数字信号处理作业之语音识别小论文
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2、频域分析
短时傅立叶分析在运用离散时间傅立叶变换分析语音信号的变化时,会遇到这样的问题,即单一的傅立叶变换并不能反映时间变化的频谱信息,诸如时变共振峰和谐波。具体而言,通常将信号的每一时刻与其相邻时刻信号的傅立叶变换相联系,这样就可以及时跟踪信号的频谱变化。语音信号的短时傅立叶变换见程序所述。短时傅立叶分析一般采用汉明窗作为分析窗。
图1语音识别系统方案框图
语音识别的过程可以被看作模式匹配的过程,模式匹配是指根据一定的准则,使未知模式与模型库中的某一个模型获得最佳匹配的过程。模式匹配中需要用到的参考模板通过模板训练获得。在训练阶段,将特征参数进行一定的处理后,为每个词条建立一个模型,保存为模板库。在识别阶段,语音信号经过相同的通道得到语音特征参数,生成测试模板,与参考模板进行匹配,将匹配分数最高的参考模板作为识别结果。
浊音的短时谱有两个特点:第一,有明显的周期性起伏结构,这是因为浊音的激励源为周期脉冲气流;第二,频谱中明显地有凸出点,即“共振峰”,它们的出现频率与声道的谐振频率相对应。清音的短时谱则没有这两个特点,它十分类似于一段随机噪声的频谱。
2.1时域分析
语音信号具有时变特性,但在一个短时间范围内(一般认为在10~30ms的短时间内),其特性基本保持不变,即相对稳定,因而可以将其看作是一个准稳态过程,即语音信号具有短时平稳性。任何语音信号的分析和处理必须建立在“短时”的基础上,即进行“短时分析”,将语音信号分段来分析其特征参数,其中每一段称为一“帧”,帧长一般取为10~30ms。这样,对于整体的语音信号来讲,分析出的是由每一帧特征参数组成的特征参数时间序列。
由于在模板匹配过程中限定了弯折的斜率,因此平行四边形之外的格点对应的帧匹配距离是不需要计算的。另外,因为每一列各格点上的匹配计算只用到了前一列的3个网格,所以没有必要保存所有的帧匹配距离矩阵和累积距离矩阵。充分利用这两个特点可以减少计算量和存储空间的需求,形成一种高效的DTW算法。图2中,把实际的动态弯折分为三段,(1,xa),(xa+1,xb),(xb+1,N),其中:
plot(w,hr);
title('幅频图');
xlabel('Frequency in rad mple')
ylabel('Magnitude in dB')
subplot(3,3,3)
hphase=angle(h);
hphase=unwrap(hphase); %求系统相频响应
plot(w,hphase);
2.1.2短时过零率分析
过零就是信号通过零值。对于连续语音信号,可以考察其时域波形通过时间轴的情况。对于离散时间信号,如果相邻的取样值改变符号则称为过零。由此可以计算过零数,过零数就是样本改变符号的次数。单位时间内的过零数称为平均过零数。短时过零分析通常用在端点侦测,特别是用来估计清音的起始位置和结束位置。
一、语音识别系统概述
一个完整特定人语音识别系统的方案框图如图1所示。输入的模拟语音信号首先要进行预处理,包括预滤波、采样和量化、加窗、端点检测、预加重等,然后是参数特征量的提取。提取的特征参数满足如下要求:
(1)特征参数能有效地代表语音特征,具有很好的区分性;
(2)参数间有良好的独立性;
(3)特征参数要计算方便,要考虑到语音识别的实时实现。
xa= (2M-N)/3,xb=2(2N-M)/3
xa和xb都取最相近的整数,由此可得出对M和N长度的限制条件:
2M-N≥3,2N-M≥2
当不满足以上条件时,认为两者差别太大,则无法进行动态弯折匹配。在x轴上的每一帧不再需要与y轴上的每一帧进行比较,而只是与y轴上[ymin,ymax]间的帧进行比较,ymin和ymax的计算公式为:
x=wavread(fname);
[x1 x2]=vad(x);
m=mfcc(x);
m=m(x1-2:x2-4,:);
ref(i).mfcc=m;
end
disp('正在分析语音信号...')
for i=1:10
fname=sprintf('%da.wav',i-1);
[x,fs,bit]=wavread(fname,[2000,2512]); %采样%
3、语音信号的处理
3.1、语音识别的DTW算法
本设计中,采用DTW算法,该算法基于动态规划(DP)的思想解决了发音长短不一的模板匹配问题,在训练和建立模板以及识别阶段,都先采用端点检测算法确定语音的起点和终点。
在本设计当中,我们建立的参考模板,m为训练语音帧的时序标号,M为该模板所包含的语音帧总数,R(m)为第m帧的语音特征矢量。所要识别的输入词条语音称为测试模板,n为测试语音帧的时序标号,N为该模板所包含的语音帧总数,T(n)为第n帧的语音特征矢量。参考模板和测试模板一般都采用相同类型的特征矢量(如LPCC系数)、相同的帧长、相同的窗函数和相同的帧移。
通常,规整函数被限制在一个平行四边形的网格内,如图3所示。它的一条边斜率为2,另一条边斜率为1/2。规整函数的起点是(1, 1),终点为(N,M)。DTW算法的目的是在此平行四边形内由起点到终点寻找一个规整函数,使其具有最小的代价函数,保证了测试模板与参考模板之间具有最大的声学相似特性。
图3匹配路径约束示意图
2.1.1短时能量分析
短时能量分析用途:第一,可以区分清音段和浊音段,因为浊音时的短时平均能量值比清音时大得多;第二,可以用来区分声母与韵母的分界、无声与有声的分界、连字的分界等。如对于高信噪比的语音信号,短时平均能量用来区分有无语音。无语音信号噪声的短时平均能量很小,而有语音信号的能量则显著增大到某一个数值,由此可以区分语音信号的开始点或者终止点。
2、语音信号分析
语音信号是一种典型的非平稳信号。对于非平稳信号,它是非周期的,频谱随时间连续变化,因此由傅里叶变换得到的频谱无法获知其在各个时刻的频谱特性。如果利用加窗的方法从语音流中取出其中一个短断,再进行傅里叶变换,就可以得到该语音的短时谱。
语音信号的基本组成单位是音素。音素可分成“浊音”和“清音”两大类。如果将不存在语音而只有背景噪声的情况称为“无声”,那么音素可以分成“无声”、“浊音”、“清音”三类。
ymin=x/2,0≤x≤xb,
2x+(M-2N),xb< x≤N
ymax=2x,0≤x≤xa,
x/2+(M-N/2),xa< x≤N
如果出现xa> xb的情况,则弯折匹配的三段为(1,xb),(xb+1,xa),(xa+1,N)。
对于x轴上每前进一帧,虽然所要比较的y轴上的帧数不同,但弯折特性是一样的,累积距离的更新都是用下式实现的:
D(x,y) = d(x,y)+min[D(x-1,y),D(x-1,y-1),D(x-1,y-2)]
3.2、MATLAB仿真过程
3.2.1语音信号预处理
语音信号的预处理包括预滤波、采样和量化、加窗、预加重、端点检测等过程。由于语音信号在帧长为10ms~30ms之内是相对平稳的,同时为了便于计算FFT,本系统选取帧长N为256个语音点,帧移M为128点。
图4语音起点检测流程图
3.2特征参数提取及语音识别
众多研究表明,倒谱特征参数所含的信息量比其他参数多,能较好地表现语音信号。本文选取能够反映人对语音的感知特性的Mel频率倒谱系数(MFCC)作为特征参数,阶数为12。经过MFCC特征参数提取后,各帧语音信号就形成了一个个特征矢量。识别时,将待测语音与模板库中的每一个模板进行模式匹配,找到距离最小的模板作为输出结果。
%sound(x,fs); %播放语音信号
figure(i);
subplot(3,3,1);
plot(x(1:256)); %原始语音信号的时域图形%
title('原始信号')
subplot(3,3,2)
[h,w]=freqz(x,fs) %原始语音信号的频率响应图
hr=abs(h);%求系统幅频响应
[9]韩纪庆,张磊,郑铁然.语音信号处理[M].北京:清华大学出版社,2004
[10]李晋.语音信号端点检测算法研究[D].长沙:湖南师范大学,2006.
附录—程序:
主程序:
yuyinshibie.m
disp('正在计算参考模板的参数...')
for i=1:10
fname=sprintf('%da.wav',i-1);
[5]胡航.语音信号处理[M].哈尔滨:哈尔滨工业大学出版社,2000,5.
[6]胡广书.数字信号处理理论、算法与实现[M].北京:清华大学出版社,1997.
[7]王炳锡,等.实用语音识别基础[M].北京:国防工业出版社,2005.
[8]林波,吕明.基于DTW改进算法的弧立词识别系统的仿真与分析[J].信息技术,2006,30(4):56-59.
摘要:本文针对所采集的语音信号,对其时域、频域参数进行了系统详尽的分析,并在MATLAB环境下实现了基于DTW算法的特定人语音信号0到9的识别。
关键词:语音识别;MATLAB;短时傅立叶;DTW
引言
近年来,语音识别已经成为一个非常活跃的研究领域。在不远的将来,语音识别技术有可能作为一种重要的人机交互手段,辅助甚至取代传统的键盘、鼠标等输入设备,在个人计算机上进行文字录入和操作控制。而在智能家电、工业现场控制等其他应用场合,语音识别技术则有更为广阔的发展前景。
4、语音信号处理结果
如图4为语音信号“8”的处理结果,其他语音信号处理结果图不在此一一给出。
图4语音信号“8”的处理结果图
以下为得到的最终处理结果,10个数字识别正确。经测试,程序等到了较好的语音识别效果。
三、总结
本文用MATLAB编程完成的数字语音信号识别系统详细地分析了语音信号的时域、频域等特性,并实现了对数字0到9的准确识别。通过语音识别系统的设计,对数字信号处理的流程有了深刻的认识,也为以后使用MATLAB软件编程完成各项任务打好了基础。
二、语音信号的分析与处理
1、语音信号采集
该实验以实验者本人的声音(语音信号0~9)为分析样本,是利用PC机录制,音频文件采用8000kHz采样频率、16bit量化、单声道的PCM录音格式,用MATLAB本身wavread函数来读取语音文件。如图2为采集的数字信号“3”的语音原始信号。
图2采集的数字语音“3”的原始信号
参考文献:
[1]程佩青.数字信号处理教程[M].北京.清华大学出版社,2006.
[2]何强,何英.MATLAB扩展编程[M].北京:清华大学出版社,2002.
[3]王炳锡,屈丹,彭煊.实用语音识别基础[M].北京:国防工业出版社,2005.
[4]易克初,等.语音信号处理[M].北京:国防工业出版社,2006,6.
本文采用汉明窗对语音信号进行分帧处理,如下式:
ω(n) =0Βιβλιοθήκη Baidu54-0.46cos(2πn/(N-1)),0≤n≤N-1
预加重用具有6dB/倍频程的提升高频特性的一阶数字滤波器实现:
H(z) =1-0.937 5/z
端点检测采用基于短时能量和短时平均过零率法,利用已知为“静态”的最初十帧信号为短时能量设置2个门限ampl和amph,以及过零率阈值zcr。语音起始点从第11帧开始检测,其流程图如图4。语音结束点的检测方法与检测起点相似,但此时从后向前搜索。
在语音识别中,最为简单有效的方法是采用DTW(Dynamic Time Warping,动态时间规整)算法,该算法基于动态规划的思想,解决了发音长短不一的模板匹配问题,是语音识别中出现最早、较为经典的一种算法[3]。
MATLAB是一种功能强大、效率高、交互性好的数值计算和可视化计算机高级语言,它将数值分析、信号处理和图形显示有机地融合为一体,形成了一个极其方便、用户界面友好的操作环境。本文就是在MATLAB基础上来进行语音信号参数的分析与语音信号的识别的。
考虑到语音中各段在不同的情况下持续时间会产生或长或短的变化,因而更多地是采用动态规划DP的方法。把测试模板的各个帧号n=1~N在一个二维直角坐标系中的横轴上标出,把参考模板的各帧号m=1~M在纵轴上标出,通过这些形成网格,网格的每一个交叉点(n,m)即表示测试模式中某一帧与训练模式中某一帧的交汇点。DP算法即可以归结为寻找一条通过此网格中若干个点的路径。路径通过的格点即为此时与参考模板中进行距离计算的帧号。应当注意,路径不是随意选择的,选取的路径必定是从左下角出发,在右上角结束。
短时傅立叶分析在运用离散时间傅立叶变换分析语音信号的变化时,会遇到这样的问题,即单一的傅立叶变换并不能反映时间变化的频谱信息,诸如时变共振峰和谐波。具体而言,通常将信号的每一时刻与其相邻时刻信号的傅立叶变换相联系,这样就可以及时跟踪信号的频谱变化。语音信号的短时傅立叶变换见程序所述。短时傅立叶分析一般采用汉明窗作为分析窗。
图1语音识别系统方案框图
语音识别的过程可以被看作模式匹配的过程,模式匹配是指根据一定的准则,使未知模式与模型库中的某一个模型获得最佳匹配的过程。模式匹配中需要用到的参考模板通过模板训练获得。在训练阶段,将特征参数进行一定的处理后,为每个词条建立一个模型,保存为模板库。在识别阶段,语音信号经过相同的通道得到语音特征参数,生成测试模板,与参考模板进行匹配,将匹配分数最高的参考模板作为识别结果。
浊音的短时谱有两个特点:第一,有明显的周期性起伏结构,这是因为浊音的激励源为周期脉冲气流;第二,频谱中明显地有凸出点,即“共振峰”,它们的出现频率与声道的谐振频率相对应。清音的短时谱则没有这两个特点,它十分类似于一段随机噪声的频谱。
2.1时域分析
语音信号具有时变特性,但在一个短时间范围内(一般认为在10~30ms的短时间内),其特性基本保持不变,即相对稳定,因而可以将其看作是一个准稳态过程,即语音信号具有短时平稳性。任何语音信号的分析和处理必须建立在“短时”的基础上,即进行“短时分析”,将语音信号分段来分析其特征参数,其中每一段称为一“帧”,帧长一般取为10~30ms。这样,对于整体的语音信号来讲,分析出的是由每一帧特征参数组成的特征参数时间序列。
由于在模板匹配过程中限定了弯折的斜率,因此平行四边形之外的格点对应的帧匹配距离是不需要计算的。另外,因为每一列各格点上的匹配计算只用到了前一列的3个网格,所以没有必要保存所有的帧匹配距离矩阵和累积距离矩阵。充分利用这两个特点可以减少计算量和存储空间的需求,形成一种高效的DTW算法。图2中,把实际的动态弯折分为三段,(1,xa),(xa+1,xb),(xb+1,N),其中:
plot(w,hr);
title('幅频图');
xlabel('Frequency in rad mple')
ylabel('Magnitude in dB')
subplot(3,3,3)
hphase=angle(h);
hphase=unwrap(hphase); %求系统相频响应
plot(w,hphase);
2.1.2短时过零率分析
过零就是信号通过零值。对于连续语音信号,可以考察其时域波形通过时间轴的情况。对于离散时间信号,如果相邻的取样值改变符号则称为过零。由此可以计算过零数,过零数就是样本改变符号的次数。单位时间内的过零数称为平均过零数。短时过零分析通常用在端点侦测,特别是用来估计清音的起始位置和结束位置。
一、语音识别系统概述
一个完整特定人语音识别系统的方案框图如图1所示。输入的模拟语音信号首先要进行预处理,包括预滤波、采样和量化、加窗、端点检测、预加重等,然后是参数特征量的提取。提取的特征参数满足如下要求:
(1)特征参数能有效地代表语音特征,具有很好的区分性;
(2)参数间有良好的独立性;
(3)特征参数要计算方便,要考虑到语音识别的实时实现。
xa= (2M-N)/3,xb=2(2N-M)/3
xa和xb都取最相近的整数,由此可得出对M和N长度的限制条件:
2M-N≥3,2N-M≥2
当不满足以上条件时,认为两者差别太大,则无法进行动态弯折匹配。在x轴上的每一帧不再需要与y轴上的每一帧进行比较,而只是与y轴上[ymin,ymax]间的帧进行比较,ymin和ymax的计算公式为:
x=wavread(fname);
[x1 x2]=vad(x);
m=mfcc(x);
m=m(x1-2:x2-4,:);
ref(i).mfcc=m;
end
disp('正在分析语音信号...')
for i=1:10
fname=sprintf('%da.wav',i-1);
[x,fs,bit]=wavread(fname,[2000,2512]); %采样%
3、语音信号的处理
3.1、语音识别的DTW算法
本设计中,采用DTW算法,该算法基于动态规划(DP)的思想解决了发音长短不一的模板匹配问题,在训练和建立模板以及识别阶段,都先采用端点检测算法确定语音的起点和终点。
在本设计当中,我们建立的参考模板,m为训练语音帧的时序标号,M为该模板所包含的语音帧总数,R(m)为第m帧的语音特征矢量。所要识别的输入词条语音称为测试模板,n为测试语音帧的时序标号,N为该模板所包含的语音帧总数,T(n)为第n帧的语音特征矢量。参考模板和测试模板一般都采用相同类型的特征矢量(如LPCC系数)、相同的帧长、相同的窗函数和相同的帧移。
通常,规整函数被限制在一个平行四边形的网格内,如图3所示。它的一条边斜率为2,另一条边斜率为1/2。规整函数的起点是(1, 1),终点为(N,M)。DTW算法的目的是在此平行四边形内由起点到终点寻找一个规整函数,使其具有最小的代价函数,保证了测试模板与参考模板之间具有最大的声学相似特性。
图3匹配路径约束示意图
2.1.1短时能量分析
短时能量分析用途:第一,可以区分清音段和浊音段,因为浊音时的短时平均能量值比清音时大得多;第二,可以用来区分声母与韵母的分界、无声与有声的分界、连字的分界等。如对于高信噪比的语音信号,短时平均能量用来区分有无语音。无语音信号噪声的短时平均能量很小,而有语音信号的能量则显著增大到某一个数值,由此可以区分语音信号的开始点或者终止点。
2、语音信号分析
语音信号是一种典型的非平稳信号。对于非平稳信号,它是非周期的,频谱随时间连续变化,因此由傅里叶变换得到的频谱无法获知其在各个时刻的频谱特性。如果利用加窗的方法从语音流中取出其中一个短断,再进行傅里叶变换,就可以得到该语音的短时谱。
语音信号的基本组成单位是音素。音素可分成“浊音”和“清音”两大类。如果将不存在语音而只有背景噪声的情况称为“无声”,那么音素可以分成“无声”、“浊音”、“清音”三类。
ymin=x/2,0≤x≤xb,
2x+(M-2N),xb< x≤N
ymax=2x,0≤x≤xa,
x/2+(M-N/2),xa< x≤N
如果出现xa> xb的情况,则弯折匹配的三段为(1,xb),(xb+1,xa),(xa+1,N)。
对于x轴上每前进一帧,虽然所要比较的y轴上的帧数不同,但弯折特性是一样的,累积距离的更新都是用下式实现的:
D(x,y) = d(x,y)+min[D(x-1,y),D(x-1,y-1),D(x-1,y-2)]
3.2、MATLAB仿真过程
3.2.1语音信号预处理
语音信号的预处理包括预滤波、采样和量化、加窗、预加重、端点检测等过程。由于语音信号在帧长为10ms~30ms之内是相对平稳的,同时为了便于计算FFT,本系统选取帧长N为256个语音点,帧移M为128点。
图4语音起点检测流程图
3.2特征参数提取及语音识别
众多研究表明,倒谱特征参数所含的信息量比其他参数多,能较好地表现语音信号。本文选取能够反映人对语音的感知特性的Mel频率倒谱系数(MFCC)作为特征参数,阶数为12。经过MFCC特征参数提取后,各帧语音信号就形成了一个个特征矢量。识别时,将待测语音与模板库中的每一个模板进行模式匹配,找到距离最小的模板作为输出结果。
%sound(x,fs); %播放语音信号
figure(i);
subplot(3,3,1);
plot(x(1:256)); %原始语音信号的时域图形%
title('原始信号')
subplot(3,3,2)
[h,w]=freqz(x,fs) %原始语音信号的频率响应图
hr=abs(h);%求系统幅频响应
[9]韩纪庆,张磊,郑铁然.语音信号处理[M].北京:清华大学出版社,2004
[10]李晋.语音信号端点检测算法研究[D].长沙:湖南师范大学,2006.
附录—程序:
主程序:
yuyinshibie.m
disp('正在计算参考模板的参数...')
for i=1:10
fname=sprintf('%da.wav',i-1);
[5]胡航.语音信号处理[M].哈尔滨:哈尔滨工业大学出版社,2000,5.
[6]胡广书.数字信号处理理论、算法与实现[M].北京:清华大学出版社,1997.
[7]王炳锡,等.实用语音识别基础[M].北京:国防工业出版社,2005.
[8]林波,吕明.基于DTW改进算法的弧立词识别系统的仿真与分析[J].信息技术,2006,30(4):56-59.
摘要:本文针对所采集的语音信号,对其时域、频域参数进行了系统详尽的分析,并在MATLAB环境下实现了基于DTW算法的特定人语音信号0到9的识别。
关键词:语音识别;MATLAB;短时傅立叶;DTW
引言
近年来,语音识别已经成为一个非常活跃的研究领域。在不远的将来,语音识别技术有可能作为一种重要的人机交互手段,辅助甚至取代传统的键盘、鼠标等输入设备,在个人计算机上进行文字录入和操作控制。而在智能家电、工业现场控制等其他应用场合,语音识别技术则有更为广阔的发展前景。
4、语音信号处理结果
如图4为语音信号“8”的处理结果,其他语音信号处理结果图不在此一一给出。
图4语音信号“8”的处理结果图
以下为得到的最终处理结果,10个数字识别正确。经测试,程序等到了较好的语音识别效果。
三、总结
本文用MATLAB编程完成的数字语音信号识别系统详细地分析了语音信号的时域、频域等特性,并实现了对数字0到9的准确识别。通过语音识别系统的设计,对数字信号处理的流程有了深刻的认识,也为以后使用MATLAB软件编程完成各项任务打好了基础。
二、语音信号的分析与处理
1、语音信号采集
该实验以实验者本人的声音(语音信号0~9)为分析样本,是利用PC机录制,音频文件采用8000kHz采样频率、16bit量化、单声道的PCM录音格式,用MATLAB本身wavread函数来读取语音文件。如图2为采集的数字信号“3”的语音原始信号。
图2采集的数字语音“3”的原始信号
参考文献:
[1]程佩青.数字信号处理教程[M].北京.清华大学出版社,2006.
[2]何强,何英.MATLAB扩展编程[M].北京:清华大学出版社,2002.
[3]王炳锡,屈丹,彭煊.实用语音识别基础[M].北京:国防工业出版社,2005.
[4]易克初,等.语音信号处理[M].北京:国防工业出版社,2006,6.
本文采用汉明窗对语音信号进行分帧处理,如下式:
ω(n) =0Βιβλιοθήκη Baidu54-0.46cos(2πn/(N-1)),0≤n≤N-1
预加重用具有6dB/倍频程的提升高频特性的一阶数字滤波器实现:
H(z) =1-0.937 5/z
端点检测采用基于短时能量和短时平均过零率法,利用已知为“静态”的最初十帧信号为短时能量设置2个门限ampl和amph,以及过零率阈值zcr。语音起始点从第11帧开始检测,其流程图如图4。语音结束点的检测方法与检测起点相似,但此时从后向前搜索。
在语音识别中,最为简单有效的方法是采用DTW(Dynamic Time Warping,动态时间规整)算法,该算法基于动态规划的思想,解决了发音长短不一的模板匹配问题,是语音识别中出现最早、较为经典的一种算法[3]。
MATLAB是一种功能强大、效率高、交互性好的数值计算和可视化计算机高级语言,它将数值分析、信号处理和图形显示有机地融合为一体,形成了一个极其方便、用户界面友好的操作环境。本文就是在MATLAB基础上来进行语音信号参数的分析与语音信号的识别的。
考虑到语音中各段在不同的情况下持续时间会产生或长或短的变化,因而更多地是采用动态规划DP的方法。把测试模板的各个帧号n=1~N在一个二维直角坐标系中的横轴上标出,把参考模板的各帧号m=1~M在纵轴上标出,通过这些形成网格,网格的每一个交叉点(n,m)即表示测试模式中某一帧与训练模式中某一帧的交汇点。DP算法即可以归结为寻找一条通过此网格中若干个点的路径。路径通过的格点即为此时与参考模板中进行距离计算的帧号。应当注意,路径不是随意选择的,选取的路径必定是从左下角出发,在右上角结束。