高等代数选讲

高等代数选讲
高等代数选讲

一、单项选择题

1.设,A B 是n 阶方阵,k 是一正整数,则必有( D )

() ()k k k A AB A B =; - ()B A A -=-;

22()()()C A B A B A B -=-+; ()D AB B A =。 2.设A 为m n ?矩阵,B 为n m ?矩阵,则( B )。

()A 若m n >,则0AB =; ()B 若m n <,则0AB =; ()

C 若m n >,则0AB ≠; ()

D 若m n <,则0AB ≠;

3.n R 中下列子集不是n R 的子空间的为( A ).

()

{}

3111[,0,,0,],n n A W a a a a =∈ R

()3

2121[,,,],1,2,,,1n

n i i i B W a a a a i n a =??=∈==????∑ R ;

()3

3121[,,,],1,2,,,1n

n i i i C W a a a a i n a =??=∈==????

∏ R ;

, ()

{}342[1,,,],2,3,,n i D W a a a i n =∈= R

二、填空题

1.计算行列式22

2

1

112

3

4234= 2 ;

32001

200

2321

244

= 16 。

2.设44411

32145

333222354245613

D =,则212223A A A ++= 20 ;

2425A A += 0 。

三.计算n 阶行列式:530002530002500000530

2

5

n D =

解: 2156355

000002000052000352000350000323

3

200005200035200035200035000035

--?-?=-=n n D

四.已知矩阵X 满足111221022402110066X -????

????=-????

????-????

,求X 解:由于060

1122

011

1

≠=-- 故

五.利用综合除法将5()f x x =表示成1x -的方幂和的形式。 解:令f(x)=(x-1)5+a(x-1)4+b(x-1)3+c(x-1)2+d(x-1)+e ,则

问题变为把多项式f(x)表成x-1的方幂和,由综合除法:

1 | 1 0 0 0 0 0 +) 1 1 1 1 1 1

------------------------------------------------------- 1 | 1 1 1 1 1 | 1 +) 1 2 3 4

------------------------------------------------------ 1 | 1 2 3 4 | 5 +) 1 3 6

----------------------------------------------- 1 | 1 3 6 | 10 +) 1 4

---------------------------------- 1| 1 4 | 10 +) 1

---------------------------------- 1| 1 | 5

所以1)1(5)1(10)1(10)1(5)1()(2345+-+-+-+-+-=x x x x x x f

(完整版)奥鹏福师201803《高等代数选讲》试卷A参考答案

▆ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 《高等代数选讲》期末考试 一、 单项选择题(每小题4分,共20分) 1 2 3 4 5 D A A C D 1.设,A B 是n 阶方阵,k 是一正整数,则必有( ) () ()k k k A AB A B =; ()B A A -=-; 22() ()()C A B A B A B -=-+; ()D AB B A =。 2.设A 为m n ?矩阵,B 为n m ?矩阵,则( )。 ()A 若m n >,则0AB =; ()B 若m n <,则0AB =; () C 若m n >,则0AB ≠; () D 若m n <,则0AB ≠; 3.n R 中下列子集是n R 的子空间的为( ). () {} 3111[,0,,0,],n n A W a a a a =∈L R ()3 2121[,,,],1,2,,,1n n i i i B W a a a a i n a =??=∈==???? ∑L L R ; ()33121[,,,],1,2,,,1n n i i i C W a a a a i n a =?? =∈==????∏L L R ;, () {}342[1,,,],2,3,,n i D W a a a i n =∈=L L R 4.3元非齐次线性方程组Ax b =,秩()2r A =,有3个解向量 123,,ααα, 23(1,0,0)T αα-=,12(2,4,6)T a α+=,则Ax b =的一般解形式为( ). (A )1(2,4,6)(1,0,0)T T k +,1k 为任意常数 (B ) 1(1,2,3)(1,0,0)T T k +,1k 为任意常数 (C )1(1,0,0)(2,4,6)T T k + ,1k 为任意常数 (D ) 1(1,0,0)(1,2,3)T T k +,1k 为任意常数 5.已知矩阵A 的特征值为1,1,2-,则1A -的特征值为( ) ()A 1,1,2-; ()B 2,2,4-; ()C 1,1,0-; ()D 11,1, 2 -。 二、 填空题(共20分) 1.(6分)计算行列式2 2 2 1 11 2 34234= 2 ;32001200 02321 2 4 4 = 16 。 2.(4分)设4 44113 2145 3 33222354245613 D =,则212223A A A ++= 0 ;2425A A += 0 。 3.(3分)计算 100123100010456001001789010?????? ??????-=?????????????????? 。 4.(4分)若2 4 2 (1)|1x ax bx -++,则a = 1 ;b = -2 。 5.(3分)当λ满足 λ≠1,-2 时,方程组 000x y z x y z x y z λλλ++=?? ++=??++=? 有唯一解。 三.(10分)计算n 阶行列式:320001320 01300 000320 1 3 n D = L L L L L L L L L L L 四.(10分)已知矩阵X 满足111221022402110066X -???? ????=-????????-???? ,求X

七年级下册数学作业本答案2020(苏教版)

七年级下册数学作业本答案2020(苏教版) 1、 =-0.5 =2 2、略 3、略 4、-1.50062×10^4 5、-0.00203 6、-1/(1+2a) -3/(2ab 2(x-y) 7、<-2.5 8、扩大5倍 选择题 ABC 12、 (1)=b/(a+b) (2)=3/(x-1) (3)=【(x-y)2/xy】× 【xy/(x+y)2】 = (x 2-2xy+y 2)/(x 2+2xy+y 2) (4)=(32x^7)/(9 y^3) 13、 x-12=2x+1 x=1 14、(1) x带入原式= (-2/5 – 2k)/-6/5k = 8/5 k=-5 (2)原式=x 2/(x 2+x) 当x=-1/2时,原式=-1 15、原式的倒数=3(x 2+1/x 2-1)=-9/4 16、原式=(a+ab+abc)÷(a+ab+abc)=1 17、设小李x,小王x+2。 60/(x+2)=48/x x=8 x+2=10 1、(1)右 4 下 5 下 5 右 4 点A′ 点B′ ∠C′ 线段B′C′ (2)相同距离

(3)相等相等相等 (4)形状 (5)距离 (6)略 2、图自己画啊 (1)一个定点这个定点 (2) 旋转中心相等相等相等 (3)大小形状 (4)略 3、图自己画 (1)180° 另一个图形两个图形这点两个图形成中心对称对称中心交点 (2)初始旋转中心旋转角0°<α<360° (3)180° 初始图形对称中心 (4)略 4、图自己画 (1)成轴对称直线 (2)相等相等相同不变 (3)两对对应点中点的垂线 (4)相互重合轴对称图形直线 (5)过圆心的直线无数边中点的中垂线 3 4 2

(完整word版)高等代数习题集

高等代数习题集 苏州大学数学科学学院高等代数组收集 2003, 4,30 1.设X = ,求X。 2.设二次型f(x1, x2,... , x n)是不定的,证明:存在n维向量X0,使X0'AX0 = 0,其中A是该二次型的矩阵。 3.设W = {f (x)| f (x) P[x]4, f (2) = 0}。 a 证明:W是P[x]4的子空间。 b 求W的维数与一组基。 4.在R3中定义变换A:任意 (x1, x2, x3) R3, A(x1, x2, x3) = (2x2 + x3, x -4x2, 3x3)。 1 1, 证明:A是Rr3上线性变换, 2, 求A在基xi1 = (1, 0, 0), xi2 = (0, 1, 0), xi3 = (1, 1, 1)下的矩阵。 5.设,求正交矩阵T,使T'AT成对角形。 6.设V是数域P上n维线性空间,A是V上可逆线性变换,W是A的不变子 空间。证明:W也是A-1的不变子空间。

7.设V是n维欧氏空间,A是V上变换。若任意,V,有 (A, A) = (,)。证明:A是V上线性变换,从而是V上正交变换。 8.设X = ,求X。 9.设A是奇数级的实对称矩阵,且| A| > 0,证明:存在实n维向量X0 0,使X0'AX0 > 0。 10.设A = ,W = {|R4, A = 0}。证明: 1.[1,]W是4的一个子空间。 2.[2,]求W的维数与一组基。 11.设B,C = ,在R2 x 2中定义变换A: 任意X R2 x 2, A(X) = BXC。 1, 证明:A是R2 x 2上线性变换。。 2, 求A在基E11, E12, E21, E22下的矩阵。 12.用正交线性替换,化实二次型f (x1, x2, x3) = 2x1x2 +2x1x3 -2x2x3为标 准形。 13.设V为数域P上线性空间,A是V上线性变换,若 (A2)-1(0) = A-1(0), 证明:V = AV.+A-1(0)。 14.设V是n维欧氏空间。A是V上正交变换,W是A的不变子空间。证明: W也是A的不变子空间。 15.设X = ,求X。

奥鹏福师201803《高等代数选讲》试卷A参考答案

▆ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 《高等代数选讲》期末考试 一、 单项选择题(每小题4分,共20分) 1 2 3 4 5 D A A C D 1.设,A B 是n 阶方阵,k 是一正整数,则必有( ) () ()k k k A AB A B =; ()B A A -=-; 22() ()()C A B A B A B -=-+; ()D AB B A =。 2.设A 为m n ?矩阵,B 为n m ?矩阵,则( )。 ()A 若m n >,则0AB =; ()B 若m n <,则0AB =; () C 若m n >,则0AB ≠; () D 若m n <,则0AB ≠; 3.n R 中下列子集是n R 的子空间的为( ). () {} 3111[,0,,0,],n n A W a a a a =∈R ()3 2121[,, ,],1,2, ,,1n n i i i B W a a a a i n a =? ? =∈==????∑R ; ()33121[,, ,],1,2,,,1n n i i i C W a a a a i n a =? ? =∈==????∏R ;, () {}342[1,, ,],2,3, ,n i D W a a a i n =∈=R 4.3元非齐次线性方程组Ax b =,秩()2r A =,有3个解向量 123,,ααα, 23(1,0,0)T αα-=,12(2,4,6)T a α+=,则A x b =的一般解形式为( ). (A )1(2,4,6)(1,0,0)T T k +,1k 为任意常数 (B ) 1(1,2,3)(1,0,0)T T k +,1k 为任意常数 (C )1(1,0,0)(2,4,6)T T k + ,1k 为任意常数 (D ) 1(1,0,0)(1,2,3)T T k +,1k 为任意常数 5.已知矩阵A 的特征值为1,1,2-,则1A -的特征值为( ) ()A 1,1,2-; ()B 2,2,4-; ()C 1,1,0-; ()D 11,1, 2 -。 二、 填空题(共20分) 1.(6分)计算行列式2 2 2 1 11 2 34234= 2 ;32001200 02321 2 4 4 = 16 。 2.(4分)设444113 2145 3 33222354245613 D =,则21222 3A A A ++= 0 ; 2425A A += 0 。 3.(3分)计算 100123100010456001001789010?????? ??????-=?????????????????? 。 4.(4分)若2 4 2 (1)|1x ax bx -++,则a = 1 ;b = -2 。 5.(3分)当λ满足 λ≠1,-2 时,方程组 000x y z x y z x y z λλλ++=?? ++=??++=? 有唯一解。 三.(10分)计算n 阶行列式:320001320001300000320 1 3 n D = 四.(10分)已知矩阵X 满足111221022402110066X -???? ????=-????????-???? ,求X

高等代数多项式习题解答

第一章 多项式习题解答 1.用)(x g 除)(x f ,求商)(x q 与余式)(x r . 1)123)(,13)(223+-=---=x x x g x x x x f 9731929269 791437134373 132131232223232 ----+----+----+-x x x x x x x x x x x x x x 9 2926)(,9731)(--=-=x x r x x q . 2)2)(,52)(24+-=+-=x x x g x x x f 1 752 5 422225200222223232 342342-++--+-+--+---+-+-+++-x x x x x x x x x x x x x x x x x x x x x x 75)(,1)(2+-=-+=x x r x x x q . 2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1 m x m q x p m m x m x m q x p mx x mx x q px x x mx x --++++--+++--++++-+) ()1()1(01 222223232 当且仅当m q p m ==++,012时q px x mx x ++-+32|1.

本题也可用待定系数法求解.当q px x mx x ++-+32|1时,用12-+mx x 去除q px x ++3,余式为零,比较首项系数及常数项可得其商为q x -.于是有 q x mq x q m x mx x q x q px x ++--+=-+-=++)1()()1)((2323. 因此有m q p m ==++,012. 2)q px x mx x ++++242|1 由带余除法可得 )1()2()1)(1(2222224m p q x m p m m p mx x mx x q px x --++--++-+-++=++ 当且仅当0)1()2()(22=--++--=m p q x m p m x r 时q px x mx x ++++242|1.即 ???=--+=--0 10)2(22m p q m p m ,即???=+=,1,0p q m 或???==+.1,22q m p 本题也可用待定系数法求解.当q px x mx x ++++242|1时,用12++mx x 去除q px x ++24,余式为零,比较首项系数及常数项可得其商可设为q ax x ++2.于是有 )1)((2224++++=++mx x q ax x q px x .)()1()(234q x mq a x q ma x a m x ++++++++= 比较系数可得.0,1,0=+=++=+mq a p q ma a m 消去a 可得 ???=+=,1,0p q m 或???==+. 1,22q m p 3.求)(x g 除)(x f 的商)(x q 与余式)(x r . 1);3)(,852)(35+=--=x x g x x x x f 解:运用综合除法可得 327 1093913623271170 83918605023--------- 商为109391362)(234+-+-=x x x x x q ,余式为.327)(-=x r

初二年级下册数学课堂作业本答案

初二年级下册数学课堂作业本答案 参考答案第1章平行线【1.1】1.∠4,∠4,∠2,∠5 2.2,1,3,BC 3.C4.∠2与∠3相等,∠3与∠5互补.理由略5.同位角是∠BFD 和∠DEC,同旁内角是∠AFD 和∠AED6.各4对.同位角有∠B 与∠GAD,∠B 与∠DCF,∠D 与∠HAB,∠D 与∠ECB;内错角有∠B 与∠BCE, ∠B 与∠HAB,∠D 与∠GAD,∠D 与∠DCF;同旁内角有∠B 与∠DAB, ∠B 与∠DCB,∠D 与∠DAB,∠D与∠DCB 【1.2(1)】1.(1)AB,CD (2)∠3,同位角相等,两直线平行 2.略3.AB∥CD,理由略 4.已知,∠B,2,同位角相等,两直线平行5.a与 b平行.理由略6.DG∥BF.理由如下:由DG,BF 分别是∠ADE 和∠ABC 的角平分线,得∠ADG=12∠ADE,∠ABF= 12 ∠ABC,则∠ADG=∠ABF, 所以由同位角相等,两直线平行,得DG∥BF 【1.2(2)】1.(1)2,4,内错角相等,两直线平行 (2)1,3,内错 角相等,两直线平行2.D3.(1)a∥c,同位角相等,两直线平行 (2)b∥c,内错角相等,两直线平行(3)a∥b,因为∠1,∠2的对顶角 是同旁内角且互补,所以两直线平行4.平行.理由如下:由 ∠BCD=120°,∠CDE=30°,可得∠DEC=90°.所以 ∠DEC+∠ABC=180°,AB∥DE (同旁内角互补,两直线平 行)5.(1)180°;AD;BC(2)AB 与CD 不一定平行.若加上条件∠ACD=90°,或∠1+∠D=90°等都可说明AB∥CD6.AB∥CD.由已知可得 ∠ABD+∠BDC=180° 7.略 【1.3(1)】1.D 2.∠1=70°,∠2=70°,∠3=110°3.∠3=∠4.理 由如下:由∠1=∠2,得DE∥BC(同位角相等,两直线平行),∴ ∠3=∠4(两直线平行,同位角相等)4.垂直的意义;已知;两直线平行, 同位角相等;305.β=44°. ∵ AB∥CD,∴ α=β6.(1)∠B=∠D (2) 由2x+15=65-3x解得x=10,所以∠1=35°

高数作业本答案(上册)

第一章 答案 习题1.1 1.判断题:1)× 2)× 3)√ 4)× 5)× 6)× 7)× 8)× 2.1)不同;2)不同;3)相同;4)不同;5)不同; 3.1)],0[],4(ππ?--;2)? ?????±±=-π+π≠+∞-∞∈ 2,1,0,12),,(|k k x x x 且; 3)当]1,[21a a a -≤ 时,为,当φ时,为2 1 >a 。 4.1)13-=x y ;2)]2,2[,3arcsin 31-∈=x x y ;3))1,0(,1log 2 ∈-=x x x y ; 4)? ??≤<-≤≤-+=10,1 1,1x x x x y . 5.? ??≠==1,01 ,1))((x x x g f ;1))((=x f g . 习题1.2~1.3 1. 1)(lim 0 =- →x f x ,1)(lim 0 =+ →x f x ,1)(lim 0 =→x f x ; 1)(lim 0 -=?- →x x ,1)(lim 0 =?- →x x ,)(lim 0 x x ?-→不存在. 2. 1)极限不存在;2)2 )1cot 1(arctan lim 0 π =+→x arc x x . 3. 略 习题1.4 1.判断题:1)× 2)× 3)√ 4)× 2.C ;D. 习题1.5 1.1)1;2) 21;3)21;4)21. 2. 1)41;2))(21m n mn -;3)2 1 ;4)6. 3.1)0;2)1;3)0;4)1;5)不存在;6)1;7)0 习题1.6 1.1)1;2) 2 5 1+; 2.1)2 e ;2)4 -e 3.1)2;2) 32;3)2 2-;4)e ;5)e 1;6)2π.

高等代数习题及答案

高等代数试卷 一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、)(x p 若是数域F 上的不可约多项式,那么)(x p 在F 中必定没有根。 ( ) 2、若线性方程组的系数行列式为零,由克莱姆法则知,这个线性方程组一定是无解的。 ( ) 3、实二次型),,,(21n x x x f 正定的充要条件是它的符号差为n 。 ( ) 4、 321321;3,2,1,,,x x x i R x x x x W i 是线性空间3R 的一个子空间。( ) 5、数域F 上的每一个线性空间都有基和维数。 ( ) 6、两个n 元实二次型能够用满秩线性变换互相转化的充要条件是它们有相同的正惯性指数和负惯性指数。 ( ) 7、零变换和单位变换都是数乘变换。 ( ) 8、线性变换 的属于特征根0 的特征向量只有有限个。 ( ) 9、欧氏空间V 上的线性变换 是对称变换的充要条件为 关于标准正交基的矩阵为实对称矩阵。 ( ) 10、若 n ,,,21 是欧氏空间V 的标准正交基,且 n i i i x 1 ,那么 n i i x 1 2 。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写 在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、关于多项式的最大公因式的下列命题中,错误的是( ) ① n n n x g x f x g x f ,, ; ② n j i j i f f f f f j i n ,,2,1,,,1,1,,,21 ; ③ x g x g x f x g x f ,, ; ④若 1,1, x g x f x g x f x g x f 。 2、设D 是一个n 阶行列式,那么( ) ①行列式与它的转置行列式相等; ②D 中两行互换,则行列式不变符号; ③若0 D ,则D 中必有一行全是零; ④若0 D ,则D 中必有两行成比例。 3、设矩阵A 的秩为r r (>)1,那么( ) ①A 中每个s s (<)r 阶子式都为零; ②A 中每个r 阶子式都不为零;

福建师范大学《高等代数选讲》A卷答案(可编辑修改word版)

1 1 n 1 4 2 n i 福建师范大学网络教育学院 《高等代数选讲》 期末考试 A 卷 学习中心 专业 学号 姓名 成绩 一、单项选择题(每小题 4 分,共 20 分) 1. 设 A , B 是n 阶方阵, k 是一正整数,则必有(D) (A ) )( AB )k = A k B k ; (B ) - A = - A ; (C ) (C ) A 2 - B 2 = ( A - B )( A + B ) ; (D ) (D ) AB = B A 。 2. 设 A 为m ? n 矩阵, B 为n ? m 矩阵,则( A )。 ( A ) 若m > n ,则 AB = 0 ; (B ) 若m < n ,则 AB = 0 ; (C ) 若m > n ,则 AB ≠ 0 ; (D ) 若m < n ,则 AB ≠ 0 ; 3. R n 中下列子集是R n 的子空间的为( A ). ( A ) W = {[a , 0, , 0, a ] a , a ∈ R 3} ( B ) W = ? , a ] a ∈ R 3, i = 1, 2, , n , ∑ a = ? 2 ?[a 1 , a 2 , n i ? ? 3 i i =1 n 1? ; ? ? (C ) W 3 = ?[a 1 , a 2 , , a n ] a i ∈ R , i = 1, 2, , n , ∏ a i = 1? ;, ( D ) ? W = {[1, a , , a ] i =1 ? a ∈ R 3 , i = 2, 3, , n } 4. 3 元非齐次线性方程组 Ax = b , 秩 r ( A ) = 2 , 有 3 个解向量 1,2 ,3 , - = (1, 0, 0)T , a + = (2, 4, 6)T ,则 Ax = b 的一般解形式为( C ). 2 3 1 2 n n

高等代数 习题

习题五 欧氏空间 1. 已知ABCD 的对角线为,,AC BD AB BC CD DA αβ==求、、、。 2. 设,,A B C 是任意三点,求AB BC CA ++。 3. 如果平面上一个四边形的对角线互相平分,试应用向量证明它是平行四边形。 4. 用几何作图证明 ()()()()()121112()222αβαβα αβαβαβ++-=? ?+-+=- ? ?? 5. 已知(3,5,4),(6,1,2),(0,3,4),234αβγαβγ==-=-++求。 6. 已知点A (3,5,7)和点B (0,3,-4),求向量AB 并求A 关于B 的对称点C 的坐标。 7. 设向量α的长度是5,α与轴u 的夹角是30,求α在轴u 上的投影。 8. 已知()()||||αβαβ+=-,试证(1)()()100αβαββγγα=?+?+?=;2的充要条件是αβγ、、共面。 9. 设αβγ、、是三个向量, k 、l 是两个实数,试证 ()()()() 12k l αβαβγαββαγα?+与正交 -与正交 10. 已知αβγ、、为单位向量,且满足0αβγ=++,计算αββγγα++。 11. 已知(1,2,3),(2,1,0),(6,2,6)αβγ=-==-。 ()()()[]()12343 42,,x y x y αβγ αβαγαγαβαβγαβγβγ+?=+-=+是否与平行?求,, ,;求,;设,求。

12. 已知()()(),,,,,,,,x y z x y z x y z ααααββββγγαα===,试利用行列式的性质证明())()αβγβγαγαβ==( 13. 已知空间三点A (1,0,-1),B (1,-2,0),C (1,1,1)。 (1) 求以OA 、OB 为邻边的平行四边形的面积; (2) 求以O 、A 、B 、C 为顶点的四面体的体积。 14. 判断αβγ、、是否共面 ()()()1(4,0,2),(6,9,8),(6,3,3)2(1,2,3),(3,3,1),(1,7,5) 3(1,1,2),(2,4,5), (3,9,8) αβ γαβγαβγ==-=-=- ==-=- == 15. 90,30,ABC B ?∠∠=中,A= AD 是BC 边上的高,求点D 对坐标系 {};,A AB AC 的坐标。 16. 在四面体OABC 中,M 是ABC 的重心,E 、F 分别是AB 、AC 的中心,求向量EF ME MF 、、在坐标系{};,,O OA OB OC 下的坐标。 17. 如0αβγ=++,证明αββγγα==。 18. 如,αβγδαγβδ???=?=,证明αδβγ--与共线。 19. 已知向量,2,22i j k i j k αβγ==-=-+,求单位向量δ,使δγ⊥,且 αβδ、、共面。 20. 已知,i j j k αβ=+=+,且αβγ、、的长度相等,两两夹角也相等,试求γ 。 21. 已知()()()]()αβγαββγγα?+?-=2,求[。 22. 求下列各平面的参数方程及一般方程: a) 经过点A (1,2,3)且平行于向量v 1 =(1,-2,1), v 2 =(0,1,2); b) 经过点A (1,1,2)、B =(3,-2,0)、 C =(10,5,-5)三点;

高代选讲心得

高代选讲心得 说起数学,这是让我引以为豪的学科。从初中开始就喜欢数学,是那种没有理由的喜欢,因此当了六年的数学科代表。大学也选择了数学与应用数学专业,目标是当数学老师,估计这辈子跟数学是分不开的了。 高等代数是我进入大学所学的第一门专业课,高等代数是数学专业本科生最重要的一门基础课,它和数学分析、解析几何统称为数学专业的三门基础课程。从中学数学到高等数学,实际上是由具体的、粗浅的数学结构上升到了严谨的公理化体系的论述,由形象思维上升到抽象思维,由特殊到一般,由简单到复杂,由低级到高级。高等代数为后面我学习近似代数、拓扑学等学科奠定了基础。刚接触这门课的时候,觉得很难很抽象,就以做题目为例,凡是涉及到数字计算的还可以做,一到脱离数字的证明题就无从下手。经过三年的大学学习,特别是这次学完高等代数选讲,让我获益匪浅。具体可以从下面这几大方面来说: 一、高等代数选讲这门学科自身的魅力 首先是矩阵,用陈老师的话来说,就是“很漂亮”。学完高等代数选讲,会发现矩阵、矩阵的行列式、矩阵的秩、逆、转置以及特征值、特征向量可以解决很多数学问题。比如线性方程组可以表示成矩阵和列向量的乘积,通过该系数矩阵的秩和增广矩阵的秩以及未知数的个数的关系可以判断该线性方程是无解、有唯一解还是有无穷多解。他们彼此之间不是独立的,是相互联系的。比如求矩阵A的逆可以利用伴随矩阵*A和行列式A的逆来求。矩阵的应用是多方面的,不仅在数学领域,在力学、物理、科技等方面都有广泛的应用。 其次是等价关系。给定的集合中的元素之间的关系若满足反身性、对称性和传递性,则称该关系为等价关系。等价关系是高等代数中一个非常重要的关系,比如矩阵的相似、合同以及相抵关系都是等价关系、线性映射的同构也是一个等价关系。再联想初中、高中,我们所熟悉的全等三角形也可以看做是一个等价关系。 然后是线性空间。在高等代数选讲的前言中讲到,这本书分三个层次学习线性空间。第一个层次研究线性空间的元素之间的线性关系。在这本书的第四章,涉及到线性相关、线性无关、极大无关组、基和维数等。从线性空间的元素之间

习题与复习题详解(线性空间)----高等代数

习题5. 1 1. 判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间. 答 是. 因为是通常意义的矩阵加法与数乘, 所以只需检验集合对加法与数乘运算的封闭性. 由n 阶实对称矩阵的性质知,n 阶实对称矩阵加n 阶实对称矩阵仍然是n 阶实对称矩阵,数乘n 阶实对称矩阵仍然是n 阶实对称矩阵, 所以集合对矩阵加法与数乘运算封闭, 构成实数域上的线性空间. 2.全体正实数R +, 其加法与数乘定义为 ,,k a b ab k a a a b R k R +⊕==∈∈o 其中 判断R +按上面定义的加法与数乘是否构成实数域上的线性空间. 答 是. 设,R λμ∈. 因为,a b R a b ab R + + ?∈?⊕=∈, ,R a R a a R λλλ++?∈∈?=∈o , 所以R + 对定义的加法与数乘运算封闭. 下面一一验证八条线性运算规律 (1) a b ab ba b a ⊕===⊕; (2) ()()()()()a b c ab c ab c abc a bc a b c ⊕⊕=⊕====⊕⊕; (3) R +中存在零元素1, ?a R +∈, 有11a a a ⊕=?=; (4) 对R +中任一元素a ,存在负元素1n a R -∈, 使111a a aa --⊕==; (5)11a a a ==o ; (6)()()a a a a a λ μμλμλμλλμ??==== ??? o o o o ; (7) ()a a a a a a a a λμμμλλλμλμ++===⊕=⊕o o o ; 所以R +对定义的加法与数乘构成实数域上的线性空间. 3. 全体实n 阶矩阵,其加法定义为 按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 答 否. A B B A ∴⊕⊕与不一定相等. 故定义的加法不满足加法的交换律即运算规则(1), 全体实n 阶矩阵按定义的加法与数乘不构成实数域上的线性空间. 4.在22P ?中,{}2222/0,,W A A A P W P ??==∈判断是否是的子空间.

六年级下数学课堂作业本答案

六年级下数学课堂作业本答案 六年级下数学课堂作业本答案 一、填空题:(22分) 1、()÷24=38=24:()=()% 2、六年级数学下册数学期中考试卷:在2、 3、 4、6、9中选四个写出一个比例式:()。 3、在一个比例中,两个外项的积是12,其中一个内项是23,则另一个内项是()。 4、一瓶50克的盐水,盐与水的质量比是24∶1,盐有()克,将这瓶盐水搅拌均匀后平均分成两份,其中一份的含盐率是()%。 5、在一个比例式中,两个比的比值等于25,这个比例的两个内项分别是10以内相邻的两个质数,这个比例式是()。 6、总价一定,数量和单价成()比例,比例尺一定,图上距离和实际距离成()比例。 7、小圆半径是2厘米,大圆半径是3厘米,小圆与大圆周长的比是(),面积的比是()。 8、一件上衣七五折后售价是135元,这件上衣的原价是()元 9、六年级一班有50人参加数学考试,结果2人不达标,达标率是()%。 10、把一个棱长6cm的正方体木料削成一个最大的圆锥体,这个圆锥体的体积是()。 11、一个圆锥的体积是48立方厘米,高是8厘米,底面积是()平方厘米。

12、一辆车往返甲乙,去时用4小时,回来时,速度提高了17,回来时用()小时。 13、早上8时,小华在操场上量得1米长的竹竿的影长1.5米。同时,他还量得操场上旗杆的影长18米,操场上旗杆有()米。 14、纳税是每个公民应尽的义务。做服装生意的王叔叔上月营业额是6000元,如果按5%的税率缴纳营业税,王叔叔上月应缴营业 税()元? 15、如果甲数的4/5等于乙数的2/3,那么甲数:乙数=(:) 16、一圆柱,半径与高的比是4︰5,将这个圆柱的底面分成许 多相等的'小扇形,切开拼成一个近似长方体,长方体的长比宽多 8.56cm,这个圆柱的体积是()。 17、小亮练习投篮160次,命中率是60%,他有()次命中。 二、判断题:(5分) 1、圆的面积和半径成正比例。() 2、如果圆锥的体积是圆柱体积的,那么它们一定等底等高。() 3、如果一个比例的两个内项互为倒数,那么它的两个外项也互 为倒数。() 4、圆锥体的体积一定,它的底面积与高成反比例。() 5、吨等于40%吨。() 三、选择题:(7分) 1、将一个圆锥的底面直径扩大到原来的3倍,要使体积不变,高要缩小到原来的()。A.B.C.D. 2、两个正方形的边长的比是1∶3,那么,这两个正方形的面积 比是()。 A1∶3B3∶1C1∶9D9∶1

高等代数 第四章 矩阵练习题参考答案

第四章 矩阵习题参考答案 一、 判断题 1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错. 2. 如果20,A =则0A =. 错.如2 11,0,011A A A ??==≠ ?--?? 但. 3. 如果2 A A E +=,则A 为可逆矩阵. 正确.2()A A E A E A E +=?+=,因此A 可逆,且1A A E -=+. 4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n . 错.由0AB =可得()()r A r B n +≤.若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n . 5.C B A ,,为n 阶方阵,若,AC AB = 则.C B = 错.如112132,,112132A B C ?????? === ? ? ?------?????? ,有,AC AB =但B C ≠. 6.A 为n m ?矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使 .00 0??? ? ??=s I PAQ 正确.右边为矩阵A 的等价标准形,矩阵A 等价于其标准形. 7.n 阶矩阵A 可逆,则*A 也可逆. 正确.由A 可逆可得||0A ≠,又**||A A A A A E ==.因此*A 也可逆,且 11(*)|| A A A -= .

8.设B A ,为n 阶可逆矩阵,则.**)*(A B AB = 正确.*()()||||||.AB AB AB E A B E ==又 ()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====. 因此()()*()(**)AB AB AB B A =.由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆可得.**)*(A B AB = 二、 选择题 1.设A 是n 阶对称矩阵,B 是n 阶反对称矩阵()T B B =-,则下列矩阵中为反对称矩阵的是(B ). (A) AB BA - (B) AB BA + (C) 2()AB (D) BAB (A)(D)为对称矩阵,(B )为反对称矩阵,(C )当,A B 可交换时为对称矩阵. 2. 设A 是任意一个n 阶矩阵,那么( A )是对称矩阵. (A) T A A (B) T A A - (C) 2 A (D) T A A - 3.以下结论不正确的是( C ). (A) 如果A 是上三角矩阵,则2 A 也是上三角矩阵; (B) 如果A 是对称矩阵,则 2A 也是对称矩阵; (C) 如果A 是反对称矩阵,则2A 也是反对称矩阵; (D) 如果A 是对角阵,则2 A 也是对角阵. 4.A 是m k ?矩阵, B 是k t ?矩阵, 若B 的第j 列元素全为零,则下列结论正确的是(B ) (A ) AB 的第j 行元素全等于零; (B )AB 的第j 列元素全等于零; (C ) BA 的第j 行元素全等于零; (D ) BA 的第j 列元素全等于零;

高一数学必修四作业本答案

答案与提示 第一章三角函数 1.1任意角和弧度制 1.1.1任意角 1.B.2.C.3.C.4.-1485°=-53360°+315°.5.{-240°,120°}. 6.{α|α=k2360°-490°,k∈Z};230°;-130°;三. 7.2α的终边在第一、二象限或y轴的正半轴上,α2的终边在第二、四象限.集合表示略. 8.(1)M={α|α=k2360°-1840°,k∈Z}. (2)∵α∈M,且-360°≤α≤360°,∴-360°≤k2360°-1840°≤360°.∴1480°≤k2360°≤2200°,379≤k≤559.∵k∈Z,∴k=5,6,故α=-40°,或α=320°. 9.与45°角的终边关于x轴对称的角的集合为{α|α=k2360°-45°,k∈Z},关于y轴对称的角的集合为{α|α=k2360°+135°,k∈Z},关于原点对称的角的集合为{α|α=k2360°+225°,k∈Z},关于y=-x对称的角的集合为{α|α=k2360°+225°,k∈Z}. 10.(1){α|30°+k2180°≤α≤90°+k2180°,k∈Z}.(2){α|k2360°-45°≤α≤k2360°+45°,k∈Z}. 11.∵当大链轮转过一周时,转过了48个齿,这时小链轮也必须同步转过48个齿,为4820=2.4(周),即小链轮转过2.4周.∴小链轮转过的角度为360°32 4=864°. 1.1.2弧度制 1.B.2.D.3.D.4.αα=kπ+π4,k∈Z.5.-5π4.6.111km. 7.π9,7π9,13π9.8.2π15,2π5,2π3,4π5. 9.设扇形的圆心角是θrad,∵扇形的弧长是r θ,∴扇形的周长是2r+rθ,依题意,得2r+rθ=πr,∴θ=π-2,∴扇形的面积为S=12r2θ=12(π-2)r2. 10.设扇形的半径为R,其内切圆的半径为r,由已知得l=π2R,R=2lπ.又∵2r+r=R, ∴r=R2+1=(2-1)R=2(2-1)πl,∴内切圆的面积为S=πr2=4(3-22)πl2. 11.设圆心为O,则R=5,d=3,OP=R2-d2=4,ω=5rad/s,l=|α|R,α=ωt=25rad,l=4325=100(cm). 1.2任意角的三角函数 1.2.1任意角的三角函数(一) 1.B.2.B.3.C.4.k.5.π6,56π.6.x|x≠2kπ+32π,k∈Z. 7.-25.8.2kπ+π2,2kπ+π,k∈Z.9.α为第二象限角. 10.y=-3|x|=-3x(x≥0), 3x(x<0),若角α的终边为y=3x(x<0),即α是第三象限角,则sinα=-31010,tanα=3;若角α的终边为y=-3x(x≥0),即α是第四象限角,则sinα=-31010,tanα=-3. 11.f(x)=-(x-1)2+4(0≤x≤3).当x=1时,f(x)max=f(1)=4,即m=4;当x=3时,f(x)min=f(3)=0,即n=0.∴角α的终边经过点P(4,-1),r=17,sinα+cosα=-117+417=31717. 1.2.1任意角的三角函数(二) 1.B.2.C.3.B.4.334.5.2.6.1.7.0. 8.x|2kπ+π≤x<2kπ+32π,或x=2kπ,k∈Z. 9.(1)sin100°2cos240°<0.(2)tan-11π4-cos-11π4>0.(3)sin5+tan5<0. 10.(1)sin25π6=sin4π+π6=sinπ6=12.(2)cos-15π4=cos-4π+π4=cosπ4=22. (3)tan13π3=tan4π+π3=tanπ3=3. 11.(1)∵cosα>0,∴α的终边在第一或第四象限,或在x轴的非负半轴上; ∵tanα<0,∴α的终边在第四象限.故角α的集合为α2kπ-π2<α<2kπ,k∈Z. (2)∵2kπ-π2<α<2kπ,k∈Z,∴kπ-π4<α2<kπ,k∈Z .

高等代数北大版习题参考答案

第九章 欧氏空间 1.设()ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,

(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 122222 11211)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。 4) 由定义,知 ∑=j i j i ij y x a ,),(βα , α== β==

高等代数选讲作业

1,-2,3,则B= 2A I 4的特征值为1/3,-1/3,1/7. 4 4 4 1 1 3 2 1 4 5 5 ?设D = 1 1 1 2 2 ,则A21 + A22 + A23 2 4 5 4 2 4 5 5 1 3 《高等代数选讲》练习 1?设4 4 矩阵A =[■ , ,,2, 3], B =[ -, 1, 2, 3],其中:?「,1, 2, 3均为 4 维列向量,且A =3,|B| = 2,则A + B = 40 3 2?中下列子集不是R的子空间的为(C ). (A) W1 二{(X i,X2,X3)R |X2 =1};(B) W2 二{( X i,X2,X3)R IX3 =0}; _ 3 _ 3 (C) W3 叫(X1, X2,X3)R |X1=X2=X3};( D) W4 二{( X1,X2,X3)R |X,=X2—X3}3?设:j,〉2,〉3是四元非齐次线性方程组AX=b的三个解向量,且秩(A)=3 , R3:-1 二[1,2,3,4]T, :^ ■: 3 =[0,1,2,3]T, k为任意常数,则线性方程组A X二b的通解为 4 .已知矩阵A的特征值为 5 6 ?将f(X)=X5-1表示成X-1的方幕和的形式为

4 2 2 8 ?设矩阵A = 2 4 2 2 2 4 1 ?求矩阵A的所有特征值与特征向量; 2?求正交矩阵P,使得P J AP为对角矩阵。 —2 —21 解:由卜2 A-4 -2 *-2)第-8)得A的特征值为| —2 —2久―4) 人二兀=2(一重特征值)? A = 8 o 当人二加二2时,由—A)X = O t即: -_2-22"0 一_2_2 ■ =0 _2X. L 3 J 0 j 二 —2 —2 解:由卜2 乂-4 -2 *-2)車-8)得A的特征值为| —2 —2久―彳 人二入=2(二重特征值)、= 8 o 当人二坷二2时f由~ A)X —O y即: -_2-2_2~"0_ 一_2—0 -2_2—2y L 3 J

高等数学作业册答案

高等数学作业册参考答案 一、函数与极限 1.1)1()1(2 222---x x ; 22)1(11x -- 2. 10≤≤x 3. 31≤≤-x ; x y sin 21-= ))2 ,2((π π- ∈x 4. 3- 5. 22 -x 6. ) 1ln(11 2++x 7. 3- 8.该数列极限不存在 9. 1 10. x x 632 - 11.2 π ; π ;不存在 12. 略 二、极限的运算 1.(1)0 (2)a 2 (3) 3 2 (4)1 (5)202 (6)2 1 (7)∞ (8)0 2. 0,1==βα 3. 3- 4. 1 5. 证明略,2 6. (1) 52 (2) 2 1 (3) 1 (4) 1 (5) 1- (6) e (7) e (8) 2 (9) 4 e (10) 2 1 -e (11) 1 (12) 1 三、无穷小的比较及连续性 1.(1) 32 (2) 2 (3) 25 (4) 0 (5) 9 (6) 16 1 2.3 3. R c b a ∈==,1,0 4. 12 5.(1) 2=x 为可去间断点,令1)2(-=f 则该点变为连续点; 3=x 为无穷间断点 (2)0=x 为可去间断点,令1)0(=f 则变为连续点; ...)2,1(±±==k k x π 为无穷

间断点; ...)2,1,0(2 =± =k k x π π为可去间断点,令0)2 (=± π πk f 则变为连续点; (3)0=x 为可去间断点,令1)0(=f 变为连续点 (4)1=x 为跳跃间断点; (5)0=x 为可去间断点,令1)0(=f 则变为连续点 6.(1)2=k (2) (a)0;0 (b)1- (3) 1,0==b a (4)1=x 为跳跃间断点 四、导数的概念及运算 (1)A - (2)A 2 (2) 2 A 2.(1)3 (2)2 3.6 4.(1)2)1(='+ f ,∞='-)1(f ,所以分段点处不可导 (2)1>k 时分段点处可导且导数值为0,1≤k 时不可导 5.(1)4 π α= (2))1,1(-M 6. 1+=x y ;π++-=1x y 7.x y -=或25 x y - = 8.-99! 9.2,2,1-==-=c b a 10.函数在分段点处连续且可导, ??? ????=≠+-='0 ,20 ,121arctan )(4 2 2x x x x x x f π 五、导数的运算 1.(1)b a cx +2 (2) 81 87-x (3) )2ln()2(e e x ππ (4) 2sin cos x x x x - (5) 2 22 4) ln 3(32)49(ln x x x x x x x x +-++- (6) x x x x arctan 2122++ 2. (1)3ln 33+ (2) 42ln 2- 4. (1))sin()21(2 x x x -- (2) 2 2x xe (3) 2 21x x -- (4) 2 2sin 2x x (5) 2 2 1x a + (6) 2 2 x a x --

相关文档
最新文档