳硅烷的制备方法[发明专利]

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201811249949.X(22)申请日 2018.10.25(71)申请人 航天材料及工艺研究所地址 100076 北京市丰台区南大红门路1号申请人 中国运载火箭技术研究院(72)发明人 冯志海 胡继东 陶孟 李媛 田跃龙 许艺芬 (74)专利代理机构 中国航天科技专利中心11009代理人 张丽娜(51)Int.Cl.C08G 77/60(2006.01)(54)发明名称一种液态聚碳硅烷的制备方法(57)摘要本发明涉及一种液态聚碳硅烷的制备方法,采用六甲基二硅氮烷与氯甲基三氯硅烷进行部分氨解,再与不饱和氯烷烃与氯甲基氯硅烷一起进行格式偶联反应,反应完全之后加入一定量的NaBH 4(硼氢化钠)还原剂进行还原,所得物料加入石油醚、去离子水和浓盐酸进行酸洗、萃取,所得石油醚溶液采用NaOH进行干燥,过滤后将石油醚采用减压蒸馏的方法蒸出,得到的淡黄色粘稠液体即为液态聚碳硅烷。

制备的液态聚碳硅烷流动性好,具有良好的加工性能,可直接进行热聚合,陶瓷产率在70%以上。

陶瓷中自由碳含量低,SiC陶瓷相纯度高,适于作为高性能SiC陶瓷前驱体,可用于超高温陶瓷基复合材料浸渍基体,亦可用于SiC陶瓷涂层、纤维等高性能材料的制备。

权利要求书1页 说明书4页 附图2页CN 109485857 A 2019.03.19C N 109485857A1.一种液态聚碳硅烷的制备方法,其特征在于该方法的步骤包括:(1)将氯甲基三氯硅烷和六甲基二硅氮烷进行混合,并搅拌均匀后升温至40~55℃,然后搅拌并反应2~20小时,得到物料;(2)将镁屑加入净化干燥的四氢呋喃中,得到混合物;(3)将不饱和氯烷烃和四氢呋喃进行混合,得到溶液;(4)将步骤(1)得到的物料、步骤(3)得到的溶液加入到步骤(2)得到的混合物中,并搅拌均匀;(5)将氯甲基氯硅烷的四氢呋喃溶液加入到步骤(4)得到的体系中;(6)在步骤(5)得到的体系中加入硼氢化钠,并搅拌进行反应;(7)在步骤(6)得到的体系中加入石油醚、去离子水和浓盐酸,反应温度低于0℃,充分搅拌下0.5-5小时,静置0.5-20小时,分相,取上层有机相干燥并旋蒸得液态聚碳硅烷。

含氰基聚碳硅烷的合成及影响因素研究

含氰基聚碳硅烷的合成及影响因素研究

含氰基聚碳硅烷的合成及影响因素研究
谢富成;陈豆;莫高明;何流;黄庆
【期刊名称】《陶瓷学报》
【年(卷),期】2024(45)1
【摘要】聚碳硅烷(PCS)是碳化硅(SiC)纤维和陶瓷的重要先驱体之一。

以PCS作
为先驱体制备SiC纤维和陶瓷时,通常存在陶瓷产率低的问题,进而影响最终产品质量。

利用含铑催化剂以及偶氮二异丁腈,使通常不易进行硅氢化反应的丙烯腈和PCS发生反应,将氰基引入PCS分子中,合成出新型含氰基聚碳硅烷(PCSCN)先驱体。

与PCS相比,以含铑催化剂合成的PCSCN的陶瓷产率可大幅提高至80%以上。

用红外、核磁分析了PCSCN的分子结构,结果表明两种催化剂引发的硅氢化反应均
是以α加成方式为主。

此外,以含铑催化剂催化硅氢化反应时,反应程度初期随着反应时间延长、反应温度升高而加深,但反应5 h后或60℃以上基本不变;增加丙烯腈的量有利于增加反应程度,从而引入较多的氰基,但增加幅度不明显。

【总页数】8页(P109-116)
【作者】谢富成;陈豆;莫高明;何流;黄庆
【作者单位】中国科学院宁波材料技术与工程研究所先进能源材料工程实验室;浙
江工业大学化学工程学院
【正文语种】中文
【中图分类】TQ174.75
【相关文献】
1.含铍聚碳硅烷的合成机理研究∗
2.含乙烯基的聚碳硅烷的合成
3.二乙烯基苯/聚二甲基硅烷改良聚碳硅烷合成工艺的研究
4.反应温度对聚二甲基硅烷高压合成聚碳硅烷性能的影响
5.反应温度对液态聚硅烷高压合成聚碳硅烷性能的影响
因版权原因,仅展示原文概要,查看原文内容请购买。

聚碳硅烷表面张力的测定及其对纤维异形度的影响机理

聚碳硅烷表面张力的测定及其对纤维异形度的影响机理

国防科技大学学报第26卷第4期JOURNAL OF NA TIONAL UNIVERSITY OF DEFENSE TECHNOLO Y Vol.26No.42004文章编号:1001-2486(2004)04-0068-04聚碳硅烷表面张力的测定及其对纤维异形度的影响机理!薛金根,肖加余,王应德,蓝新艳(国防科技大学航天与材料工程学院,湖南长沙410073)摘要:采用改进的滴重法测定了先驱体聚碳硅烷(PCS)的表面张力,并探讨了表面张力对三叶形聚碳硅烷原丝异形度的影响机理。

通过对纤维截面形貌的扫描电镜分析,发现表面张力对三叶形PCS纤维异形截面的形成有着较大的影响,它和粘滞阻力相互竞争的共同作用决定了三叶形PCS纤维异形度的大小。

研究表明,先驱体PCS的表面张力与温度基本上呈线性关系,温度越高,PCS的表面张力就越小。

关键词:聚碳硅烷;表面张力;纤维;异形度中图分类号:TO343文献标识码:AMeasurement of the Surface Tension of Polycarbosilane and the Influence Mechanism on the Profile Degree of PCS FiberXUE Jin-gen,XIAO Jia-yu,WAN Ying-de,LAN Xin-yan(College of Aerospace and Material Engineering,National Univ.of Defense Technology,Changsha410073,China)Abstract:By the improved suspending drop instrument,the surface tension of precursor polycarbosilane(PCS)is measured besides the influence mechanism of surface tension on the profile-degree of trilobal section PCS fiber is discussed.Through research by SEM,we discovered that the surface tension influences greatly on the formation of the profile-degree of trilobal section PCS fiber,the competitive action between it and the agglutination resistance decides the size of the profile-degree of trilobal section PCS fiber.We also discovered that the relation between the surface tension of PCS and the temperature is basically linear.The higher the temperature,the smaller the surface tension of PCS.Key words:polycarbosilane;surface tension;fiber;profile-degree先驱体聚碳硅烷(Polycarbosilane,PCS)是制备SiC纤维的主要原料,它是由硅-碳-氢等元素形成的高分子量、多支链的有机硅聚合物[1]。

聚铝碳硅烷的流变性和纺丝性研究

聚铝碳硅烷的流变性和纺丝性研究

武 器必备 的关键材 料之一 。SC纤维 一般 由聚碳 硅烷 (o croin,C ) 先驱 体 转化 法 制备 。但 由 i Pl a saeP S用 y b l 此制 备 的 S 纤 维 在 温 度 高 于 10 ̄ 时 ,纤 维 性 能 就 会 急 剧 下 降 幢。 而 聚 铝 碳 硅 烷 ioh erel ysi aiy S br;i( 1 b r e od :o a mn abs m ; o g;p nbi ;i f e S A ) e y l o i h o n l t Ci s C i f s
连续 SC纤维 广泛 应用于航 空航天 、 i 武器系统 和核工 业 等领 域 …, 我 国航 空航 天 以及 高科技 战 略 是
Z A a ̄l , N H ih H i -a L Xa-og H OD - g WA G a ze, UTa jo ,I i dn1 I . ni o
( .Clg e ̄ aeadM trl nier g a o dU i. f e neTcnl y cl1 140 7 ,Ota 1 oeeo t pc n a i g en ,N tm nv o D f s eho g , }I a 103 l fA t eaE n i i e o a铲l i; n 2 D pr et SaeEup et h cdm E u m n o madadTcnl y eig111 ,Cia . eat n o pc qim n,t m f eA ae yo q i et m n n ehoo ,Bin 046 hn ) f p C g j
关 键 词 : 铝 碳 硅 烷 ; 性 能 ; 丝 性 能 ;i 维 ;i( O纤 维 聚 流变 纺 S C纤 SC A 中 图分 类 号 :Q 4 T 33 文 献标 识 码 : A

沉淀分级法调制纺丝级高熔点聚碳硅烷

沉淀分级法调制纺丝级高熔点聚碳硅烷

沉淀分级法调制纺丝级高熔点聚碳硅烷
楚增勇;刘辉;冯春祥;王应德;薛金根;宋永才;邹治春
【期刊名称】《国防科技大学学报》
【年(卷),期】2002(024)001
【摘要】作为碳化硅纤维先驱体的聚碳硅烷应当具有较高的熔点与良好的可纺性,但是提高熔点对合成条件提出了苛刻要求.为了解决这一矛盾,首先通过沉淀分级获得了高熔点(>280℃)的聚碳硅烷组分,然后再加入10-30wt%低熔点组分来调节其纺丝性能,成功地调制出了高熔点(>250℃)、具有良好纺丝性的聚碳硅烷先驱体.【总页数】5页(P39-43)
【作者】楚增勇;刘辉;冯春祥;王应德;薛金根;宋永才;邹治春
【作者单位】国防科技大学航天与材料工程学院,湖南,长沙,410073;国防科技大学航天与材料工程学院,湖南,长沙,410073;国防科技大学航天与材料工程学院,湖南,长沙,410073;国防科技大学航天与材料工程学院,湖南,长沙,410073;国防科技大学航天与材料工程学院,湖南,长沙,410073;国防科技大学航天与材料工程学院,湖南,长沙,410073;国防科技大学航天与材料工程学院,湖南,长沙,410073
【正文语种】中文
【中图分类】TQ314
【相关文献】
1.熔融纺丝态下聚碳硅烷的流变特性 [J], 蓝新艳;王应德;薛金根;王鲁
2.高熔点聚碳硅烷的合成及其裂解机理的研究 [J], 范小林;冯春祥;宋永才;李效东
3.具有优异纺丝性的陶瓷先驱体含铝聚碳硅烷的合成及表征 [J], 杨大祥;宋永才
4.干法纺丝制备聚碳硅烷纤维中残留溶剂含量的影响因素 [J], 赵征;王应德;薛金根;俞昊
5.胡敏酸的酒精分级沉淀法分级 [J], 卓苏能;文启孝
因版权原因,仅展示原文概要,查看原文内容请购买。

聚碳硅烷的生产工艺

聚碳硅烷的生产工艺

聚碳硅烷的生产工艺
聚碳硅烷是一种高分子有机硅化合物,由碳硅键和碳碳键构成。

其生产工艺可以分为以下几个步骤:
1. 原料准备:聚碳硅烷的主要原料是硅烷和烷基化合物。

硅烷可以通过硅矿石经过提纯和氢化得到,烷基化合物则可以通过石油化工过程中的裂解产物或石油副产品得到。

2. 硅烷的氢化:硅烷在氢气的存在下进行氢化反应,将硅烷中的硅-氢键转化为碳-氢键。

这一步骤可采用热浸法、电解法、
化学气相沉积法等不同的方法。

3. 硅烷的烷基化:烷基化是将氢化后的硅烷与烷基化合物反应,形成具有碳-硅键和碳-碳键的聚碳硅烷。

烷基化反应可以通过
催化剂催化进行,常用的催化剂包括贵金属催化剂、过渡金属催化剂等。

4. 聚合反应:聚碳硅烷的产物可以进行进一步的聚合反应,增加聚合度和改善其性能。

常见的聚合反应包括自由基聚合、阴离子聚合等。

5. 分离和纯化:聚碳硅烷的产物经过反应后,需要进行分离和纯化。

常见的方法包括渗透膜分离、溶剂萃取、蒸馏等。

通过这些方法可以得到纯度较高的聚碳硅烷。

6. 加工和成型:最后,聚碳硅烷可以通过挤出、注塑、压延等加工方法进行成型,制备成所需的产品。

总之,聚碳硅烷的生产工艺主要包括原料准备、硅烷的氢化和烷基化、聚合反应、分离和纯化、加工和成型等步骤。

这些步骤的选择和操作条件可以根据实际需要进行调整,以得到满足产品要求的聚碳硅烷。

静电纺聚碳硅烷制备SiOC超细纤维

静电纺聚碳硅烷制备SiOC超细纤维

静电纺聚碳硅烷制备SiOC超细纤维吴楠;WAN Lynn Yuqin;王应德;FRANK KO【摘要】以聚碳硅烷(PCS)为先驱体, 采用静电纺丝法和先驱体转化法制备SiOC 超细纤维, 研究PCS溶液浓度和表面活性剂对纤维形貌和直径的影响.实验结果表明: 添加表面活性剂后, 纤维分布均匀, 串珠现象消失; 通过调节溶液中PCS比例, 纤维直径分布范围为500~900 nm.力学性能测试表明SiOC纤维毡的抗拉强度可达8.88 MPa.SiOC超细纤维毡也展现出优异的热稳定性和抗化学腐蚀性能, 在苛刻环境中可以作为催化剂载体和过滤材料使用.%Siliconoxycarbide(SiOC)ultrafine fibers with uniform distribution were prepared via electrospinning of polycarbosilane (PCS)/polystyrene followed by oxidation and pyrolysis at 1100℃. The diameter of SiOC fibers ranged from 500 to 900 nm through adjusting PCS concentration. The average tensile strength of SiOC fiber mat was 8.88 MPa. The obtained SiOC fibers also displayed outstanding thermal stability and chemical resistance, making them promising materials as smart filters and catalyst supports in harsh environment.【期刊名称】《无机材料学报》【年(卷),期】2018(033)003【总页数】6页(P357-362)【关键词】静电纺丝;聚碳硅烷;硅氧碳;陶瓷纤维【作者】吴楠;WAN Lynn Yuqin;王应德;FRANK KO【作者单位】国防科技大学新型陶瓷纤维及其复合材料重点实验室,长沙 410073;不列颠哥伦比亚大学材料工程系,温哥华 V6T 1Z4;不列颠哥伦比亚大学材料工程系,温哥华 V6T 1Z4;国防科技大学新型陶瓷纤维及其复合材料重点实验室,长沙410073;不列颠哥伦比亚大学材料工程系,温哥华 V6T 1Z4【正文语种】中文【中图分类】TQ174Owing to the excellent high-temperature resistance and mechanical properties, silicon-based ceramic fibers have been widely applied in aerospace and nuclear energy fields[1]. Particularly, ultrafine SiC or SiOC fibers have received much more attention due to their high surface-to-volume ratio, which demonstrated potential applications as catalyst supports[2], filtration device[3], and composite membrane[4].Among various chemical and physical synthesis methods, electrospinning is considered as a simple and versatile method for production of continuous ceramic micro/nanofibers in large scale[5]. Recently, we have successfully fabricated hierarchically porous SiC microfibers[6] andZrO2/SiC gradient fibers[7] using electrospinning combined with polymer derived ceramic (PDC) techniques. PDC route is a prominent method for the fabrication of silicon-based ceramic materials, especially for the fiber and layer forms, which is a challenge to the traditional powder technology[8].Polycarbosilane (PCS) known as the most common precursor polymer for the synthesis of silicon-based ceramic fibers since invented by Yajima[9].However, the fabrication of SiOC ultrafine fibers with uniform distribution d iameter below 1 μm through electrospinning of PCS is rarely reported due to the low molecular weight of PCS with large amounts of branched chains, which requires a high mass ratio of about 60% in aprotic solvent for electrospinning. Though the Si(O)C nanofibers have been fabricated by core-shell electrospinning[10-11], the complicated process and inhomogeneous fiber morphology greatly limited their large-scale production and application.Herein, we prepared beads-free SiOC fibers by electrospinning of PCS droplets entrapped with the polystyrene (PS) solution followed by oxidation and high-tem­perature pyrolysis. The diameter of the obtained fibers ranges from 500 nm to 900 nm through adjusting PCS concentration in the solution. The thermal stability, erosion resistance and mechanical strength of fiber mat were also investigated in this work.Polystyrene (PS, Mn=1,928,000, Scientific polymer production INC), polycarbosilane (PCS, prepared in CFC, National University of Defense Technology), Sodium dodecyl sulfate (SDS, MP Biomedicals), xylene (Fisher scientific) and dimethylformamide (DMF, Anachemia) were used without purification.In a typical process, 3wt% PS was dissolved into the mixed solvent of xylene and DMF. Then, PCS and SDS were added to the PS solution and stirred at room temperature for 12 h until a transparent solution was obtained. Electrospinning was conducted by a Drum Electrospinning Unit (Kato Tech Inc., Japan). The precursor solution was transferred into a 10 mlsyringe with a constant flow rate of 0.8 mL/h. A high voltage of 11-13 kV was applied between the metal needle and the grounded drum. The relative humidity was controlled at 25%-30%. After electrospinning, the as-spun fiber membrane was stabilized at 210℃ for 2 h at a ramp rate of1℃/min. Calcination was done at 1100℃ for 2 h under Ar atmosphere. The final SiOC-x is named after the weight concentration of PCS. The concentration of PCS in the spinning solution of SiOC-9, SiOC-15 and SiOC-21 are 9wt%, 15wt% and 21wt%, respectively.The morphology of fibers was studied by scanning electron microscopy (SEM, Hitachi S-3000, Japan). The average diameter of the ultrafine fibers was obtained through analyzing about 150 fibers by ImageJ software. X-ray diffraction (XRD) patterns were collected i n the range of 10°-80° using Rigaku multiflex diffractometer. X-ray photoelectron spectroscopy (XPS) was carried out on a Thermo Scientific Escalab 250Xi machine. Thermal gravimetric analysis (TGA) was operated on TGA Q500 instrument in air at a ramping ra te of 10 ℃/min. The tensile strength of the fiber mats were tested on a Kawabata KES-G1 microtensile tester as described in the previous paper[12]. The results of the experiment were expressed in load (gram force) vs. displacement. The specific stress in g/Tex was then calculated using the following equation:Then the specific stress in g/Tex was converted to engineering stress by the equation below:The strain was calculated by dividing the displacement by the gauge length.In this study, high-molecular weight PS was introduced into the spinning solution to decrease the required PCS concentration for electrospinningand facilitate the electrospinning process. Previous study showed that low molecular weight polymer with dilute concentration can be electrospun in emulsion phase[13]. Surfactant is of vital important for emulsion electrospinning, which can decrease the surface tension and improve the dispersion uniformity of the micelles in the matrix solution[14]. SDS was chosen as the surfactant to facilitate the electrospinning process in this work. Figure 1(a) shows beaded fibers were obtained from the solution without SDS. The presence of beads in the fibers usually weakens the mechanical properties of fiber mats. Addition of 1wt% SDS eliminated the formation of beads, as shown in Fig. 1(b). This implied that the addition of SDS lowered the surface tension and enhanced the rheological property, further improved the uniformity of the resultant fibers. As can be seenfrom Fig. 1(b), the as-spun fibers had a wrinkled skin which was a consequence of the rapid evaporation of solvent in the low humidity environment (30% relative humidity)[15]. The diameter of as-spun SiOC-15 fibers was measured to be (900±300) nm. The fiber diameter decreased slightly to (820±320) nm after stabilization process while the surface became smoother due to the shrinkage (Fig. 1(c)). After pyrolyzed at 1100℃ in argon, the diameter of SiOC-15 further decreased to (630±125) nm and the fiber mat shrinked about 24.4% compared to pre-oxidized mat (the fiber mat area changed from 21.1 to 16 cm2, Fig. 1(d)).The viscosity of solution plays an important role in determining thediameter of obtained fibers. High vis­cosity increases the relaxation time and hinders the elongation of the ejected jets, resulting in larger fiber diameter[16]. Here, the effects of the concentration of PCS in the solution on SiOC fiber diameter we investigated. SEM images revealed the corresponding morphology of the fibers as shown in Fig. 2. All the three fibers are free of beads and uniform with wrinkled surface after pyrolysis. The wrinkled surface of SiOC fibers suggests that the fibers have potential applications as catalyst carriers with increased number of active anchors for catalysts. The diameter distribution for SiOC-9, SiOC-15 and SiOC-21 was summarized in the insets of Fig. 2. As expected, the average diameter of SiOC fiber decreased from 875 nm to 505 nm as the PCS concentration decreased from 21wt% to 9wt%. The elemental composition of different SiOC fibers was analyzed by EDS. Ignoring the small contents of sodium, sulfur and gold, the atomic proportion of SiOC-9 was found to be about 16.3% Si, 30.1% O and 53.6% C. The SiOC ceramics with high carbon content possessed better mechanical properties with improved creep and oxidation resistance[17].The chemical status of the existed elements was analyzed by XPS, as shown in Fig. 3. XPS survey scan indicates the presence of sodium, oxygen, carbon and silicon (Fig. 3(a)). The small content of sodium (2.5%) came from the addition of SDS. In the C1s spectrum of SiOC-15, a noticeable characteristic peak for C-C bond at 284.6 eV was observed, suggesting the existence of free carbon in the carbonized fibers. A peak at around 284.0 eV characterizing SiOxCy was also detected. The Si2p spectrum in Fig. 3(c)proved the existence of SiO2(103.5 eV), SiO3C (102.9 eV), SiO2C2 (102.4 eV) and SiOC3 (101.6 eV) on the surface of fibers[18]. As shown in Fig. 3(d), the peak for SiOxCy at 532.4 eV was also found in the O1s spectrum. All the above results demonstrated that the obtained SiOC fiber surface was mainly composed of free carbon and SiOxCy phase.Typical stress-strain tensile properties of the SiOC fiber mats are shown in Fig. 4. The average tensile strength for SiOC-9, SiOC-15 and SiOC-21 is0.45 MPa, 2.24 MPa and 8.88 MPa, respectively. Wan et al. have showed that low fiber packing density (high porosity) of nonwoven mats will decrease the mechanical strength of the mats[19]. The low porosity and high bulk density contribute mostly to the relatively higher tensile strength of SiOC-21. SiOC-15 demonstrated a platform-ladder like broken model which was different from SiOC-9 and SiOC-21. This was attributed to the existence of laminar fracture in the mat, as confirmed by SEM (on the right of Fig. 4). Besides, a pseudo-yield point was observed in SiOC-15 curve, caused by the fiber slippage[12].Thermal stability and erosion resistance are important for the future practical applications of SiOC fibers in harsh environment. The thermal stability of samples was investigated with TGA by treating the samples at high-temperature in air. Figure 5(a) shows the TGA curve of SiOC-15. The residual weight slightly increased when the treatment temperature went above 500℃ as SiOC phase was conver ted into SiO2. The morphology of SiOC-15 fibers displayed no change after 1h treating in air at 500℃ (inset of Fig. 5(a)), suggesting an excellent thermal stability of the SiOC ultrafinefibers at high temperature. The erosion experiment showed that the SiOC fibers maintained their integral features after treated in hot H2SO4 and KOH solution (Fig. 5(b) and (c)). XRD patterns in Fig. 5(d) confirmed that there is no phase transformation after the harsh treatments. The good thermal stability and erosion resistance indicated potential applications of the SiOC ultrafine fibers as catalyst supports and filters in harsh environment.In conclusion, SiOC fibers with average diameter of 500 nm to 875 nm were successfully prepared by electro- spinning of different concentration PCS/PS solution, followed by pre-oxidation and pyrolysis. The SiOC fibers display enhanced thermal stability at 500℃ in air and excellent chemical resistance. These outstanding properties of obtained SiOC fiber mats make them promising candidates for filters and catalyst supports in harsh environment.【相关文献】[1] YUAN Q, SONG Y. Research and development of continous SiC fiber and SiCf/SiC composites. Journal of Inorganic Materials, 2016, 31(11): 1157–1165.[2] Hojamberdiev M, Prasad R M, Morita K, et al. Polymer-derived mesoporous SiOC/ZnO nanocomposite for the purification of water contaminated with organic dyes. Microporous and Mesoporous Materials, 2012, 151: 330–338.[3] Vanhaecke E, Ivanova S, Deneuve A, et al. 1D SiC decoration of SiC macroscopic shapes for filtration devices. Journal of Materials Chemistry, 2008, 18: 4654–4662.[4] Kim T E, Juon S M, Park J H, et al. Silicon carbide fiber-reinforced composite membrane for high-temperature and low-humidity polymer exchange membrane fuel cells. International Journal of Hydrogen Energy, 2014, 39(29): 16474–16485.[5] Wu N, Wang Y, Lei Y,et al. Electrospun interconnected Fe-N/C nanofiber networksas efficient electrocatalysts for oxygen reduction reaction in acidic media. Scientific Reports, 2015, 5: 17396.[6] Wang B, Wang Y, Lei Y, et al. Hierarchically porous SiC ultrathin fibers mat with enhanced mass transport, amphipathic property and high-temperature erosion resistance. Journal of Materials Chemistry A, 2014, 2(48): 20873–20881.[7] Wang Y, Han C, Zheng D, et al. Large-scale, flexible and high-temperature resistant ZrO2/SiC ultrafine fibers with a radial gradient composition. Journal of Materials Chemistry A, 2014, 2(25): 9607–9612.[8] Colombo P, Mera G, Riedel R,et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. Journal of the American Ceramic Society, 2010, 93: 1805–1837.[9] CHENG X, XIE Z, SONG Y, et al. Structure and properties of polycarbosilane synthesized from polydimethylsilane under high pressure. Journal of Applied Polymer Science, 2006, 99(3): 1188–1194.[10] Liu H, Balkus K J. Electrospinning of beta silicon carbide nanofibers. Materials Letters, 2009, 63(27): 2361–2364.[11] Eick B M, Youngblood J P. SiC nanofibers by pyrolysis of electrospun preceramic polymers. Journal of Materials Science, 2009, 44(1): 160–165.[12] Ayutsede J, Gandhi M, Sukigara S, et al. Regeneration of bombyx mori silk by electrospinning. part 3: characterization of electrospun nonwoven mat. Polymer, 2005,46(5): 1625–1634.[13] Hu J, Prabhakaran M P, Ding X. Emulsion electrospinning of polycaprolactone: influence of surfactant type towards the scaffold properties. Journal of Biomaterials Science, Polymer,2015, 26(1): 57–75.[14] Li Y, Ko F K, Hamad W Y. Effects of emulsion droplet size on the structure of electrospun ultrafine biocomposite fibers with cellulose nanocrystals. Biomacromolecules, 2013, 14: 3801–3807.[15] KOOBHONGSE S, LIU W, RENEKER D. Flat polymer ribbons and other shapes by electrospinning. Journal of Polymer Science Part B: Polymer Physics, 2001, 39(1): 2363–2377.[16] Jiang H, Fang D, Hsiao B S,et al. Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules, 2004, 5(2): 326–333.[17] Kleebe H J, Blum Y D. SiOC ceramic with high excess free carbon. Journal of the European Ceramic Society, 2008, 28(5): 1037–1042.[18] Kim M, Kim J. Redox deposition of birnessite-type manganese oxide on silicon carbide microspheres for use as supercapacitor electrodes. ACS Applied Materials and Interfaces, 2014, 6(12): 9036–9045.[19] Wan L Y, Wang H, Gao W,et al. An analysis of the tensile properties of nanofiber mats. Polymer, 2015, 73: 62–67.。

聚二甲基硅烷高温高压合成聚碳硅烷工艺研究

聚二甲基硅烷高温高压合成聚碳硅烷工艺研究

聚二甲基硅烷高温高压合成聚碳硅烷工艺研究程祥珍;宋永才;谢征芳;肖加余;王应德【期刊名称】《材料工程》【年(卷),期】2004(000)008【摘要】以聚二甲基硅烷(PDMS)为原料,在高压釜内高温高压反应制备了聚碳硅烷(PCS)先驱体,研究了合成条件对反应终压、Si-H键含量、产物产率、软化点、分子量及其分布及可纺性的影响.研究表明,随着反应温度的提高,反应时间的延长,反应终压逐渐增大,产物的分子量与软化点增高,但同时分子量的分散性增大使可纺性变差.当PDMS在高压釜内460℃下反应4~6h,或450℃下反应6~7h时,可以制得软化点约为200~220℃的PCS,其高分子部分含量约 5%~10 %(质量分数),Si-H键含量大于0.9,可纺性较好,适合于制备SiC纤维.【总页数】5页(P39-43)【作者】程祥珍;宋永才;谢征芳;肖加余;王应德【作者单位】国防科学技术大学航天与材料工程学院新型陶瓷纤维及其复合材料国防技术重点实验室,长沙,410073;国防科学技术大学航天与材料工程学院新型陶瓷纤维及其复合材料国防技术重点实验室,长沙,410073;国防科学技术大学航天与材料工程学院新型陶瓷纤维及其复合材料国防技术重点实验室,长沙,410073;国防科学技术大学航天与材料工程学院新型陶瓷纤维及其复合材料国防技术重点实验室,长沙,410073;国防科学技术大学航天与材料工程学院新型陶瓷纤维及其复合材料国防技术重点实验室,长沙,410073【正文语种】中文【中图分类】TQ343【相关文献】1.聚二甲基硅烷高压合成聚碳硅烷的组成与结构分析 [J], 程祥珍;肖加余;谢征芳;宋永才;王应德2.液态聚硅烷高温高压合成聚碳硅烷工艺研究 [J], 程祥珍;宋永才;谢征芳;肖加余3.聚二甲基硅烷高压合成聚碳硅烷的组成、结构及性能表征 [J], 程祥珍;肖加余;谢征芳;宋永才4.二乙烯基苯/聚二甲基硅烷改良聚碳硅烷合成工艺的研究 [J], 章颖;王军;宋永才;薛金根5.反应温度对聚二甲基硅烷高压合成聚碳硅烷性能的影响 [J], 程祥珍;谢征芳;宋永才;肖加余因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档