SPSS信度和效度检验全套资料
SPSS信度分析和效度分析
SPSS信度分析和效度分析SPSS是一种常用的统计分析软件,被广泛用于统计学和社会科学领域的数据分析。
在进行数据分析之前,需要对数据进行信度分析和效度分析,以确保数据的可靠性和有效性。
1. 信度分析(Reliability Analysis)信度分析是指通过测量工具或问卷的内部一致性来评估测量工具或问卷的信度。
信度分析的目的是确定测量工具或问卷的测量结果的一致性和稳定性。
SPSS提供了多种方法来进行信度分析,包括Cronbach's alpha系数、Kuder-Richardson系数、Split-Half法等。
最常用的信度分析方法是Cronbach's alpha系数,该系数用于评估内部一致性。
Cronbach's alpha系数的取值范围为0到1,越接近1表示测量工具或问卷的信度越高。
通常认为,Cronbach's alpha系数大于0.7即表示测量工具或问卷具有较好的信度。
在SPSS中进行Cronbach'salpha系数的计算非常简单,只需要选择“Analyze”菜单下的“Scale”选项。
使用SPSS进行信度分析的步骤如下:1)打开SPSS软件并导入数据。
2)选择“Analyze”菜单下的“Scale”选项。
3)将要分析的变量添加到右侧的“Variables”列表中。
4)点击“Statistics”按钮,选择“Scale if item deleted”选项,以获得分别删除每个项目后的信度系数。
5)点击“Continue”按钮。
6)点击“OK”按钮,即可得到Cronbach's alpha系数的结果。
根据Cronbach's alpha系数的值,可以确定测量工具或问卷的内部一致性。
2. 效度分析(Validity Analysis)效度分析是指通过比较测量工具或问卷的的测量结果与其所要测量的概念之间的关系来评估测量工具或问卷的效度。
SPSS与测验信度效度及项目分析
SPSS与测验信度效度及项目分析SPSS是一种常用的统计分析软件,它可以帮助研究人员和分析师对数据进行处理、分析和报告。
在心理学和教育领域的研究中,SPSS经常用于评估测验的信度、效度和进行项目分析。
测验的信度指的是测验在重复测量下所得分数的稳定性和一致性。
测验的信度可以衡量出测验的可靠性,即测验对被测对象的测量是准确、稳定和可重复的。
SPSS提供了多种方法来计算测验的信度,如Cronbach's alpha、Spearman-Brown公式和Kuder-Richardson公式(KR20和KR21)。
其中最常用的是Cronbach's alpha,它通常用来衡量测验内部一致性,即测验各项目之间的关联程度,一般认为alpha系数在0.7以上表示信度较好。
测验的效度指的是测验是否能够准确地度量所要测量的概念或变量。
SPSS可以通过相关分析、因子分析和回归分析等方式来评估测验的效度。
相关分析可以用来检验测验与其他测验、变量或标准的相关性,从而评估测验的相关效度。
因子分析可以揭示测验中的隐含因素结构,从而评估测验的结构效度。
回归分析可以通过测验分数对其他变量进行预测,从而评估测验的预测效度。
项目分析是对一个测验的各个项目进行研究和分析,以评估测验项目的质量和有效性。
SPSS可以通过描述性统计、频数分析和交叉分析等方法进行项目分析。
描述性统计可以计算各个项目的均值、标准差和偏态等指标,从而衡量测验项目的集中趋势、离散度和对称性。
频数分析可以计算各个项目的频数和百分比,从而了解测验项目的分布情况。
交叉分析可以研究不同项目之间的关系,从而评估测验项目的相关性和一致性。
综上所述,SPSS是进行测验信度、效度和项目分析的强大工具。
它不仅可以计算各种信度系数,还可以进行相关分析、因子分析、回归分析和描述性统计等多种分析方法,以帮助研究人员深入理解测验的质量和有效性。
对于心理学和教育研究人员来说,熟练运用SPSS进行测验分析是非常重要和必要的。
SPSS信度效度分析讲述
SPSS信度效度分析讲述SPSS是一款广泛应用于社会科学研究的统计分析软件,它可以进行信度和效度分析,以确保研究工具的稳定性和有效性。
下面将详细介绍SPSS中的信度和效度分析。
一、信度分析:信度是指研究工具(问卷、测验、量表等)在不同场景下的一致性和稳定性。
信度分析用于评估研究工具的测量误差,即工具所测量的内容与实际内容的一致程度。
常用的信度分析方法有内部一致性信度分析、平行性信度分析和稳定性信度分析。
1.内部一致性信度分析:内部一致性信度是指同一个测量工具中各项之间的相关程度。
一般使用Cronbach's Alpha系数来进行内部一致性信度分析,该系数的取值范围为0到1,数值越大表示工具的内部一致性越好。
SPSS软件可以计算Cronbach's Alpha系数,使用“Analyze- Scale- Reliability Analysis”菜单进入信度分析界面。
2.平行性信度分析:平行性信度是指两个工具(或两组题目)测量相同或类似内容时的一致性。
主要通过确定两个工具的相关系数来评估平行性信度。
在SPSS中,可以使用Pearson相关系数或Spearman相关系数来分析工具之间的平行性。
3.稳定性信度分析:稳定性信度是指同一个测量工具在不同时间或条件下的一致性。
一般使用重测法或分半法来进行稳定性信度分析。
重测法是在不同时间对同一样本进行两次测量,然后计算测量结果之间的相关系数。
分半法是将同一份问卷随机分成两部分,计算两部分得分之间的相关性。
在SPSS中,可以使用相关系数来计算稳定性信度。
二、效度分析:效度是指所使用的测量工具是否能真实、准确地反映研究对象的特征、状态或情况。
效度分析用于评估工具的有效性和准确性,常用的效度分析方法有内容效度分析、构效效度分析、判别效度分析和相关效度分析。
1.内容效度分析:内容效度是指测量工具能否涵盖所要评估的特征或特性。
通过专家评估来确定测量工具的内容效度,专家根据其领域知识和经验,对测量工具的题目进行评价和修改。
SPSS信度和效度检验全套资料
关于调查问卷的信度和效度检验 (一)信度 1 、信度的含义测验的信度又称测验的可靠性 , 是指同一个测验对同一组被试施测两次或多次 , 所得结果一致形程度。
一个好的测验必须是稳定可靠的 , 多次使用所获得的结果是前后一致的。
例如 , 用直尺测量长度 , 其结果是稳定可靠的 ; 用橡皮筋测长度则是不可靠的 , 前后测量结果缺乏一致性。
在测量理论中 , 信度被定义为 : 某次测验分数的真变异数与总变异数 ( 即实测分数 ) 之比 :22S R x xx ST =式中 Rxx 表示测量的信度 ,ST 2 代表真分数的变异数 ( 方差 ),Sx 2 表示实得分数的变异数 ( 方差 ) 。
从上式可看出 , ( 1 )信度是指实测值和真值相差的程度 , 实测值是指对某物实际进行测量时所获得值 , 也称实测分数 (X); 真值是指被测事物的真实规模取值 , 也称真分数 (T) 。
由于各种原因 , 实得分数常不等于真分数 , 两者之差称为测量误差或误差分数 (E) 。
从理论上看 , 实得分数由真分数和误差分数两部分组成即 :X=T+ERxx 就是对一组测验数据的实测分数与真分数相差程度的最好估计。
( 2 )信度又是指相同的测验对相同的被试再次测量时引起的同样反应的程度。
如果两次测验中 , 受测者所得分数或所处等级前后一致 , 则说明测验结果的信度较高 ; 反之 , 两次测验结果一致性低 , 说明测验结果的信度低。
信度是任何一种测量的必要条件 ( 但不是唯一条件 ), 只有测量值接近或等于真值 , 用同一工具多次测量同一特性获得相同或相近的结果 , 才能认为这个测量结果是可靠的。
信度对于教育测量尤其重要 , 只有信度高的教育测验才能成为教育工作者有用的工具 , 才能为教育工作者提供可靠的信息 , 为教育预测和决策提供客观依据。
2 、信度的估计方法测验的信度是用信度系数的大小来表示的 , 根据测量理论 , 信度系数22S R x xx ST =但是在实际测量中 , 一般只能获得实得分数 (X) 及实得变异数 (Sx 2 ), 而真分数 (T) 及真变异数 (ST 2 ) 是不知道的 , 因此 , 依据上述公式还无法机算信度系数。
spss信度、效度分析-
• 信度与效度之关系
· 效度是信度的充分条件
· 有效度就有信度 · 没有效度未必没有信度
· 信度是效度的必要条件
· 没有信度就没有效度 · 有信度未必有效度
· 是科学测量工具最重要的必备条件
二、效度分析的方法
(一)内容效度(表面效度、逻辑效度)
内容效度是指所设计的题项能否代表所要测量的内容或主题
内容效度常从表面上以题目分布的合理性来判断,属于命题 的逻辑分析,所以,内容效度也称为“逻辑效度” 、“内在效 度”。 ➢ 内容效度的评价主要通过经验判断进行,通常考虑3方面 的问题:
·三是计算某个问题与去掉此问题后总得分的相关性情况 ,分析是否需要被剔除(敏感性分析)。
(二)准则效度
也称为效标效度。
是根据已经确定的某种理论,选择一种指标或者测量工具作 为准则(校标),分析问卷题项与准则的联系,来分析有效 性。
(三)建构效度
是指测量结果体现出来的某种结构与测值之间的对应程度。 效度分析最理想的方法是利用因子分析测量量表或整个问卷的 结构效度。
· 特别适用于事实性问卷
· 2、复本信度法(等值系数跨形式的一致性)
·复本是内容相似,难易度相当的两份测验,对同一群受 测者,第一次用甲份测试,第二次使用乙份,两份分数 的相关系数为复本系数(Coefficient of Forms)或等 值系数(Coefficient of Equivalence)。若两份测验 不是同时实施,亦可相距一段时间再施测,这样算出的 相关系数为稳定和等值系数。
0.773表示若删除内向性题,此量表的α值由0.790降到0.773 0.802表示若删除支配性题,此量表的α值由0.790上升到0.802
• 第二节 效度分析
SPSS信度效度分析讲述
SPSS信度效度分析讲述SPSS是一种常用的统计软件,常用于数据分析和统计建模。
其中,信度和效度是数据分析过程中核心的概念。
本文将介绍SPSS中信度和效度分析的基本知识和步骤。
一、什么是信度在心理学和教育学等社会科学领域,信度是指测量工具在不同情况下所得数据的稳定程度。
具体来说,当测量工具的信度越高时,数据测量所得的结果也越稳定准确。
为了保证测量工具的信度,通常需要对其进行信度分析。
二、SPSS中信度分析的步骤1. 准备数据在进行信度分析之前,需要准备好所有相关数据。
这里的数据通常指测量工具的各项指标或评估指标。
在SPSS中,可以将数据录入或导入软件中。
2. 进入信度分析页面在SPSS软件中,点击“分析”-“可靠性”-“信度分析”可打开信度分析页面。
3. 选择计算方法在信度分析页面中,可以选择计算方法。
常见的计算方法包括Cronbach's alpha、Kuder-Richardson等。
不同的计算方法支持不同类型的数据,选择合适的计算方法可以提高信度分析的准确性。
4. 选择指标在选择计算方法后,需要选择指标。
没有合适的指标将无法进行信度分析。
在SPSS中,可以通过将相关指标拖到指标列表中来选择指标。
5. 查看结果在选择指标后,SPSS会对数据进行信度分析,并显示分析结果。
对于不同的计算方法和指标,分析结果的形式不同。
常见的分析结果包括信度系数、标准误差等。
总结:在SPSS中,信度和效度是数据分析中两个非常重要的概念。
信度分析可以帮助我们确定测量工具的稳定性,从而提高数据的准确性。
效度分析可以帮助我们了解测量工具所测量的内容与实际内容的相关程度,从而提高测量工具的准确性。
对于需要进行数据分析的研究者来说,熟练掌握SPSS中的信度和效度分析方法是十分必要的。
spss数据分析教程之SPSS信度分析和效度分析之欧阳数创编
信度分析和效度分析时间:2021.03.02 创作:欧阳数数据计分方法说明类别小分类对应题项每题计分方法维度计分方法题项职业倦怠情感枯竭1-3题正向计分全部题项直接加总 3 去个性化4-6题正向计分全部题项直接加总 3个人成就感7-10题逆向计分全部题项取倒数后加总4心理资本11-18题正向计分全部题项直接加总8组织气氛19-26题21题为逆向计分,其余题项正向计分21题取倒数后与其余题项加总8总体幸福感27-31题27题和31题为逆向计分,其余题项为正向计分27和31题取到术后与其余题项加总5整体问卷以上各个维度的总分直接加总31 讲问卷调查的数据进行如上表的数据预处理后,接下来再进行如下分析。
1 信度分析这里有63份问卷,首先我们需要的判定的是问卷中的调查题目能否反映调查的目的和调查的意图,问卷中的各个问题是否测量了相同的内容和信息;同时,对于调查问卷所得到的数据是否具有可靠性,就必须在对问卷分析之前做信度分析。
信度本身与测量结果的正确与否无关,它的用途在于检测问卷本身的稳定性。
信度分析中常用Cronbach α系数的大小来衡量调查问卷的信度。
一般而言,如果问卷的信度系数达到0.9以上,该问卷调查的信度就较好;信度系数在0.8以上,是不错的;一般认为试卷信度在0.5至0.9以内是合理的,如果信度系数低于0.5,则此问卷的调查结果就不可信了。
将以上63份问卷的数据用SPSS21.0先进行标准化处理,再进行信度分析,其结果如表一所示:Cronbach's Alpha系数值均大于0.6,所以可以推断此问卷的可信度一般,该评价问卷只具有很较高的内在一致性。
2 效度分析具备信度的问题不一定具备效度,因此做完信度分析,再用SPSS21.0对其进行效度分析。
2.1 因子模型适应性分析效度分析使用的是因子分析模型,在运用因子模型分析之前,首先要对问卷数据进行因子模型适应性分析,分析结果如下表所示:表二 KMO 和 Bartlett 的检验由上表的数据可知,问卷数据的KMO值为0.657,并且通过了显著性水平为0.05的巴特利球型检验,说明问卷调查的数据非常适合做因子分析。
SPSS与测验信度、效度、及项目分析
SPSS与测验信度、效度、及项目分析在SPSS中,专门用来进行测验信度分析的模块为Scale下的Reliability Analysis;使用Data Reduction之下的Factor模块,可以利用因素分析的方法来进行测验的建构效度检验;至于项目分析则没有专门的模块可以之间进行计算分析,但是却可以利用Summarize下的Frequencies、Correlate下的Bivariate和Compare Mean下的Independent-Samples T Test来计算几个常用的项目分析指标。
一、信度分析Reliability Analysis模块主要功能是检验测验的信度,主要用来检验折半信度、库李及a系数以及Hoyt信度系数值。
至于重测信度和复本信度,只需将样本在二次(份)测验的分数的数据合并到同一数据文件之后,利用Correlate之下的Bivariate求其相关系数,即为重测或复本信度;而评分者信度则就就是使用的Spearman等级相关及Kendall和谐系数。
表1 Reliability Analysis模块的Model选项的参数及对应中文术语关键字功能Alpha Cronbach a系数Split-half 折半信度,n是第二分量表的题数Guttman Guttman最低下限真实信度法Parallel 各题目变异数同质时的最大概率(maximum-likelihood)信度Strict parallel 各题目平均数与变异数均同质时的最大概率信度表2 Reliability Analysis模块的Statistics部分选项的参数及对应中文术语关键字功能F test Hoyt信度系数Friedman Chi Friedman等级变异数分析及Kendall和谐系数Cochran Chi Cochran’s Q检验,适用于答案为二分(如是非题)的量表Hotelling’s T Hotelling’s T2 检验Tukey’s Tukey的可加性检验Intraclass 量表内各题目平均数相关系数二、效度分析即因素分析的方法。
【8A版】Spss数据分析教程之SPSS信度分析和效度分析
信度分析和效度分析数据计分方法说明类别小分类 对应题项 每题计分方法 维度计分方法 题项 职业倦怠情感枯竭1-3题 正向计分 全部题项直接加总 3 去个性化 4-6题 正向计分 全部题项直接加总 3 个人成就感7-10题 逆向计分 全部题项取倒数后加总4 心理资本11-18题 正向计分全部题项直接加总8组织气氛19-26题21题为逆向计分,其余题项正向计分 21题取倒数后与其余题项加总8总体幸福感27-31题 27题和31题为逆向计分,其余题项为正向计分 27和31题取到术后与其余题项加总 5整体问卷以上各个维度的总分直接加总31讲问卷调查的数据进行如上表的数据预处理后,接下来再进行如下分析。
1信度分析这里有63份问卷,首先我们需要的判定的是问卷中的调查题目能否反映调查的目的和调查的意图,问卷中的各个问题是否测量了相同的内容和信息;同时,对于调查问卷所得到的数据是否具有可靠性,就必须在对问卷分析之前做信度分析。
信度本身与测量结果的正确与否无关,它的用途在于检测问卷本身的稳定性。
信度分析中常用Cronbach α系数的大小来衡量调查问卷的信度。
一般而言,如果问卷的信度系数达到0.9以上,该问卷调查的信度就较好;信度系数在0.8以上,是不错的;一般认为试卷信度在0.5至0.9以内是合理的,如果信度系数低于0.5,则此问卷的调查结果就不可信了。
将以上63份问卷的数据用SPSS21.0先进行标准化处理,再进行信度分析,其结果如表一所示:表一信度分析表类别 Cronbach'sAlpha项数 整体问卷 .617 31 职业倦怠 .822 10 心理资本 .801 8 组织气氛 .837 8 总体幸福感.6795表一显示,整体问卷和问卷中的各个维度的Cronbach'sAlpha系数值均大于0.6,所以可以推断此问卷的可信度一般,该评价问卷只具有很较高的内在一致性。
2效度分析具备信度的问题不一定具备效度,因此做完信度分析,再用SPSS21.0对其进行效度分析。
SPSS信度、效度分析
目录
• 信度分析 • 效度分析 • SPSS在信度、效度分析中的应用 • 信度、效度分析的注意事项
01 信度分析
信度分析的定义
信度分析是指对测量工具或问卷的一致性、稳定性进行评估的过程,用以 检验测量结果的可靠性。
信度分析的目的是确定测量工具是否能够稳定、一致地反映被测对象的特 征或属性。
总结评估结果
根据各项效度分析的结果,总结评估 测量工具的准确性和有效性,并提出 改进意见和建议。
03 SPSS在信度、效度分析 中的应用
SPSS在信度分析中的应用
信度分析:信度分析用于评估问卷的一致性,常用的 方法有Cronbach's Alpha系数和重测信度法等。
输标02入题
Cronbach's Alpha系数:Cronbach's Alpha系数是 一种常用的信度分析方法,通过计算问卷内部一致性 系数来评估问卷的一致性。
信度分析的方法有多种,常用的有Cronbach's Alpha系数和重测信度法 等。
信度分析的方法
Cronbach's Alpha系数
01
通过计算问卷内部一致性系数来评估信度,该系数值介于0-1之
间,值越高表示信度越好。
重测信度法
02
通过比较同一被试在不同时间点的测量结果来评估信度,这种
方法适用于时间间隔较短的情境。
根据所选的信度分析方法计算 信度系数,如Cronbach's Alph结果对问卷进行 修正和完善,提高测量工具的 可靠性和稳定性。
02 效度分析
效度分析的定义
效度分析是对测量工具或手段准确性和有效性的评估,即衡 量测量结果是否真实、准确地反映了所要研究的内容和概念 。
spss数据分析教程之SPSS信度分析和效度分析
信度分析和效度分析数据计分方法说明类别小分类对应题项每题计分方法维度计分方法题项职业倦怠情感枯竭1-3题正向计分全部题项直接加总3 去个性化4-6题正向计分全部题项直接加总3 个人成就感7-10题逆向计分全部题项取倒数后加总4心理资本11-18题正向计分全部题项直接加总8组织气氛19-26题21题为逆向计分,其余题项正向计分21题取倒数后与其余题项加总8总体幸福感27-31题27题和31题为逆向计分,其余题项为正向计分27和31题取到术后与其余题项加总5整体问卷以上各个维度的总分直接加总31 讲问卷调查的数据进行如上表的数据预处理后,接下来再进行如下分析。
1 信度分析这里有63份问卷,首先我们需要的判定的是问卷中的调查题目能否反映调查的目的和调查的意图,问卷中的各个问题是否测量了相同的内容和信息;同时,对于调查问卷所得到的数据是否具有可靠性,就必须在对问卷分析之前做信度分析。
信度本身与测量结果的正确与否无关,它的用途在于检测问卷本身的稳定性。
信度分析中常用Cronbach α系数的大小来衡量调查问卷的信度。
一般而言,如果问卷的信度系数达到0.9以上,该问卷调查的信度就较好;信度系数在0.8以上,是不错的;一般认为试卷信度在0.5至0.9以内是合理的,如果信度系数低于0.5,则此问卷的调查结果就不可信了。
将以上63份问卷的数据用SPSS21.0先进行标准化处理,再进行信度分析,其结果如表一所示:表一显示,整体问卷和问卷中的各个维度的Cronbach's Alpha系数值均大于0.6,所以可以推断此问卷的可信度一般,该评价问卷只具有很较高的内在一致性。
2 效度分析具备信度的问题不一定具备效度,因此做完信度分析,再用SPSS21.0对其进行效度分析。
2.1 因子模型适应性分析效度分析使用的是因子分析模型,在运用因子模型分析之前,首先要对问卷数据进行因子模型适应性分析,分析结果如下表所示:表二 KMO 和 Bartlett 的检验0.05的巴特利球型检验,说明问卷调查的数据非常适合做因子分析。
SPSS信度效度教程课件
第二节 效度分析
一、效度分析的基本概念 效度是指测量的有效性程度,是测量工具能测
出所要测量特质的程度,即准确性、有用性。
以英文出统计学考题 英文作文题目让考生看不懂
是内容效度(表面效度、逻辑效度)
内容效度是指所设计的题项能否代表所要测量的内容或主题
(二)准则效度
也称为效标效度。
是根据已经确定的某种理论,选择一种指标或者测量工具作 为准则(校标),分析问卷题项与准则的联系,来分析有效 性。
(三)建构效度
是指测量结果体现出来的某种结构与测值之间的对应程度。 效度分析最理想的方法是利用因子分析测量量表或整个问卷的 结构效度。
因子分析的主要功能是从量表全部变量(题项)中提取一 些公因子,各公因子分别与某一群特定变量高度关联,这些公 因子即代表了量表的基本结构。
二、信度分析的方法
检视信度的方法有很多种,其中,最常用的是第四种 Cronbach α系数,简介以下四种:
1、重测信度法(稳定系数即跨时间的一致性) 使用同一份问卷,对同一群受测者,在不同的时间,前
后测试两次,求出者两次分数的相关系数,此系数又称 为稳定系数(Coefficient of Stability)。 需注意:相关系数高,表示此测验的信度高,前后两 次测验间隔的时间要适当。若两次测验间隔太短,受测 者记忆犹新通常分数会提高,不过如果题数够多则可避 免这种影响;但若两次测验间隔太长,受测者心智成长 影响,稳定系数也可能会降低。 特别适用于事实性问卷
量测一组同义或平行测验总和的信度,如果尺度中的所 有项目都在反映相同的特质,则各项目之间应具有真实的 相关存在。若某一项目和尺度中其它项目之间并无相关存 在,就表示该项目不属于该尺度,而应将之剔除。
如何使用spss进行问卷效度和信度分析
如何使用spss进行问卷效度和信度分析如何使用 SPSS 进行问卷效度和信度分析在社会科学研究中,问卷是一种常用的数据收集工具。
然而,为了确保问卷所收集的数据具有可靠性和有效性,我们需要进行效度和信度分析。
SPSS 是一款功能强大的统计分析软件,能够帮助我们轻松完成这些分析任务。
接下来,让我们详细了解如何使用 SPSS 进行问卷的效度和信度分析。
一、效度分析效度,简单来说,就是测量工具是否准确地测量了我们想要测量的东西。
常见的效度类型包括内容效度、结构效度和准则效度。
1、内容效度内容效度通常是通过专家评估来确定的。
在使用SPSS 进行分析时,它不是主要的关注点。
2、结构效度结构效度的分析通常借助因子分析来实现。
以下是在 SPSS 中进行因子分析的步骤:(1)打开 SPSS 软件,将问卷数据导入。
(2)选择“分析” “降维” “因子分析”。
(3)将需要分析的变量选入“变量”框。
(4)在“描述”选项中,勾选“KMO 和巴特利特球形度检验”。
KMO 值用于衡量变量间的偏相关性,取值在 0 到 1 之间。
一般认为,KMO 值大于 06 时,数据适合进行因子分析。
巴特利特球形度检验的原假设是变量间不相关,如果检验结果显著(p 值小于 005),则拒绝原假设,说明变量间存在相关性,适合进行因子分析。
(5)在“抽取”选项中,可以选择主成分分析或主轴因子法等提取因子的方法,并根据实际情况确定提取因子的个数。
(6)在“旋转”选项中,选择合适的旋转方法,如正交旋转或斜交旋转,以使得因子结构更清晰。
(7)查看输出结果,主要关注“成分矩阵”或“旋转成分矩阵”,根据因子载荷来判断变量在各个因子上的归属,从而评估问卷的结构效度。
3、准则效度如果有一个有效的外部标准可以用来比较问卷测量的结果,就可以进行准则效度的分析。
但在 SPSS 中的操作相对复杂,需要根据具体情况选择合适的统计方法,如相关分析、回归分析等。
二、信度分析信度指的是测量结果的一致性、稳定性和可靠性。
如何使用spss进行问卷效度和信度分析
如何使用spss进行问卷效度和信度分析如何使用 SPSS 进行问卷效度和信度分析在社会科学研究中,问卷是收集数据的常用工具之一。
然而,为了确保问卷所收集到的数据是准确、可靠且有效的,我们需要进行效度和信度分析。
SPSS 作为一款强大的统计分析软件,可以帮助我们轻松完成这些任务。
接下来,我将详细介绍如何使用 SPSS 进行问卷的效度和信度分析。
一、效度分析效度,简单来说,就是指测量工具能够准确测量出所要测量的概念或特质的程度。
在问卷设计中,效度主要包括内容效度、结构效度和准则效度等。
1、内容效度内容效度通常是通过专家评估来确定的。
专家根据研究目的和理论基础,对问卷的题目是否涵盖了所需测量的内容进行判断。
SPSS 本身并不能直接用于评估内容效度,但我们可以在编制问卷时,参考专家的意见来提高内容效度。
2、结构效度结构效度是指问卷的测量结果与理论上的结构或框架是否相符。
在SPSS 中,常用的结构效度分析方法有因子分析。
(1)数据准备首先,将问卷数据录入SPSS 中。
确保每个变量的命名清晰、准确,数据的录入没有错误。
(2)因子分析操作步骤依次选择“分析” “降维” “因子分析”。
将需要分析的变量选入“变量”框中。
(3)结果解读KMO 值和巴特利特球形检验:KMO 值越接近 1,表明数据越适合做因子分析;巴特利特球形检验的显著性水平小于 005 时,也表明数据适合做因子分析。
因子载荷:观察因子载荷值,载荷值大于 04 通常被认为是有意义的。
如果某个变量在多个因子上的载荷值都较高,或者载荷值与预期的理论结构不符,可能说明问卷的结构效度存在问题。
共同度:共同度反映了每个变量被因子解释的程度,共同度越高,说明变量被因子解释得越好。
碎石图:通过观察碎石图,可以确定提取的因子个数。
3、准则效度准则效度是通过与一个已被证明有效的测量工具进行比较来评估的。
例如,我们可以将新设计的问卷与一个已被广泛认可的同类问卷进行比较,计算两者之间的相关系数来评估准则效度。
spss调查问卷的信度与效度课件
摘 要 目的:探讨调查问卷的可靠性。方法: 对武警十五支队201名战士,作心理卫生自评90项 调查问卷资料,利用SAS软件编程,计算Alpha可靠 性系数,进行可靠性分析。结果:有6项被剔除达 到要求后,α=0.973569,当使用标准化数据时, α=0.974102。结论:利用可靠性分析,可以从调 查问卷表的数据中,提取真实的、可靠性的成分。
2.误差的种类(types of error)
(1)随机误差(random error) 随机误差是由不确定原因引起的,不可避免和消 除。 其偏离总体的方向不能确定。包括随机测量误 差和抽样误差。 随机测量误差(random measurement error) :
没有固定的倾向,可使多次观测结果有大有小。
(4)样本适宜且要预防流失。重视问卷调查的回收率。 样本容量一般不应低于30; (5)适当增加问卷的长度。增加问卷的长度既可提高 问卷的信度,也可以提高问卷的效度,但增加问卷的 长度对信度的影响大于对效度的影响; (6)排除无关因素干扰。认清并排除足以混淆或威胁 结论的无关干扰变量。
二、效度分析实例(example)
3.效标效度(Criterion Validity)
效标效度也称为准则关联效度(Criterion-Related Validity)、经验效度(Empirical Validity)、 统计效度(Statistical Validity)。效标效度是 说明问卷得分与某种外部准则(效标)间的关联程 度,用问卷测量得分与效度准则之间的相关系数表 示。
(1)内容效度 (content validity)
内容效度是指问卷内容的贴切性(relevance)和代 表性(representativeness),即问卷内容能否反应 所要测量的特质,能否达到测验目的,较好地代表 所欲测量的内容和引起预期反应的程度。内容效度 常以题目分布的合理性来判断,属于命题的逻辑分 析,所以,内容效度也称为“逻辑效度” (logical validity)、“内在效度(intrinsic Validity)”、 “循环效度(circular validity)”。
SPSS课件信度及效度
图例问卷调查问卷调查法也称问卷法,它是调查者以书面提出问题的方式搜集资料的一种研究方法。
即调查者就调查内容提出问题或编制成表格;分发或邮寄给有关人员,请他们填写答案,然后回收整理、统计和研究。
标题z你好!请配合填写此次调查问卷!谢谢!z1.你喜欢音乐吗?zA 喜欢B 不喜欢z导语2.你经常听音乐吗?zA 经常B 有时C 偶尔D 极少E 从不z3.你喜欢听欢快的音乐还是忧伤的音乐?zA 欢快的B 忧伤的一般是一段短语。
内容是向被调查z4. 你喜欢的音乐方面的明星是哪个地区的?zA 大陆B 港台C 日韩D 欧美z5.你认为中学生听音乐的利弊关系是怎样的?正文—调查者的合作再次表示感谢,以及关于不zA 利大于弊B 弊大于利C 没关系z6.你认为音乐与人的情绪有关系吗?zA 关系密切B 有点关系C 毫无关系D 不清楚问卷的主体要漏填与复核的请求,有的问卷也可以省略。
z7.请你准确地说出音乐的分类z8.你喜欢听什么类型的音乐?zz9.你认为什么样的音乐对人的心情有什么样的影响?z z 10.请你对本次问卷调查做以评价。
结束语再次感谢你对我们工作的支持与配合【封面信】——给被调查者的短信,为其介绍和说明调查者的身份、调查的目的、意义、内容。
篇幅宜短小,通常300字以内。
一般包括:身份;调查目的、内容;对象选取和结果保密措施;致谢等。
【标题】——问卷的标题要与课题的研究目的相符合,直接点明调查的主题。
使被调查者对所要回答的问题有一个大致的了解。
问卷标题要简明扼要,但又必须点明调查对象或调查主题。
【导语】也称前言或问卷说明。
一般包括对——被调查者的称谓、自我介绍、调查的目的、填写要求等的说明。
【正文】——调查问卷的主要部分,也就是问题与答案部分。
【结束语】——一般是一段短语。
内容是向被调查者的合作再次表示感谢,以及关于不要漏填与复核的请求。
结束语要简短明了,有的问卷也可以省略。
调查问卷的导语注意的问题简要说明调查的内容和意义,突出本次调查的主要问题和现象。
spss数据分析教程之SPSS信度分析和效度分析(DOC)
spss数据分析教程之SPSS信度分析和效度分析(DOC)信度分析和效度分析数据计分方法说明类别小分类对应题项每题计分方法维度计分方法题项职业倦怠情感枯竭1-3题 正向计分 全部题项直接加总 3 去个性化 4-6题 正向计分 全部题项直接加总 3 个人成就感7-10题 逆向计分全部题项取倒数后加总 4心理资本11-18题 正向计分 全部题项直接加总 8组织气氛 19-26题21题为逆向计分,其余题项正向计分 21题取倒数后与其余题项加总 8 总体幸27-27题和3127和31题5福感31题题为逆向计分,其余题项为正向计分取到术后与其余题项加总整体问卷以上各个维度的总分直接加总31讲问卷调查的数据进行如上表的数据预处理后,接下来再进行如下分析。
1 信度分析这里有63份问卷,首先我们需要的判定的是问卷中的调查题目能否反映调查的目的和调查的意图,问卷中的各个问题是否测量了相同的内容和信息;同时,对于调查问卷所得到的数据是否具有可靠性,就必须在对问卷分析之前做信度分析。
信度本身与测量结果的正确与否无关,它的用途在于检测问卷本身的稳定性。
信度分析中常用Cronbach α系数的大小来衡量调查问卷的信度。
一般而言,如果问卷的信度系数达到0.9以上,该问卷调查的信度就较好;信度系数在0.8以上,是不错的;一般认为试卷信度在0.5至0.9以内是合理的,如果信度系数低于0.5,则此问卷的调查结果就不可信了。
将以上63份问卷的数据用SPSS21.0先进行标准化处理,再进行信度分析,其结果如表一所示:表一信度分析表类别Cronbach'sAlpha项数整体问卷.61731职业倦怠.82210心理资本.8018组织气氛.8378总体幸福感.6795表一显示,整体问卷和问卷中的各个维度的Cronbach's Alpha系数值均大于0.6,所以可以推断此问卷的可信度一般,该评价问卷只具有很较高的内在一致性。
spss数据分析教程之SPSS信度分析和效度分析
信度分析和效度分析数据计分方法说明类别小分类对应题项每题计分方法维度计分方法题项职业倦怠情感枯竭1-3题正向计分全部题项直接加总3去个性化4-6题正向计分全部题项直接加总3个人成就感7-10题逆向计分全部题项取倒数后加总4心理资本11-18题正向计分全部题项直接加总8组织气氛19-26题21题为逆向计分,其余题项正向计分21题取倒数后与其余题项加总8总体幸福感27-31题27题和31题为逆向计分,其余27和31题取到术后与其余题项加5页脚内容1讲问卷调查的数据进行如上表的数据预处理后,接下来再进行如下分析。
1 信度分析这里有63份问卷,首先我们需要的判定的是问卷中的调查题目能否反映调查的目的和调查的意图,问卷中的各个问题是否测量了相同的内容和信息;同时,对于调查问卷所得到的数据是否具有可靠性,就必须在对问卷分析之前做信度分析。
信度本身与测量结果的正确与否无关,它的用途在于检测问卷本身的稳定性。
信度分析中常用Cronbach α系数的大小来衡量调查问卷的信度。
一般而言,如果问卷的信度系数达到0.9以上,该问卷调查的信度就较好;信度系数在0.8以上,是不错的;一般认为试卷信度在0.5至0.9以内是合理的,如果信度系数低于0.5,则此问卷的调查结果就不可信了。
将以上63份问卷的数据用SPSS21.0先进行标准化处理,再进行信度分析,其结果如表一所示:表一信度分析表页脚内容2表一显示,整体问卷和问卷中的各个维度的Cronbach's Alpha系数值均大于0.6,所以可以推断此问卷的可信度一般,该评价问卷只具有很较高的内在一致性。
2 效度分析具备信度的问题不一定具备效度,因此做完信度分析,再用SPSS21.0对其进行效度分析。
2.1 因子模型适应性分析效度分析使用的是因子分析模型,在运用因子模型分析之前,首先要对问卷数据进行因子模型适应性分析,分析结果如下表所示:Bartlett 的检验表二KMO 和页脚内容3由上表的数据可知,问卷数据的KMO值为0.657,并且通过了显著性水平为0.05的巴特利球型检验,说明问卷调查的数据非常适合做因子分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于调查问卷的信度和效度检验 (一)信度 1 、信度的含义测验的信度又称测验的可靠性 , 是指同一个测验对同一组被试施测两次或多次 , 所得结果一致形程度。
一个好的测验必须是稳定可靠的 , 多次使用所获得的结果是前后一致的。
例如 , 用直尺测量长度 , 其结果是稳定可靠的 ; 用橡皮筋测长度则是不可靠的 , 前后测量结果缺乏一致性。
在测量理论中 , 信度被定义为 : 某次测验分数的真变异数与总变异数 ( 即实测分数 ) 之比 :22S R x xx ST =式中 Rxx 表示测量的信度 ,ST 2 代表真分数的变异数 ( 方差 ),Sx 2 表示实得分数的变异数 ( 方差 ) 。
从上式可看出 , ( 1 )信度是指实测值和真值相差的程度 , 实测值是指对某物实际进行测量时所获得值 , 也称实测分数 (X); 真值是指被测事物的真实规模取值 , 也称真分数 (T) 。
由于各种原因 , 实得分数常不等于真分数 , 两者之差称为测量误差或误差分数 (E) 。
从理论上看 , 实得分数由真分数和误差分数两部分组成即 :X=T+ERxx 就是对一组测验数据的实测分数与真分数相差程度的最好估计。
( 2 )信度又是指相同的测验对相同的被试再次测量时引起的同样反应的程度。
如果两次测验中 , 受测者所得分数或所处等级前后一致 , 则说明测验结果的信度较高 ; 反之 , 两次测验结果一致性低 , 说明测验结果的信度低。
信度是任何一种测量的必要条件 ( 但不是唯一条件 ), 只有测量值接近或等于真值 , 用同一工具多次测量同一特性获得相同或相近的结果 , 才能认为这个测量结果是可靠的。
信度对于教育测量尤其重要 , 只有信度高的教育测验才能成为教育工作者有用的工具 , 才能为教育工作者提供可靠的信息 , 为教育预测和决策提供客观依据。
2 、信度的估计方法测验的信度是用信度系数的大小来表示的 , 根据测量理论 , 信度系数22S R x xx ST =但是在实际测量中 , 一般只能获得实得分数 (X) 及实得变异数 (Sx 2 ), 而真分数 (T) 及真变异数 (ST 2 ) 是不知道的 , 因此 , 依据上述公式还无法机算信度系数。
在统计上 , 主要采用相关分析的方法即机算两列变量的相关系数 , 用相关系数的大小来表示信度的高低。
主要用以下方法来求得信度 :( 1 )再测法 : 用同一测验对同一被试 , 前后施测两次 , 根据两次测验分数计算相关系数 , 即是再测信度。
该信度反映了测验的稳定性程度 , 故又称稳定性系数 , 是用皮尔逊积差相关公式计算的 :2121/21S S M M N X X Rxx•-=∑式中 X 1 .X 2 为同一被试的两次测验得分 ,M1.M2 为两次测验的平均分数 ,S 1 .S 2 是两次测验的标准差 ,N 是被试人数。
用再测法估计信度 , 可以得到有关测验结果是否随时间而变化及变化程度的资料 , 可以作为预测被测者将来行为表现的依据。
但也存在明显的局限性 : 前后两次测验结果易受到练习和记忆的影响 , 前后两次施测的时间间隔影响稳定性系数 , 特别是对学绩测验的影响较大。
如果时间间隔太长 , 被测者的身心因受环境影响将发生大的变化 , 从而对第二次施测结果产生较大影响 , 使稳定性系数降低 ; 如果间隔太短 , 则被试第一次完成测验时练习和记忆会对第二次测验产生较大影响 , 使第二次测验性质发生变化。
另外 , 有些测验不宜用再测法估计信度 , 如测量创造力测验 , 被试一旦掌握了解决问题的办法、原则 , 重测时 , 他将很容易作出反应 , 这样测验的性质就发生了改变。
因此 , 只有在没有复本可用 , 测验不易受重复使用影响 , 现实条件又允许重复施测的情况下才使用重测法估计信度。
用重测法估计信度 , 间隔时间长短没有严格的规定 , 一般说 , 间隔时间越长 , 稳定性系数越低 , 最适宜的时距应根据测验目的、性质及被试特点而定 , 最好不超过六个月。
对儿童的时距应该短些 , 对成年人的时距可适当长些 , 因为个体早期的身心特征变化较大 , 而成年人的身心特征则相对稳定。
( 2 )复本法 . 根据同一测验目的编制的许多平行德等值测验 , 可测定被试的同一特征 , 这些等值的测验叫做复本。
对一组受测者间隔一定时间或同时施测两个复本 , 根据两次测验结果求得相关系数 , 即得等值性系数 , 又称复本信度。
对一组受测者间隔一定时间后施测两个复本所求得的稳定性系数又称等值稳定性系数。
因为用这种方法求得的信度不仅受复本质量的影响 , 而且受时间练习等因素的影响 , 因此 , 等值稳定性系数更全面地反映了测验的信度。
计算等值稳定性系数是对两个复本测验结果计算斯皮尔曼积差相关系数 ( 具体公式见前 ) 。
( 3 )分半法 . 当测验没有复本 ( 复本的编制是很复杂的 ) 而且测验只适合施测一次的情况下 , 可用分半法估计信度 , 即将测验题目分成对等的两半 , 根据每人在这两半测验中的得分 , 计算其相关系数 , 这个系数又称内部一致性系数。
要求得分半信度 , 首先要将测验分成对等的两半。
绝大多数测验是由许多题目排列组成的 , 但是若将测验简单地分成前后两部分 , 常常是不对等的 , 对等的两部分起码有两个要求 : 一是测验的两部分在难度、区分度及测验目标上基本是相同的 ; 一是被测者以同等的态度来对待两部队测验 , 即在完成两部分测验过程中 , 练习 , 疲劳 , 情绪等因素对被试产生了同等的影响。
因此 , 将一个测验分成两部分时 , 常用的是奇偶分半法 , 即将奇数题分为一部分 , 将偶数题分为一部分。
特别是测验题目是按由易到难排列时 , 这种分法可以将测验分为大致相等的两半 , 但是 , 对于速度型的测验不适合用奇偶分半法。
用分半法求出的测验的信度系数并不能反映整个测验的信度。
这是因为信度受测验的长度的影响 , 测验越长 , 信度越高 , 将测验分成两半求得的信度系数 , 低估了整个测验的信度 , 因此 , 需对测验系数加以校正 , 校正公式是斯皮尔曼—布朗 (Spearman — Brown) 公式 :RhhRhhR xx +=12Rxx 是整个测验的信度估计系数 ,Rhh 是两个分半测验的相关系数。
上述公式的前提假设是两个半测验分数的变异性相等 , 但是若测验资料不符合这个假定 , 可用下列公式求得信度 : 弗朗那根 (Flanagan) 公式 :)2221(2Sx Sb Sa R xx +-•=Sa 2 和 Sb 2 分别代表两个分测验分数的变异数 ,Sx 2 代表整个测验的变异数。
卢伦 (Rulon) 公式 :221Sx Sd Rxx -= Sd 2 代表两个半测验分数之差的变异数 ,Sx 2 代表总测验变异数。
对于由客观性题目组成的测验 ( 即答对一题得一分 , 答错得 0 分 ), 则可用库得─理查逊 (Kuder ─Richardson) 公式估计测验的内部一致性 :)2)(1)(1(Sx pq k k Rkk ∑--= k 为测验的总题目数 ,p 为某一个题目的答对率或通过该题目的人数比例 ,q 为未通过该题目的人数比例 ,p=1-q,Sx 2 为测验总分的方差。
对于由客观性题目和主观性题目组成的测验 , 有些题目是多重计分的情况下 , 则要用克伦巴赫(Cronbach) 公式计算α系数来估计测验的内部一致性 :)221)(1(Sx Si k k ∑--=α k 为测验题目总分 ,Si 2 是某一题目得分的方差 ,Sx 2 是整个测验分数的方差。
上面这些公式不适用于速度性测验 , 因为只有每个人做完所有的题目 , 题目的方差才是准确的。
3 、提高测验信度的方法 :影响测验信度的误差归纳起来主要有 :(1) 抽样误差 : 简单说 , 这是在抽样过程中由于被试间的差异所造成的误差。
被试间的差异可以用全距和方差大小来表示。
全距是指某一心理量最大值与最小值之差。
全距大说明被试间差异大 , 全距小说明被试间差异小。
被试间在某一心理量上参差不齐 , 差别悬殊 , 则该心理量的方差大 ; 反之 , 方差小。
对于方差小的样本 , 被试间在某一心理特征上相差较小 , 则前后两次测验结果的一致性较低 , 即降低了信度。
因为被试之间的差别越小其同质性越高 , 被试的分数只要发生小的变化 , 其名次就可能改变 , 从而降低信度。
(2) 随机误差 : 由于各种偶然因素的影响而产生的误差 , 表现为用同一方法多次测量同一对象时结果上不一致。
随机误差是由许多因素造成的 , 如量标的质量 , 测量的程序 , 被试的身心状态 , 测量的环境等。
根据影响测验信度的因素 , 可从以下几方面来提高测验的信度 : 一是从测验本身考虑 , 如测验的长度、难度、区分度、速度、程序、环境条件与计分方法等 ; 一是从被试自身考虑 , 如被试在被测心理特征上的差异大小 , 参加测验的动机水平 , 对测验的态度和积极性等。
在此主要介绍如下几种提高测验信度的方法 :( 1 )适当延长测验的长度 :测验的长度主要指量表所包含的题目多少。
对一个测验来说 , 测验的题目越少 , 得分越容易受偶然因素的影响 , 故测验的信度越低。
反之如果测验题目较多 , 即测验长度延长 , 扩大了被试得分范围 , 可在一定程度上排除偶然因素的影响 , 从而提高测验信度。
但是测验信度的增加并不是等比例提高信度系数。
当信度系数较小时 , 延长测验长度信度系数增加较大 ; 当信度系数已经较大时 , 延长测验长度对信度系数的影响就较小了。
而且 , 在延长测验长度时 , 还需考虑其他因素的影响 , 如被试在回答问题时是否疲倦或产生厌烦情绪 , 是否节省时间、物力和财力 , 测题是否附合测验目的等。
( 2 )测验的难度要适中 : 难度即测验的难易程度 , 当测验难度太大时 , 被试得分普遍太低 , 呈负偏态分布 ; 当测验难度太小时 , 被试得分普遍较高 , 呈正偏态分布。
太难太易的测验都使被试得分差异减小 , 使实得分数方差减小 , 从而降低测验信度。
参见公式 :221x E R δδ-= ( 3 )测验的内容尽量同质 : 性质相同的测验内容 , 对被试也要求相同的能力、知识和技能 ; 而内容不同质的测验 , 则要求被试不同的能力、 知识和技能。
因而为了提高测验信度 , 测验内容应尽量同质。
( 4 )测验的时间要充分 : 对某一测验而言 , 应保证绝大多数被试在规定时间内完成测验 ; 否则 , 如果被试不能从容回答所有问题 , 就不能反映被试的真实水平。
( 5 )测验的程序要统一 : 包括测验的题目统一 , 指导语、回答问题的方式、分收试卷的方法、测验时间等都要统一。