相似矩阵及二次型

合集下载

大学线性代数课件相似矩阵及二次型5.2

大学线性代数课件相似矩阵及二次型5.2
把 P 用 其 列 向 量 表 示 为P p1, p2 ,, pn .
由P 1 AP , 得AP P,
1
即 A p1, p2,, pn p1, p2,, pn
2
n
1 p1, 2 p2 ,, n pn .
A p1, p2 ,, pn Ap1, Ap2 ,, Apn
于是有
2 1 2
(1) A 2 2 4 (2)A 5 3 3
2 4 2
1 0 2

1 2
2
(1)由 A E 2 2
4
2
4 2
22 7 0
得 1 2 2, 3 7.
将 1 2 2代入A 1E 0, 得方程组
2xx1124xx2224xx33
这与至少有一个ai0 j0 0(i0 j0)矛盾, 故A不可 对 角 化.
思考题
判断下列两矩阵A, B是否相似.
1
A
1
1 1
1 1 ,
n
B
1
0 0
0 0 .
1 1 1
1 0 0
思考题解答
解 因 det( A E) (n )( )n1, A的特征值为
1 n, 2 n 0.又A是实对称矩阵, 存在可逆 矩阵P1,使得
2
1 1 ,
0
0
2 0.
1
将3 2代 入A E x 0, 得 方 程 组 的
基 础 解 系 3 1,1,1T .
由 于1 ,2 ,3 线 性 无 关. 所以 A 可对角化.
2 0 1

P
1
,
2
,
3
1
0
1
0 1 1
1 0 0

相似矩阵及二次型知识要点

相似矩阵及二次型知识要点
准形(或法式) 准形(或法式).
(3) 化二次型为标准形 (i) 任给可逆矩阵 令 B = CTAC,如果 A 为 任给可逆矩阵C, 如果
对称矩阵, 亦为对称矩阵, 对称矩阵 则 B 亦为对称矩阵 且 R(B) = R(A).
(ii) 任给实二次型 f =
i,j =1
∑a
n
ij
xi x j ( aij = a ji ),
6. 正定二次型 (1) 定义 9 设有实二次型 f(x) = xTAx,如 如
果对任何 x ≠ 0, 都有 f(x) > 0 (显然 f(0) = 0), 则称 显然 f 为正定二次型 并称对称矩阵 A 是正定的 记作 正定二次型, 是正定的, A > 0 ; 如果对任何 x ≠ 0 都有 f(x) < 0, 则称 f 为 负定二次型, 负定二次型 并称对称矩阵 A 是负定的 记作 是负定的, A < 0.
(6) 施密特 (Schmidt) 正交化过程
从线性无关向量组 a1 , a2 , , ar 导出与之等 的过程称为施密特 价的正交向量组 b1 , b2 , , br 的过程称为施密特 正交化过程. 正交化过程. 若 a1 , a2 , , ar 是向量空间 V 的一组基, 的一组基, 通过正交化, 单位化, 通过正交化 单位化 都可以找到与之等价的一组 规范正交基 e1, e2 , , er , 称为把 a1 , a2 , , ar 这个基规范正交化 规范正交化. 这个基规范正交化
(2) 惯性定理
设有实二次型 f = xTAx, 它的秩为 r , 有两个 实的可逆变换 x = Cy 及 x = Pz , 使得 及 f = k1y12 + k2y22 + + kryr2 , f = λ1y12 + λ2y22 + + λryr2 ,

相似矩阵及二次型相关概念及定理

相似矩阵及二次型相关概念及定理

相似矩阵及二次型相关概念及定理嘿,伙计们!今天我们来聊聊一个非常有趣的话题:相似矩阵及二次型相关概念及定理。

你们知道吗,这些概念在我们的日常生活中可是无处不在哦!比如说,你有没有想过为什么两个房子的结构看起来差不多,但价格却相差甚远呢?这就是因为它们所使用的材料和施工方式不同,导致了它们的结构相似度不同。

而相似矩阵和二次型就是用来描述这种相似度的工具。

我们来说说相似矩阵。

想象一下,你有两个朋友,他们的性格和兴趣爱好都很相似。

那么,他们的相似度就可以用一个矩阵来表示。

矩阵中的每个元素都是0或1,表示这两个人在这方面是否相似。

如果两个人在某个方面完全相同,那么这个元素就是1;反之,如果两个人在这方面完全不同,那么这个元素就是0。

这样一来,我们就可以通过观察这个矩阵来了解这两个人的相似程度了。

接下来,我们来看看二次型。

二次型是一个数学模型,用来描述一个物体的形状和大小。

想象一下,你正在建造一座房子。

这座房子的外观和内部空间可以分别用两个二次型来描述。

外部二次型描述的是房子的外观,比如说它的高度、宽度和比例等;内部二次型描述的是房子的空间布局,比如说客厅的大小、卧室的数量等。

通过比较这两个二次型,我们就可以知道这座房子的整体形状和大小是否合适了。

那么,相似矩阵和二次型有什么关系呢?其实,它们之间有着密切的联系。

在实际应用中,我们常常需要同时考虑物体的形状和大小。

这时,我们就可以将这两个问题合并成一个二次型问题。

具体来说,我们可以将外部二次型和内部二次型相乘,得到一个新的二次型。

这个新的二次型就包含了物体的形状和大小信息。

然后,我们再通过对这个新的二次型进行特征值分解,就可以得到一个相似矩阵。

这个相似矩阵就反映了物体在形状和大小方面的相似程度。

当然啦,相似矩阵和二次型还有很多其他的应用。

比如说,在机器学习领域中,它们被用来描述数据集之间的相似性;在物理学领域中,它们被用来描述物体的运动轨迹等等。

无论是在学术研究还是日常生活中,相似矩阵和二次型都是非常重要的概念。

第五章 相似矩阵及二次型

第五章 相似矩阵及二次型

第五章 相似矩阵及二次型本章主要内容是讨论方阵的特征值和特征向量;方阵的相似对角化;二次型的标准形及正定二次型.在讨论这些主要内容之前,先介绍与向量的正交性有关的一些知识.§1. 向量的内积、长度及正交性在三维向量空间3R 中,两个向量α=),,(321a a a 及β=),,(321b b b 的数量积(又称点乘积)为βα∙=θβαcos =332211b a b a b a ++其中θ为α与β的夹角,α与β是α与β的长度.数量积有以下不等式βαβα≤∙利用数量积可以表示向量的长度和夹角.α=232221a a a ++=)(αα∙, θcos =βαβα∙(设0,0≠≠βα) 0=∙⇔⊥βαβα以上这些在三维空间中已经成立的性质,可以推广到n 维向量空间nR 中去.关键是将三维空间中的数量积βα∙推广成n 维空间中的内积],[βα.定义1. 设有两个n 维向量α=),,,(21n a a a ,β=),,,(21n b b b定义α与β的内积为],[βα=n n b a b a b a ,2211 ++=T αβ=Tβα容易验证内积有以下性质(其中γβα,,为n 维向量,k 为数): (i) ],[βα=],[αβ; (ii) ],[βαk =],[βαk ;(iii) ],[γβα+=],[],[γβγα+;(iv) 当0=α时,],[αα=0;当0≠α时,],[αα>0由(i)(ii)(iii),可得],[βαk =],[βαk ,],[γβα+=],[],[γαβα+ 可以证明许瓦兹(Schwarz )不等式(这里不证):≤2],[βα),)(,(ββαα或),(),(|],[|ββααβα≤定义2. 设α=),,,(21n a a a ,定义α的长度(或称范数)为||||α=),(αα=22221,n a a a +++当长度||||α=1时,称α为单位向量.利用长度概念,许瓦兹不等式可以写成≤],[βα||||||||βα.向量的长度具有下列性质(βα,为向量,k 为数):(1)非负性:0||||≥α,当且仅当α=0时,||||α=0; (2)齐次性:||||αk =k ||||α; (3)三角不等式≤+βα ||||α +β.[证] (1)(2)容易验证.下面证明(3).2βα+=],[βαβα++=],][,[βαββαα++=],[],[],[],[ββαββααα+++ =22],[2ββαα++ 222)(2βαββαα+=++≤故有βαβα+≤+.(证毕)当0≠α,0≠β时,由许瓦兹不等式,有[]1,≤βαβα.因此,由下面的等式θcos =[]βαβα,可以定义两向量α与β的夹角θ.特别地,有θ=],[2βαπ⇔=0定义3. 若],[βα=0,则称向量α与β正交. 因为],0[α=0,所以零向量与任何向量α都正交.例1. 在5R 中,设α=(2,1,0,4,-2),β=(3,4,2,-1,3),则有],[βα=4132⨯+⨯20⨯+ 3)2()1(4⨯-+-⨯+=6+4+0-4-6=0.故α与β正交. 又有 2α=],[αα=4+1+0+16+4=25, 故α的长度为α=25=5.对任意0≠α,有11==αααα,故αα为单位向量. 定义4. 若向量组m a a a ,,,21 两两正交,则称其为正交向量组.若向量m a a a ,,,21 两两正交且都是单位向量时,则称其为规范正交组.显然有: m a a a ,,,21 为规范正交组⎩⎨⎧=≠=⇔j i ji j i ,1,0],[αα例2.在nR 中,以下n 个单位向量是规范正交组:)1,,0,0(,),0,,1,0(),0,,0,1(21 ===n εεε因为这个向量组又是nR 中的基,因此又称为nR 中的规范正交基.在3R 中,通常记i =(1,0,0),j =(0,1,0),k =(0,0,1),它们是三坐标轴上的单位向量,它们构成3R 中一个规范正交基.以下的向量组1α=(1,0,0),2α=(0,21,21),3α=(0,21,21-) 容易验证是规范正交组,也是3R 的规范正交基.定理1. 若m a a a ,,,21 是由非零向量组成的正交组,则它们必定线性无关. [证] 设数m k k k ,,,21 使m m a k a k a k +++ 2211=0,则有],[2211i m m a k a k a k α+++ =],0[i α=0,),,2,1(m i =.根据内积性质,有],[],[],[11i m m i i i i k k k αααααα++++ =0因为i j ≠时,],[i j αα=0,上式成为],[i i i k αα=0,因为0≠i α,所以 0],[>i i αα,故有0=i k (i =1,2,…,m ). 因此,m a a a ,,,21 线性无关.(证毕)由此可知,规范正交组必是线性无关组,但反之不成立. 有时需要由一个线性无关向量组m a a a ,,,21构造出一个与之等价的规范正交组m e e e ,,,21 .这个问题称为将向量组m a a a ,,,21 规范正交化.斯密特(Schimidt )规范正交化的方法如下:取11αβ=,1111222],[],[ββββααβ-=,222231111333],[],[],[],[ββββαββββααβ--=,…………………………………………11111111],[],[],[],[-------=m m m m m m m m ββββαββββααβ容易验证m ββ,,1 两两正交,且与向量组m αα,,1 等价.再把它们单位化,即取mm m e e e ββββββ===,,,222111 . 则m e e e ,,,21 为规范正交组,并且与m a a a ,,,21 等价.例2. 在3R 中,设T T T )2,1,1(,)1,0,1(,)0,1,1(321===ααα.试用斯密特方法,将其规范正交化.[解] 取T)0,1,1(11==αβT T T )2,1,1(21)0,1,1(21)1,0,1(],[],[1111222-=-=-=ββββααβ,222231111333],[],[],[],[ββββαββββααβ=-==T T TT)1,1,1(32)2,1,1(32)0,1,1()2,1,1(-=--- 计算得21=β,6212=β,3323=β,将321,,βββ单位化, 得1e =11ββ=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡02121,2e =22ββ=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-626161,3e =33ββ=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-313131 321,,e e e 即为所求的规范正交组.定义5. 若n 阶实矩阵A 满足T A A =-1 (或E AA T =或E A A T =)则称A 为正交矩阵,简称正交阵.设A 的行向量组为n βββ,,,21 ,则A 为正交阵⇔E AA T =⇔],,,[2121Tn T T n ββββββ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=E ⇔⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡T n n T n T n T nT T TnT T ββββββββββββββββββ 212221212111=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100010001⇔],[j i ββ=T i jββ=⎩⎨⎧=≠ji j i ,1,0,(n j i ,,2,1, =) ⇔A 的行向量组为规范正交组.由E A A T=,同理可证A 为正交阵⇔A 的列向量组为规范正交组.例4.设A =⎥⎦⎤⎢⎣⎡-θθθθcos sin sin cos ,B =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-2102101021021,E =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001 容易验证E B A ,,都是正交矩阵.正交矩阵有下列性质:(1)若A 为正交矩阵,则A =1或-1.(2)若B A ,为正交阵,则AB 及1-A 也是正交阵. [证](1)A 的正交阵,则E AA T=,两边取行列式,得T A A =E =1,即12=A ,故1=A 或-1(2)T AB AB ))((=))((T T A B AB =))((11--A B AB =11)(--A BB A =1-AEA =1-AA =E T A A ))((11--=11))((--T A A =1)(-A A T =1-E =E 故AB 及1-A 都是正交阵.(证毕)定义6. 设P 为n 阶正交矩阵,y x ,为n 维列向量,则Px y =称为正交变换 (3)若Px y =为正交变换,则x y = [证] 22)()(x x x Ex x Px P x Px Px y y yT T T T T T ======, 故有x y =.这个性质说明正交变换保持向量的长度不变.§2. 方阵的特征值和特征向量定义1. 设A 为n 阶矩阵,如果有数λ及n 维列向量0≠α,使得关系式λαα=A (1)成立,则称λ为A 为特征值,α称为A 的对应于特征值λ的特征向量. (1)式可写成0)(=-αλE A ,这表明齐次线性方程组0)(=-x E A λ (2)有非零解α=x ,方程组(2)是n 个方程n 个未知数的齐次线性方程组,它有非零解的充分必要条件是其系数行列式等于0,即0=-E A λ (3)设A =n n ij a ⨯)(,则(3)式成为λλλ---nn n n n n a a a a a a a a a212222111211=0(3)式是未知数为λ的一元n 次方程,称为方阵A 的特征方程,方程左边E A λ-是λ的n 次多项式,称为方阵A 的特征多项式.特征值λ是特征方程(3)的根,在复数范围内,n 次方程有n 个根(重根按重数计算).因此,n 阶矩阵在复数范围内有n 个特征值.由以上讨论,得到求n 阶方阵A 的特征值和特征向量的方法如下:(i)解特征方程E A λ-=0,得到A 的n 个特征值n λλλ,,,21 (k 重根重复k 次). (ii)对每个特征值i λ,解齐次线性方程组0)(=-x E A i λ,其非零解就是相应于i λ的A 的特征向量.例1.求下列矩阵的特征值和特征向量(1)A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--314020112,(2)B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300130213[解] (1)E A λ-=λλλ-----314020112 =λλλ-----3412)2(=)2)(2(2---λλλ=2)2)(1(-+-λλ=0,λ=-1,2(二重根).矩阵A 的特征值为11-=λ,232==λλ.对于11-=λ,解方程组0))1((=--x E A ,即0)(=+x E A .E A +=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--000010101030010111414030111行行 )(E A R +=2,基础解系含3-2=1个向量,同解方程组为⎩⎨⎧==-00231x x x ,取131==x x ,得基础解系为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1011p故对应于11-=λ的全部特征向量为)0(1≠k kp对232==λλ,解方程组0)2(=-x E A ,E A 2-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--000000114114000114行)2(E A R -=1,基础解系含3-1=2个向量,同解方程组为04321=++-x x x取0,121==x x 及1,021==x x ,得到基础解系为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=4012p ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1103p故相应于232==λλ的所有特征向量为3322p k p k +.(32,k k 不同时为0)(2)E B λ-=λλλ---30130213=0)3(2=-λ,3=λ(三重).B 的特征值为3321===λλλ. 解方程组0)3(=-x E B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-0001000100001002103行E B 2)3(=-E B R ,基础解系含3-2=1个向量,同解方程组为⎩⎨⎧==0032x x 基础解系为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0011p故B 的所有特征向量为)0(1≠k kp由本例可见,对于矩阵A 的二重特征值232==λλ,相应地有两个线性无关的特征向量;对于矩阵B 的三重特征值3321===λλλ,相应地却只有一个线性无关的特征向量,即B 的线性无关的特征向量个数少于特征值的重数.例2.求矩阵A =⎥⎦⎤⎢⎣⎡-1111的特征值. [解] E A λ-=λλ---1111=0222=+-λλ,i ±=1λ.)1(-=i矩阵A 的特征值为复数i +=11λ,i -=12λ.(相应的特征向量也是复向量). 可见实矩阵的特征值不一定是实数.矩阵的特征值有以下性质:(1)A 可逆⇔A 的全部特征值都不等于零. (2)若A 有特征值λ及相应的特征向量α,则(i) kA 有特征值kλ及相应的特征向量α(k 为正整数);(ii) E a A a A a A a A m m m m ++++=--1110)( ϕ有特征值m m m m a a a a ++++=--λλλλϕ1110)( 及相应的特征向量α.(其中m a a a ,,,10 为数,E 为单位矩阵,可认为0A E =)(iii) 若A 可逆,则1-A 有特征值λλ11=-及相应的特征向量α.(3)设n 阶矩阵)(ij a A =的全部特征值为n λλλ,,,21 (k 重根重复k 次)则有n λλλ+++ 21=nn a a a +++ 2211n λλλ 21=A[证](1)A 可逆0≠⇔A 即000⇔≠-E A 不是A 的特征值. (2)已知λαα=A ,故有(i)αλαλλααα22)()(====A A A A A αλαλαλαα32223)()(====A A A A A依此类推,可得αλαkkA =,故kA 有特征值kλ及相应的特征向量α.(ii) αϕ)(A =α)(1110E a A a A a A a m m m m ++++-- =ααααm m m m a A a A a A a ++++--1110=αλααλαλm m m m a a a a ++++--1110 =αλλλ)(1110m m m m a a a a ++++--=αλϕ)(,故)(A ϕ有特征值)(λϕ及相应的特征向量α.(iii)若A 可逆,由(1),0≠λ,故α=αλA 1.于是)1(11αλαA A A --==αλA A 11-=αλ1.故1-A 有特征值11-=λλ及相应的特征向量α.(3)特征方程E A λ-=0所有根为n λλλ,,,21 ,根据多项式理论,特征多项式E A λ-可分解因子为)())((21n a λλλλλλ--- ,即λλλ---nn n n n n a a a a a a a a a212222111211=)())((21n a λλλλλλ---比较等式两边nλ的系数,得na )1(-=,比较两边1-n λ的系数,可得nn a a a +++ 2211=n λλλ+++ 21令0=λ,可得A =n λλλ,,,21 .(证毕).注:当A 可逆时,由性质2(iii)可知,性质2(i)中的k 为负整数时也成立,性质2(ii)中某些项含有A 的负整数幂时也成立.例3.设3阶矩阵A 的特征值为1,-1,2.求行列式E A A 23-+*.[解] A 的全部特征值为1,-1,2,由性质(3),022)1(1≠-=⨯-⨯=A ,故A 可逆.112||--*-==A A A A ,记)(A ϕ=E A A E A A 232231-+-=-+-*, )(λϕ= 12--λλ3+2-.于是)(A ϕ有特征值:)1(ϕ=-1,)1(-ϕ=-3,)2(ϕ=3.由性质(3),得E A A 23-+*=)(A ϕ=3)3()1(⨯-⨯-=9.例4.设方阵A 满足2A =A ,求A 的特征值.[解] 2A =A ,2A -A =0.设A 的特征值为λ,则2A -A 有特征值λλ-2,因为2A -A =0,而零方阵的特征值为0,故有λλ-2=0,求得λ=0或1.例5.设 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1322123b a 已知A 有一个特征向量为T )3,2,1(-=ξ,求参数b a ,及ξ所对应的特征值.[解] 设ξ所对应的特征值为λ,则有0)(=-ξλE A ,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------3211322123λλλba =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000 , 或 ⎪⎩⎪⎨⎧=---=+++=---0332306240343λλλb a 解得6,2,4=-=-=b a λ.定理 设方阵A 有m 个互不相等的特征值m λλλ,,,21 ,则相应于这些特征值的特征向量m p p p ,,,21 必线性无关.[证] 根据已知条件有m m m p Ap p Ap p Ap λλλ===,,,222111 现设有数m x x x ,,,21 使得 02211=+++m m p x p x p x 依次用12,,,-m AA A 左乘上面等式两边,由于=i k p A )1,,1,,,1(-==m k m i p i k i λ,得 0222111=+++m m m p x p x p x λλλ0222221121=+++m m m p x p x p x λλλ……………………………………0122121111=+++---m m m m m m p x p x p x λλλ将上面m 个等式写成矩阵等式,得⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---1212222112112211111],,,[m m m m m m m m p x p x p x λλλλλλλλλ =[0,0, 0等式左边第二个矩阵的行列式是范德蒙行列式,因为m λλλ,,,21 互不相等,所以范德蒙行列式不等于零,该矩阵可逆,以其逆矩阵右乘等式两边,得],,,[2211m m p x p x p x =[0,0, 0即),,2,1(0m i p x i i ==,因为0≠i p ,故0=i x ),,2,1(m i = 所以m p p p ,,,21 线性无关. (证毕)若21,p p 是矩阵A 的相应于相同特征值0λ的特征向量,则21,p p 是齐次方程组x E A )(0λ-=0的解,故21p p +也是此方程组的解,因此,当21p p +≠0时, 21p p +也是A 的相应于特征值0λ的特征向量,但若21,p p 是矩阵A 的相应于不同特征值的特征向量,则21p p +就不再是A的特征向量.下面例6给出证明.例6.设A 有两个不相等的特征值21,λλ,相应的特征向量为21,p p ,试证21p p +不是A 的特征向量.[证] 已知111p Ap λ=,222p Ap λ=,21λλ≠.用反证法:设21p p +是A 的特征向量,相应的特征值为λ,则有)(21p p A +=)(21p p +λ又)(21p p A +=21Ap Ap +=2211p p λλ+,故得2211p p λλ+=)(21p p +λ,移项得0)()(2211=-+-p p λλλλ.根据定理,21,p p 线性无关,应有01=-λλ,02=-λλ,于是λλλ==21,与假设矛盾.故21p p +不是A 的特征向量.§3. 相似矩阵定义. 设B A ,为n 阶矩阵,若存在可逆矩阵P ,使B AP P =-1(1) 则称A 与B 相似,记作A ~B ,(1)式称为由A 到B 的相似变换,P 称为相似变换矩阵.若A 相似于对角矩阵,则称A 可对角化. 性质:(1)相似概念具有性质①反身:A ~A ;②对称:若A ~B ,则B ~A ;③传递:若A ~B ,B ~C ,则A ~C .(2)若A 与B 相似,则A 与B 有相同的特征多项式、特征值、秩及相等的行列式. (3)若B AP P =-1,则mmB P A P =-1.(m 为正整数) [证] (1) ①A AE E =-1;②若B AP P =-1,则A PBP=-1,即A BP P =---111)(.③若B AP P =-1,C BQ Q =-1,则C PQ A PQ =-)()(1.(2) 若B AP P =-1,则P E A P E AP P E B )(11λλλ-=-=---=P E A P λ--1=E A λ-故B 与A 有相同的特征多项式,因而有相同的特征值.又因为P 为可逆矩阵,由矩阵秩的性质可知B 与A 有相同的秩.又A P A P AP P B ===--11(3)若B AP P =-1,则mB =m AP P )(1-=)())((111AP P AP P AP P ---=AP PP PP A PP A P )()()(1111---- =P A P EAP AEAE P m11--= . (证毕)定理. n 阶方阵A 相似于对角矩阵的充分必要条件是A 具有n 个线性无关的特征向量.并且当AP P 1-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ00000021 时,对角阵的对角元素n λλλ,,,21 就是A 的全部特征值,P 的列向量组n p p p ,,,21 就是与特征值n λλλ,,,21 相应的A 的线性无关特征向量.[证] 存在可逆阵P ,使AP P 1-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⇔⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n P AP λλλλλλ000000000002121,),,,(21np p p P =可逆.⇔),,,(21n p p p A =),,,(21n p p p ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ00000021,np p p ,,,21 线性无关⇔),,,(21n Ap Ap Ap =),,,(12111n p p p λλλ ,(n p p p ,,,21 线性无关) ⇔111p Ap λ=,222p Ap λ=,…,n n n p Ap λ=,(n p p p ,,,21 线性无关)⇔m λλλ,,,21 是A 的特征值,n p p p ,,,21 是与其相应的A 的n 个线性无关特征向量.(证毕)推论 若n 阶矩阵A 有n 个互不相等的特征值,则A 相似于对角阵.[证] 由§2的定理,A 的与n 个互不相等的特征值相对应的n 个特征向量线性无关.故A 相似于对角阵.(证毕)定理给出了一般n 阶矩阵A 可对角化的判别条件.要使A 有n 个线性无关的特征向量,关键是对于有重根的特征值,能求出与其重数相同个数的线性无关特征向量.即若特征值0λ是特征方程的k 重根,就要使)(0E A R λ-=k n -,这时方程组0)(0=-x E A λ的基础解系就含有k k n n =--)(个向量,因而得到与0λ相应的k 个线性无关的特征向量.若k n E A R ->-)(0λ,则相应于0λ的线性无关特征向量将小于k 个,A 就不可对角化.例如,§2例1的两个3阶矩阵,矩阵A 的二重特征值232==λλ,相应地有两个线性无关的特征向量,对单根11-=λ,求出1个特征向量,因为相应于不同特征值的特征向量线性无关,因此,A 有3个线性无关特征向量,故A 可对角化.对于矩阵B ,它的三重特征值3321===λλλ,只求出1个线性无关特征向量,故B 不可对角化.若A 可对角化,定理还给出求对角阵及相似变换矩阵P 的方法.即 (1)求出A 的全部特征值n λλλ,,,21 ,得到对角阵的主对角线上的元素. (2)求出A 的与n λλλ,,,21 相应的线性无关特征向量n p p p ,,,21 ,则P =[n p p p ,,,21 ]就是相似变换矩阵.并且有AP P 1-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ0000021 应当注意:特征值在对角阵中排列的顺序与相应的特征向量在P 中的位置要相对应,即对角阵中第i 行i 列的特征值i λ,相应的特征向量i p 应位于P 中的第i 列.例1.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----3241223k k (1)k 取何值时,A 可对角化?,k 取何值时,A 不可对角化? (2)当A 可对角化时,求出相似变换矩阵P 和相应的对角矩阵. [解] 先求A 的特征值.E A λ-=λλλ-------3241223k k31c c +⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------λλλλ12110221k =λλλ------32110221)1(k =)1(λ-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----λλ10010221k =2)1)(1(λλ+-特征值为,11=λ132-==λλ.(1)相应于二重特征值1-=λ,要由方程组0)(=+x E A 求其相应的特征向量.因为E A +=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---00002242240224k k k k 行若0≠k ,则2)(=+E A R ,0)(=+x E A 的基础解系只含3-2=1个向量,因而A 不存在3个线性无关的特征向量,A 不可对角化.0=k 时,1)(=+E A R ,由0)(=+x E A 可求出两个线性无关的特征向量,因而A 有3个线性无关的特征向量,A 可对角化.(2)0=k 时,A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---324010223已求出A 的特征值为,11=λ132-==λλ.要求的对角矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100010001 11=λ时,解方程组0)(=-x E A :E A -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---000010101020020222424020222行行 同解方程组为⎩⎨⎧==-00231x x x , 基础解系为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1011P132-==λλ时,解方程组0)(=+x E A :E A +=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--000000112224000224行同解方程组为02321=-+x x x ,取基础解系为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2012p ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1103p相似变换矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==121100011],,[321p p p P它使得AP P 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100010001例2.设 A =⎥⎦⎤⎢⎣⎡3421 (1)求P ,使AP P 1-为对角矩阵.(2)求nA[解] (1)求A 的特征值及相应的线性无关特征向量.E A λ-=λλ--3421=)1)(5(542+-=--λλλλA 为二阶矩阵,有两个不同特征值1,521-==λλ,故A 可对角化.51=λ时,解方程组0)5(=-x E A :E A 5-=⎥⎦⎤⎢⎣⎡-−→−⎥⎦⎤⎢⎣⎡--00122424行 同解方程组为0221=-x x ,取基础解系为T p )2,1(1=.12-=λ时,解方程组0)(=+x E A :⎥⎦⎤⎢⎣⎡−→−⎥⎦⎤⎢⎣⎡=+00114422行E A同解方程组为021=+x x ,取基础解系为T p )1,1(2-=.取⎥⎦⎤⎢⎣⎡-==1211],[21p p P ,则有AP P 1-=⎥⎦⎤⎢⎣⎡-1005(2)由(1)得 P A P n1-=n⎥⎦⎤⎢⎣⎡-1005=⎥⎦⎤⎢⎣⎡-n n )1(005,=nA 1)1(005-⎥⎦⎤⎢⎣⎡-P P n n ⎥⎦⎤⎢⎣⎡-=1211P ,1-P =⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡----121131121131故得 =nA ⎥⎦⎤⎢⎣⎡-1211⎥⎦⎤⎢⎣⎡-n n )1(005⎥⎦⎤⎢⎣⎡-121131=⎥⎦⎤⎢⎣⎡-+⋅-+⋅-+-+++n n n n n n n n )1(52)1(252)1(5)1(253111§4. 实对称矩阵的对角化本节将证明实对称矩阵总是可以对角化的,且相似变换矩阵可取为正交矩阵. 定理1.实对称矩阵的特征值为实数. [证] 设A 为n 阶实对称矩阵,则A 的共轭矩阵A A =,A 的转置矩阵A A T =.设A 的复特征值为λ,相应的复特征向量为=α0),,(1≠T n a a .则有λαα=A对上面等式两边取共轭,并注意到A A =,得=A ,A α=λα,即A α=λα对上面最后等式两边取转置,注意到A A T=,得A (T )α=λ(T )α,T T A α=λT α, 即 λα=A TTα对上面最后等式两边右乘α,注意到λαα=A ,得ααλααT T A =,即ααλT =ααλT移项得0)(=-αλT因为0),,,(21≠=T n a a a α,故ααT=n n a a a a a a +++ 2211=022221≠+++n a a a于是0=-λλ,即λ=,故λ为实数.(证毕)定理2. 设21,λλ是实对称矩阵的两个特征值,21,p p 是相应的特征向量.若21λλ≠,则1p 与2p 正交.[证] 由题设有111p Ap λ=,222p Ap λ= 对第一等式两边转置,再右乘2p ,得21121)()(p p p Ap T T λ==211p p Tλ上式左端2121)(p A p p Ap T T T ==21Ap p T =221p p T λ=212p p Tλ于是得到211p p T λ=212p p T λ,移项得2121)(p p Tλλ-=0 因为021≠-λλ,故021=p p T,即内积[21,p p ]=0,故1p 与2p 正交.(证毕)定理3.设A 为实对称矩阵,如果0λ是特征方程0=-E A λ的k 重根,则相应于0λ的特征向量中恰有k 个是线性无关的.本定理不证.定理4. 设A 是n 阶实对称矩阵,则存在n 阶正交矩阵P ,使得AP P 1-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ00000021 其中n λλλ,,,21 是A 的全部特征值(是实数).=P [n p p p ,,,21 ]的列向量n p p p ,,,21 是相应的规范正交特征向量(也是实的).[证] 设A 的全部特征值为n λλλ,,,21对于其中单重特征值,有1个特征向量,将其单位化.对于其中的k 重特征值,,由定理3,有k 个线性无关的特征向量,用斯密特方法将其规范正交化,就有k 个相互正交的单位特征向量,又由定理2,对应不同特征值的特征向量相互正交.因此,相应于特征值n λλλ,,,21 ,可以得到n 个规范正交的特征向量n p p p ,,,21 ,因为规范正交组是线性无关的,故A 有n 个线性无关的特征向量.由§3的定理,A 可对角化.令P =[n p p p ,,,21 ]则P 为正交矩阵,且有AP P 1-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ00000021. (证毕) 由定理4的证明可知,将实对称矩阵A 对角化的步骤如下: (1)求出A 的全部特征值n λλλ,,,21 ,得到对角阵的对角线元素.(2)对于单重特征值,求出相应的1个线性无关特征向量,将其单位化.对于k 重特征值,求其k 个线性无关特征向量,再按斯密特方法,将其规范正交化,得到k 个相互正交的单位特征向量,最后得到n 个规范正交特征向量n p p p ,,,21 .(3)令=P [n p p p ,,,21 ],它是正交矩阵,并且有AP P 1-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ0000021 例1.设A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----542452222求正交矩阵P ,使AP P 1-为对角阵.[解] A 为实对称矩阵,由定理4,所求的正交矩阵P 存在.E A λ-=λλλ-------54245222223r r +λλλλ------110452222=)1(λ-110452222----λλ=10492242)1(-----λλλ =)1(λ-λλ--9242=)10()1()1011)(1(22---=+--λλλλλA 的特征值为121==λλ,103=λ.对121==λλ,解方程组0)(=-x E A :=-E A 00000221442442221-−→−----行同解方程组为022321=-+x x x ,基础解系为T )0,1,2(1-=ξ, T )1,0,2(2=ξ按斯密特方法正交化,得T )0,1,2(11-==ξη T )5,4,2(5154],[],[121111222=+=-=ηξηηηηξξη.再单位化,得规范正交特征向量:T p )0,51,52(111-==ηη,Tp )455,454,452(222==ηη. 对103=λ,解方程组0)10(=-x E A :=-E A 10⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------99018180452542228452542452228行行 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−→−000110102000110452行行 同解方程组为 ⎩⎨⎧=+=+0023231x x x x , 基础解系为T )2,2,1(3-=ξ,单位化得T p )32,32,31(3-=.令P =[321,,p p p ] = ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--32455032454513145252, 则P 为正交矩阵,使得 AP P 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1000010001.例2.设三阶实对称矩阵A 的特征值为11-=λ,132==λλ,对应于1λ的将征向量为T )1,1,0(1=ξ,求A .[解] 设A 相应于特征值132==λλ的特征向量为T x x x x ),,(321=.因为A 是实对称矩阵,相应于不同特征值的特征向量互相正交,故x 与1ξ正交,有01=ξTx,即032=+x x 求得基础解系为T]0,0,1[2=ξ,T]1,1,0[3-=ξ,显见2ξ与3ξ已是互相正交,只要将其单位化,得 2p =2ξ=T )0,0,1(,Tp )21,21,0(333-==ξξ 再将1ξ单位化,得1p =T)21,21,0(11=ξξ.于是我们得到相应于特征值11-=λ,132==λλ的三个规范正交的特征向量1p ,2p ,3p .以它们为列向量,组成正交矩阵P .P =[1p ,2p ,3p ]=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-2102121021010,使得AP P 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100010001,故有A =P ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1000100011-P =P ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100010001T P .(因为P 为正交阵,1-P =T P ) =⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-2102121021010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100010001⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-2121000121210=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--010100001 例3.设B A ,为n 阶实对称矩阵,证明A 与B 相似的充分必要条件为A 与B 有相同的特征值.并举例说明若B A ,不都是实对称矩阵,则充分性不成立.[证] 必要性已在证明相似矩阵的性质时证过.现证充分性.设A 与B 有相同的特征值n λλλ,,,21 ,因为B A ,为实对称矩阵,由定理4,存在正交矩阵Q P ,,使AP P 1-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ 00000021,=-BQ Q 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ00000021 由此得AP P 1-=BQ Q 1-,B =11--APQ QP =)()(111---PQ A PQ , 故A 与B 相似.(证毕)若B A ,不都是实对称矩阵,例如A =⎥⎦⎤⎢⎣⎡0000,B =⎥⎦⎤⎢⎣⎡0010,则B A ,有相同的特征值0,0,但A 与B 不相似.这是因为若相似则应有相同的秩,但0)(=A R ,1)(=B R ,)()(B R A R ≠,故A 与B 不相似..§5. 二次型及其标准形在解析几何中,为了研究二次曲线122=++cy bxy ax所属的类型,选择适当的坐标旋转变换⎩⎨⎧'+'='-'=θθθθcos sin sin cos y x y y x x , (*) 将在旧坐标),(y x 下的方程,化为新坐标),(y x ''下只含平方项的标准方程12221='+'y x λλ从代数上讲,这一问题就是对二次齐次多项式22cy bxy ax ++,选择适当的线性变换(*),将其化为标准形2221y x '+'λλ的问题.本节将这一问题一般化,讨论将n 个变量的二次齐次多项式化为标准形问题,它在其它许多理论和实际问题中都有其重要应用。

相似矩阵及二次型

相似矩阵及二次型
若取正交矩阵Q=(1, 3, 2), 作正交变换x=Qy, 则有 ƒ(x1, x2, x3)=4y12 – 2y22+4y32
若取正交矩阵Q=(3, 1, 2), 作正交变换x=Qy, 则有 ƒ(x1, x2, x3)= – 2y12 +4y22+4y32
可见, 化二次型为标准形所用的正交变换以及标准形 都不是唯一的. 但是, 正交变换对应的标准形中, 各项系 数恰是矩阵A的所有特征值, 因此除顺序外是唯一的.
ξ1
(
1,
2
1 , 0)T
2
,
ξ2
(
1 ,
3
1,
3
1 )T
3
又由于
5 1 2 1 1 0
2E
-
A


1
5
2



0
2
1

2 2 2 0 0 0
所以得属于3=-2的单位特征向量为
ξ3
(
1,
6
1,
6
2 )T .
6
故可取正交矩阵
例1 用正交变换化二次型
ƒ(x1, x2, x3)=3x12+3x22 +2x1x2+4x1x3–4x2x3 为标准形, 并给出所用的正交变换.
解 二次型的矩阵为
3 1 2
A


1
3
2

2 2 0
A的特征多项式为
3 1 2 4 1 2 4 1 2 1 3 2 4 3 2 0 2 4 2 2 0 2 0 2
y1


y2

大学线性代数课件相似矩阵及二次型第五章 相似矩阵及二次型

大学线性代数课件相似矩阵及二次型第五章 相似矩阵及二次型

|[, ] | [, ][ , ]
长为 1 的向量称为单位向量.
例1
01,
1
0
2

0
1
2
若向量
1
3
x ≠0 ,

1 x
x
1 都是3 维单位向量.
3
1
是 单 位 向 量.
3
例 已知
1
2
2
,
3
,
1
1
0
0
计算两个向量单位化后的内积.
解:
12 22 (1)2 02
1 0 2
所以A的特征值为 1 2,2 3 1
当 1 2解齐次线性方程组 (2E A)x 0 即
3x1 x2 0 4x1 x2 0 x1 0
3 1 0 1 0 0

2E
A
4 1
1 0
00
0 0
1 0
0 0
0
得基础解系
p1
10
故对应于 1 2的全体特征向量为 k1 p1(k1 0)
y yT y xT PT Px xT x x
说明经正交变换向量长度保持不变,这是正交变换的优 良特性.
2 方阵的特征值 特征向量
内容分布 一、特征值与特征向量 二、特征值与特征向量的性质
基本要求 会求特征值与特征向量
2.1 特征值与特征向量
定义8 设A是n阶方阵,如果数 和n维非零向量x使
量为
k11 k22 kss (k1, ···,ks不同时为0)
例1 求矩阵
A
2 1
解: A的特征方程为
1 2
的特征值和特征向量
2 1
| E A |

线性代数及其应用 第4章 相似矩阵及二次型

线性代数及其应用 第4章 相似矩阵及二次型
即 A1 B1.
2 0 0
2
例1
已知A
0 0
0 1
13
x
1
,
求 x 和R( A) .
解 由于A ,有 A ,可得2 2x ,
即 x 1.
因为 R( A) R(),故R( A) 3 .
二、特征值与特征向量
例子:

A
3 1
2
0
,a
1
1
,b
2 1
ห้องสมุดไป่ตู้

Aa
3
令 Q P 1
A PBP 1 Q1BQ
所以 B A;
性质1 (3) 传递性:如果 A B, B C ,则 A C.
证明 (3) 若A B, B C,则存在可逆矩阵P、Q
使得 P 1AP B, Q1BQ C.

Q1 P1AP Q C,

(PQ)1 A(PQ) C
令R PQ , 从而 R1AR C ,故 A C .
求齐次线性方程组( A E)x 0的非零解
1 1 2
例2
求矩阵
A
0 1
2 1
2 0
的特征值和特征
向量.
解 矩阵 A 的特征多项式为
AE 0
1 1 2 A E 0 2 2 ( 1)( 2)
1 1 故 A 的特征值为 1 0,2 1,3 2.
当 1 0 时,求解方程组 Ax 0.由
(4) 若A和 B都是可逆矩阵且 A B ,则 A1 B1 .
性质1 (1) 自反性:A A ; (2) 对称性:如果 A B,则B A;
(3) 传递性:如果 A B, B C ,则 A C.
证明 (1) 由于 E 1AE A ,故 A A; (2) 若A B,那么存在可逆矩阵 P ,使得 P 1AP B,则A PBP 1 ,

第五章 相似矩阵及二次型

第五章 相似矩阵及二次型

首页
上页
返回
下页
结束
向量间的夹角 当x0 y0时
天 津 师 范 大 学 计 算 机 与 信 息 工 程 学 院
arccos
[ x, y] || x |||| y ||
称为n维向量x与y的夹角 当[x y]0时 称向量x与y正交 显然 若x0 则x与任何向 量都正交
首页 上页 返回 下页 结束
正交阵 如果n阶矩阵A满足ATAE(即A1AT) 那么称A为正交矩 阵 简称正交阵
天 津 师 范 大 学 计 算 机 与 信 息 工 程 学 院 郑 陶 然
方阵A为正交阵的充分必要条件是A的列(行)向量都是单 位向量 且两两正交 n阶正交阵A的n个列(行)向量构成向量空间Rn 的一个规 范正交基
范 大 学 计 算 机 与 信 息 工 程 学 院
内积的性质 设x y z为n维向量 为实数 则 (1)[x y][y x] (2)[x y][x y] (3)[xy z][x z][y z] 郑 (4)当x0时 [x x]0 当x0时 [x x]0 陶 然 (5)[x y]2[x x][y y] ——施瓦茨不等式
范 大 学 计 算 机 与 信 息 工 程 学 院 郑 陶 然
说明 内积是两个向量之间的一种运算 其结果是一个实数 用 矩阵记号表示 当x与y都是列向量时 有 [x y]xTy
首页 上页 返回 下页 结束
向量的内积 设有n维向量x(x1 x2 xn)T y(y1 y2 yn)T 令 [x y]x1y1x2y2 xnyn 天 津 师 [x y]称为向量x与y的内积
天 津 师 范 大 学 计 算 机 与 信 1 1 4 5 b2 a2 b1 3 2 1 1 6 1 3 1 [b1, b1] [b1, a2 ] 4 1 1 1 1 5 b3 a3 b1 b2 1 2 1 2 0 0 3 1 3 1 1 [b1, b1] [b2, b2 ] [b1, a3] [b2, a]

相似矩阵及二次型相关概念及定理

相似矩阵及二次型相关概念及定理

相似矩阵及二次型相关概念及定理相似矩阵与二次型理论的探索大家好,今天咱们来聊聊一个挺有意思的话题,那就是“相似矩阵”和“二次型”。

这两个词听起来挺专业的,但它们其实跟咱们日常生活中的一些事儿还挺有关联的。

咱们先从一个简单的例子说起吧,比如说咱们在超市买水果,挑了半天,最后买了一堆苹果。

要是咱们想看看这些苹果是不是一样大的,就得量一量它们的尺寸。

这就好比是咱们要判断一个矩阵是不是相似的,得比较它的行或列。

首先咱们来说说什么是“相似矩阵”。

想象一下,如果把一个矩阵比作一张桌子,那这个桌子的每一块木板就像是矩阵里的一行或者一列。

要是这些木板大小差不多,那这张桌子就能稳稳当当地坐人。

要是木板大小不一样,桌子就会摇摇晃晃,甚至散架。

所以啊,相似矩阵就是那些木板大小差不多的桌子,这样咱们就能用一些简便的方法来处理矩阵的问题了。

接下来咱们说说“二次型”。

想象一下,咱们在数学课上学到的函数,就像是一个平面上的点。

要是咱们能找到一个方法,让这个点的坐标变得有规律,比如都是正数,那就说明找到了一个“好”的二次型。

因为这样一来,咱们就能找到一种方法,通过调整参数来控制这个点的位置,就像是给这个点加上了一些“魔法”,让它能够按照咱们的意愿移动。

现在咱们来具体说说这两个概念是怎么联系起来的。

想象一下,咱们有一个矩阵A,它里面有好多好多的元素,每个元素都代表着一个方向。

如果我们能找到一个类似的矩阵B,它里面的元素也是代表方向的,而且它们之间的关系跟A里面的关系差不多,那咱们就可以说A和B是“相似的”。

因为这样一来,咱们就能用B来代替A,用它来解决一些类似的问题。

举个例子,咱们可以拿一个矩阵C来举例子。

想象一下,C是一个3x3的矩阵,它里面有三个元素a1, a2, a3。

咱们想知道这三个元素之间的关系,就像是想知道C和另一个3x3的矩阵D的关系。

要是咱们能找到一个方法,让C和D长得差不多,那咱们就能说C和D是“相似的”。

因为这样一来,咱们就能用D来代替C,用它来解决一些类似的问题。

第四五章相似矩阵及二次型

第四五章相似矩阵及二次型
第四章 第五章
特征值与特征向量 二次型
特征值的问题在代数学中占有十分重要的位置.用 它可以讨论方阵相似对角化.进而将二次型化成标准形.
要求:
1、理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和 特征向量. 2、理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件. 3、掌握将矩阵化为相似对角矩阵的方法. 4、了解实对称矩阵的特征值和特征向量的性质. 5、掌握二次型及其矩阵表示。 6、了解二次型秩的概念,了解合同变换和合同矩阵的概念,了解二次 型的标准形、规范形的概念以及惯性定理. 7、掌握用正交变换化二次型为标准型的方法,会用配方法化二次型 为标准形. 8、了解正定二次型和所对应的正定矩阵的性质及判别法.
| A | 0
实对称矩阵隐含的信息 实 对 称 矩 阵 隐 含 的 信 息
必可以对角化,且可用正交变换. 不同的特征值所对应的特征向量正交. 特征值全为实数.
k重特征值必有k个线性无关的特征向量.
与对角矩阵合同.
二、重要方法
1、求特征值与特征向量
(1)由特征方程|A-λE|=0,求出 A 的特征值λi (共n 个),再解齐次线性方程组(A-λiE)x=0,其基础解系就 是λi 所对应的特征向量. (2)用定义法Ax = λx (适用于抽象的矩阵).
6、正定的判别法
(1)用定义,∀x ≠ 0 ,总有xTAx > 0 (2)用顺次主子式全大于零; (3)用n个特征值全大于零; (4)用正惯性指数p = n; (5)存在可逆矩阵C,使A = CTC 。
三、典型例题
1、填空、选择题 例1
1 1 1 1 ①设4阶方阵A相似于B,且A的特征值为 , , , , 2 3 4 5 1 1 1 1 , , , 从而 , B-1 解 因为A~B,所以B的特征值为 2 3 4 5

同济大学线性代数课件__第五章相似矩阵及二次型

同济大学线性代数课件__第五章相似矩阵及二次型

p3
0 4
30

1 0 1
P ( p1, p2 , p3 ) 0 1 0
1 1 4

1
P 1AP 2
2
31
性质:若l 是 A 的特征值, 即 Ax = lx (x≠0),则
(1) kl 是 kA 的特征值(k是常数),且 kAx = klx (2) lm 是 Am 的特征值(m是正整数),且 Amx = lmx (3) 若 A可逆,则l-1是 A-1的特征值, 且 A-1x = l-1x
16
定义4 若 n 阶矩阵 A 满足 A A E 则称 A 为正交矩阵, 且 A1 A
令 A (1,2 , ,n )
A
A
1
2
(1
,
2
,
n
,n
)
11
21
n1

[i , j ] i j
ij
1, 0,
i i
j j
1 2 2 2
n 2
1 n 2 n
nn
17
特征值及二次型问题是线性代数的重要问题。
[ x ty, x ty] 0, t [ x, x] 2[ x, y]t [ y, y]t 2 0
(1) [ x, y ] = [ y, x ]; [ x, y]2 [x, x][ y, y]
(2) [lx, y] = l[ x, y ];
(3) [ x + y, z ] = [ x, z ] + [ y, z ];
解: (1) A2 2A 3E 有特征值 l 2 2l 3
(2) 3阶阵 A有特征值 1, -1, 2,故 | A | 2,A可逆。 A 3A 2E 有特征值 -1,-3,3

ds4-3第四章 相似矩阵及二次型

ds4-3第四章  相似矩阵及二次型
2
1 推论 1 若 n 阶矩阵 A 与对角矩阵

2
1 , 2 ,, n 即是 A 的 n 个特征值.
相似 n
容易推证: 若 A PBP 1 , 则 A k PB k P 1 ; A 的多项式
A P B P 1 .
当x=-1时,
1 0 1 A E 1 0 x 1 0 1
1 0 0 0 0 0 1 x 1 0
9
x 1 0
x 1.
1 0 1 1 0 1 A E 1 2 1 0 1 1 1 0 1 0 0 0 - 1 - 1 x1 x 3 0 得方程组 , 其基础解系为 1 ,取特征向量p1 1 x 2 - x3 0 1 1 1 0 - 1 1 0 1 0 0 0 A E 1 0 - 1 0 0 0 1 0 1 0 1 0 1 得方程组x1 - x 3 0,其基础解系为 1 ,0 ,取特征向量p2 1 ,p3 0 0 1 0 1 -1 0 1 -1 0 0 1 令,P 1 1 0 ,则有P AP 0 1 0 1 0 1 0 0 1 10
8
0 0 1 例4-22 A 1 1 x , 问x为何值时,矩阵能对角化? 设 A 1 0 0

A E 1 1
0 1 0
x 1 1
2
1
1 1, 2 3 1
对单根1 1, 可求得1个线性无关的特征向量. 故矩阵A可对角化需对应重根 2 3 1有2个线性无关的特征向量. 即 ( A E ) x 0 有两个线性无关的解. R( A E ) 1

相似矩阵及二次型

相似矩阵及二次型

0
T 1
1
1
2
0,
从而有1
0.
同理可得2 r 0. 故1,2 ,,r线性无关.
4 向量空间旳正交基

1
,
2
,
,
是向量空间
r
V的一个基
,

1
,
2
,
, r是两两正交的非零向量 组,则称1, 2 ,, r是
向量空间V的正交基.
例1 已知三维向量空间中两个向量
1
1 1,
1
1
2 2
为A的特征方程 .
记 f A E ,它是的n次多项式, 称其
为方阵A的 特征多项式 .
4. 设 n阶方阵 A aij 的特征值为1, 2 ,,
n ,则有 (1) 1 2 n a11 a22 ann; (2) 12 n A .
例5 求A 3 1的特征值和特征向量 . 1 3
] ]
b2
[br 1 [br1 ,
,ar ] br1 ]
br
1
那么b1 ,,br两两正交,且b1 ,,br与a1 ,ar等价.
(2)单位化,取
e1
b1 b1
,
e2
b2 b2
,
,er
br br
,
那么 e1 ,e2 ,,er为V的一个规范正交基 .
上述由线性无关向量组 a1 ,,ar构造出正交 向量组b1 ,,br的过程,称为 施密特正交化过程 .
2. 齐次性 x x ;
3. 三角不等式 x y x y .
单位向量及n维向量间的夹角
1 当 x 1时,称 x为单位向量 .
2当 x 0, y 0时, arccos x, y

相似矩阵及二次型

相似矩阵及二次型

A E
3
1
(3 ) 2 1 (4 )(2 )
令 x2
k ,得到对应于 1 2 的全部特征向量为
k 1 x k k 1
x1 x2
当 2
4时,对应的特征向量应满足 ( A 4 E ) x 0 3 4 1 x1 0 即 x1 x2 0 1 3 4 0 x 2
2 1 1 例3:求矩阵 A 0 2 0 特征值和特征向量。 4 1 3
解:A 的特征多项式为
2 A E 0 4
所以 A 的特征值为 当 1
1 2 1
1 0 (2 ) 3
2 4
1 3
(2 )(2 2) ( 1)( 2)2
1 1
1 3
0 0 (2 )(1 ) 2
A E 4
0 2 所以 A 的特征值为 1 2 , 2 3 1
当 1
2时,解方程 3 由 A 2E 4 1
0 令 x3 k ,得到对应于 1 2 的全部特征向量为 x k 0 1
r
4 1 1 0 0 0 0 0 0

4 x1 x2 x3 0
令 x1 k1 ,
x3 4 x1 x2
x2 k2 ,得到对应于 2 3 2 的全部特征向量为
k1 k1 0 1 0 x k 2 0 k 2 k1 0 k2 1 4k k 4k k 4 1 1 2 1 2

第六章 相似矩阵及二次型

第六章 相似矩阵及二次型
设n阶矩阵A=(aij)的特征值为 1 , 2 ,, n ,由多项式的根与 系数之间的关系,不难证明 (1) 1 2 n a11 a 22 a nn (2) 12 n A 请读者证明之。 设为方阵A的一个特征值,则由方程 ( A i E ) x 0 可求得非零解x=pi,那么pi便是A的对应于特征值 i的特征 向量。(若 i 为实数,则pi可取实向量;若 i 为复数,则pi 为复向量。)
x x3 得 1 ,从而有基础解系 x2 0
1 0 1
1 。取 a 3 0 1
即合所求。
§1.向量的内积
定义3 设n维向量e1,e2,…,er是向量空间V (V R n )的一个基,如果e1, e2, …,er两两正交,且都是单位向量,则称e1,e2,…,er是V的一个规范正 交基。 1 0 例如 1 0
内积具有下列性质(其中x,y,z为n维向量,为实数): (1)[x, y]=[y, x]; (2)[ x, y]= [x, y]; (3)[x+y,z]=[x,z]+[y,z]. .
§1.向量的内积
有解析几何中,我们曾经引进向量的数量积
x y x y cos
且在直角坐标系中,有 ( x1 , x 2 , x 3 ) ( y1 , y 2 , y 3 ) x1 y1 x 2 y 2 x 3 y 3 n维向量的内积时数量积的一种推广,但n维向量没有3维向量那样直观 的长度和夹角的概念,因此只能按数量积的直角坐标计算公式来推广, 并且反过来,利用内积来定义n维向量的长度和夹角: 定义2 令 2 2 2 x [ x, x] x1 x2 xn

线性代数第4章相似矩阵及二次型课件

线性代数第4章相似矩阵及二次型课件

则1,2 ,3 两两正交.
四、正交矩阵
定义 6 如果 n 阶矩阵 满足 T E 即1 T , 那么称 为正交矩阵,简称正交阵.
定理 2 设矩阵 是 n 阶方阵,则下列结论等价:
1 是 n 阶正交阵; 2 的列向量组是 n 的一个规范正交基; 3 的行向量组是 n 的一个规范正交基.
0 0 3
一、方阵的特征值与特征向量的概念及其求法
解 矩阵 A 的特征多项式为
1 0 0
A E 0 2 0 1 2 3 ,
0 0 3
所以 A 的全部特征值为 1 1 , 2 2 , 3 3.
由此例可知,对角矩阵的全部特征值就是它的对角线上的元素.
一、方阵的特征值与特征向量的概念及其求法
1 1
1 2
11,
3 应满足齐次线性方程组 Ax 0, 即
1 1
1 2
1 1
x1 x2 x3
0 0

对系数矩阵 A 实施初等行变换,有
A
1 1
1 2
1 1
1 0
1 3
1
0
1 0
0 1
01,

x1 x2
x3 0

从而有基础解系
1 0 1
.
1
取3
0
1
,则3 为所求.
正交矩阵具有如下性质:
(i) 若 A 为正交阵,则 A1 AT 也是正交阵,且 A 1或 1;
(ii) 若 A 和 B 都是正交阵,则 AB 也是正交阵.
定义 7 若 P 为正交矩阵,则线性变换 y Px 称为正交变换. 设 y Px 为正交变换, 则有 y yT y xTPTPx xT x x . 因此正交变换保持向量的长度不变.

相似矩阵与二次型

相似矩阵与二次型

所以判别式 即
(2[ , ])2 4[ , ][ , ] 0
[ , ]2 [ , ][ , ].
证毕
§ 5.1 向量的内积、长度及正交性
5.1.2 向量的长度
定义5.2 对于n维实向量 (a , a , 12
, a )T,称非负实数 n
[ , ] 为向量 的
长度(或范数),记为|| ||,即
2
2
[1 [1
,2 , 1
] ]
1
……………………
r
r
[1 [1
,r , 1
] ]
1
[ [
2 2
, ,
r 2
] ]
2
[ [r
r 1, r ] 1, r 1 ]
r
1
易证,对任何 r (1 r m),向量组 1, 2 , , r 两两正交,且 1, 2 , , r 与 1,2 , ,r 等价.
[1,2 ] 1 0,
定义5.5 不设n维向量组 1, 2 , , r 是向量空间V (V Rn ) 的一个基, 如果 1, 2 , , r 两两正交,则称 1, 2 , , r 为V的一个正交基; 如果 1, 2 , , r 两两正交且都是单位向量,则称1, 2 , , r 为V的
一个标准正交基(或称为规范正交基).
证明 对(1),(2)由定义5.2易证,这里证明(3).
因为 [, ]=[ ,],[, ] || || || ||
则 || ||2 [ , ] [,] [, ] [ ,] [ , ] [,] 2[, ][ , ] || ||2 2 || || || || || ||2 (|| || || ||)2
5.1.1 向量的内积 5.1.2 向量的长度 5.1.3 向量组的正交性 5.1.4 正交矩阵与正交变换
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当 [ x, y] 0 时,称向量 x与 y正交 . 若 x 0,则显然 x 与任何向量都正交.
6
线性代数
河南工程学院
四、正交向量组
定义 若一个不含零向量的向量组1,2, ,r 中的 向量两两正交 [i , j ] 0(i j) ,则称该向量组为 正交向量组.又如果这些向量都是单位向量 i 1 ,
线性代数
第五章
河南工程学院
相似矩阵及二次型
§5.1 向量的内积、长度及正交性
§5.2 方阵的特征值与特征向量
§5.3 相似矩阵
§5.4 对称矩阵的对角化 §5.5 二次型及其标准形
§5.6 用配方法化二次型成标准形
§5.7 正定二次型
1
河南工程学院
§5.1 向量的内积、长度及正交性
引言 n 维向量空间是三维向量空间的直接推广, 但是只定义
3. 三角不等式 x y x y . (三角不等式用Cauchy-Schwarz不等式易证,见P114)
5
线性代数
三、单位向量和 n 维向量间的夹角
河南工程学院
1当 x 1时,称 x为单位向量 . 2当 x 0, y 0时, arccos [ x, y]
x y 称为 n 维向量 x 与 y 的 夹角.
3
线性代数
河南工程学院
性质
(1) [x, y] [ y, x];
(2) [x, y] [x, y];
(3) [x y, z] [x, z] [ y, z]; (4) [ x, x] 0,且当 x 0时,有[ x, x] 0.
著名的Cauchy-Schwarz不等式 [ x, y]2 [ x, x][ y, y]
x y x1 y1 x2 y2 x3 y3
2
线性代数
一、内积的定义及性质
河南工程学院
定义 设有 n维向量 x ( x1, x2, , xn )T , y ( y1, y2, , yn )T
令 x, y x1 y1 x2 y2 xn yn xT y yT x 称x, y为向量 x 与 y的 内积 .
从而
3
3
[1,3 [1, 1
] ]
1
[ [
2 2
,3 ,2
] ]
2
13
线性代数
河南工程学院
施密特正交化方法 设 1,2, ,r 线性无关
令 1 1
2
2
1,2 1, 1
1
,
1 1 / 1
2 2 / 2
r r / r
3
3
[1,3 [1, 1
] ]
1
[ [
2 2
,3 ,2
] ]
2
是与 1,2, ,r 等价的规范正交组
线性代数
1
9
河南工程学院
例2 (例1的一般化, 也称正交基的扩张定理)
设 1,2, ,r 是 Rn 中的一个正交向量组, r n ,
证明必可找到 n r 个向量 r1, ,n 使 1,2, ,n
构成 Rn 的正交基.
证 只需证必可找到r1 0 使 r1 与 1,2, ,r
都正交. 记
A
1T
1 1
1 1
2 2 r121
2 r121 2
3 3 r131 r232
3 r131 r232 3
了线性运算, 而三维空间中有向量夹角和长度的概念,它们构成了
三维空间丰富的内容.
我们希望把这两个概念推广到 n 维向量空间中.
在解析几何中,我们曾定义了向量的内积(数量积)
x y x y cos( x, y)
建立标准的直角坐标系后, 可用向量的坐标来计算内积 设 x ( x1, x2, x3 )T , y ( y1, y2, y3 )T 则
找与 1,2, ,r 等价的正交向量组 1, 2, , r 11
线性代数
河南工程学院
以三个向量 1,2,3 为例, 从几何直观上去求. 2 2
1 1 2 2 11
11
1 1
上式两边与 1 做内积, 注意 [1, 2] 0 得
从而
1
[1,2 ] [1, 1]
2
2
[1 , 2 ] [1, 1]

n
xi
i 1
yi
2
n
xi2
i 1
i
n 1
yi2
4
线性代数
二、向量的长度及性质
河南工程学院
定义 x [ x, x] x12 x22 xn2 ,
称 x 为n维向量 x的长度或范数 .
性质 1. 非负性 当 x 0时, x 0;当 x 0时, x 0; 2. 齐次性 x x ;
则称该向量组为规范正交向量组.
若该向量组是一个向量空间 V 的基, 又分别称 为向量空间 V 的正交基和规范正交基.
7
线性代数
性质
正交向量组必线性无关.
河南工程学院
证 设 α1,α2, ,αr 是正交向量组
又设有 1,2, ,r 使 11 22 r 0 以a1T 左乘上式两端,得 11T1 0 由1 0 1T1 1 2 0, 从而有1 0 . 同理可得2 r 0. 故1,2, ,r线性无关.
T r
r( A) r n
Ax 0 必有非零解.
其任一非零解即为所求的 r1
10
线性代数
五、施密特正交化过程
河南工程学院
设 1,2, ,r 是一组线性无关的向量, 它就是它
生成的向量空间
L (1,2, ,r )
的一个基(坐标系), 如何在向量空间 L 中建立正交的 基(坐标系)?
这个问题就是…
r
r
[1 [1
,r , 1
] ]
1
[2 [2
, ,
r 2
] ]
2
[r1,r ] [r1, r1
]

1
则 1, 2, , r 两两正交, 且与 1,2, ,r 等价.
?
?
14
线性代数
河南工程学院
1, 2, , r 两两正交, 可用数学归纳法严格证明.
与 1,2, ,r 等价, 这是因为(只需看三个)
8
线性代数
河南工程学院
例1
已知 R3 中两个正交向量
1
1
1 1, 2 2
1
1
试求 3 使1 ,2 ,3 构成
R3 的一个正交基.
解 这相当于要求方程组的非零解
12TT
x x
0 0
x1
x1
x2 x3 0 2x2 x3 0
Ax
0
A
12TT
1 1
1 2
1 1
1
求得基础解系(即为所求)为 3 0
1
12
线性代数
河南工程学院
我们已求得 1, 2 已正交, 再求构造 3
3 3 11 22 (1) (1)式两边与 1 内积, 注意
3 3
[1,2] [1,3] 0

1
[1 , 3 ] [1, 1]
11
(1)式两边再与2 内积, 类似可得 1
22 2
11 22
2
[ 2 , 3 ] [2 , 2 ]
相关文档
最新文档