deform模拟软件的实例操作与详细介绍

合集下载

Deform使用简明步骤

Deform使用简明步骤

Deform-3D(version6.1)使用步骤Deform—3D是对金属体积成形进行模拟分析的优秀软件,最近几年的工业实践证明了其在数值模拟方面的准确性,为实际生产提供了有效的指导。

Deform—3D的高度模块化、友好的操作界面、强大的处理引擎使得它在同类模拟软件中处于领先地位。

以下将分为模拟准备、前处理、求解器、后处理四部分简要介绍Deform—3D的使用步骤。

一、模拟准备模拟准备阶段主要是为模拟时所用的上模、下模、坯料进行实体造型,装配,并生成数据文件。

实体造型可通过UG、Pro-e、Catia、Solidworks等三维作图软件进行设计,并按照成形要求进行装配,最后将装配体保存为STL格式的文件。

该阶段需要注意的是STL格式的文件名不能含有中文字符;另外对于对称坯料,为了节省求解过程的计算时间并在一定程度上提高模拟精度(增加了网格数量),可把装配体剖分为1/4,1/8或更多后再进行保存。

二、前处理前处理是整个数值模拟的重要阶段,整个模拟过程的工艺参数都需要在该阶段设置,各参数设置必须经过合理设置后才能保证模拟过程的高效性和模拟结果的准确性。

首先打开软件,新建(new problem)→选择前处理(Deform-3D preprocessor)→在存放位置(Problem location)选项卡下选择其他(other location)并浏览到想要存放deform 模拟文件的文件夹→下步的problem name可任意填写。

注意:所有路径不能含有中文字符。

simulation controls)→改变单位(units)为SI,接受弹出窗口默认值;选中模式(mode)选项卡下热传导(heat transfer)。

导入坯料、模具并设置参数:导入毛坯:1、general:通常采用刚塑性模型即毛坯定义为塑性(plastic),之后导入的模具定义为刚性(rigid);温度(temperature):根据成形要求设定坯料预热温度(温热成形时一定注意);材料(material):点击load选择毛坯材料,若材料库中没有对应的材料可选择牌号相近的。

deform模拟软件的实例操作与详细介绍

deform模拟软件的实例操作与详细介绍

实验一:挤压变形过程数值模拟题目:工艺参数•锻造速度:5mm/s•摩擦系数:剪切摩擦,0.2材料:AL-5083要求•独立完成模拟过程分析,写出详细的分析报告•给出盘形件的等效应力、等效应变及流线分布图•给出载荷曲线答:(1)一、以UG软件作出锻件的三维实体图如图所示,算得其体积V=7086.4369mm3。

从而选择的毛坯为:Φ=25mm,H=15m进行锻造。

二、用CAD软件画出1/2的毛坯、上模、下模平面图,如下图所示:毛坯上模下模(2):建模过程:将单位定义为公制。

坯料的参数设计,首先定义坯料对坯料进行网格划分:(600个网格)定义材料为AL-5083:定义坯料的边界条件:上模的参数设计:上模定义为刚体下压速度为5mm/s:定义下模,刚体材料调整上模、坯料和下模的位置:定义摩擦系数为0.2:定义步长为0.0158mm/s:对模型进行检查、保存,然后进行计算:(3)后处理结果分析:锻件模拟结果如下,可以看到模腔填充完整,但产生少量飞边。

一、等效应力分析:从应力图可以看到红色区域内承受较大的应力。

二、等效应变:分析:从应变图可以看出在坯料的圆角附近区域,其应变值较大。

三、速度场矢量图:分析:从流线图可以看出,坯料向上下两凹腔和分型面出流动。

四、载荷——行程图:分析:从图中可以看出,开始时随着上模的下行载荷缓慢增加,当坯料圆柱外表面与上下模接触后,载荷随着上模的下行急剧增加,当坯料充满模腔时,载荷达到最大值。

五:流线图:分析:从图中可以看出在坯料中部流线变形很小,随着半径的增大流线越往外弓曲。

实验二:非等温问题数值模拟问题:用实验一的模型对坯料,上下模在锻后温度进行模拟。

其中坯料材料选择AlMgMn ,温度选择3000C ,模具材料选择D5-1U ,温度为1000C 。

(1)具体建模过程如实验一所示,主要区别是对模具的网格划分和坯料与模具、模具与环境、坯料与环境的热交换。

上下模网格划分都是200格,热交换定义如下图:坯料与模具热交换定义:对建立的模型进行检查、保存并计算:(2)后处理:模拟结果如下图所示:有图可以看出,锻件充型完好。

deform模拟软件的实例操作与详细介绍

deform模拟软件的实例操作与详细介绍

实验一:挤压变形过程数值模拟题目:工艺参数•锻造速度:5mm/s•摩擦系数:剪切摩擦,0.2材料:AL-5083要求•独立完成模拟过程分析,写出详细的分析报告•给出盘形件的等效应力、等效应变及流线分布图•给出载荷曲线答:(1)一、以UG软件作出锻件的三维实体图如图所示,算得其体积V=7086.4369mm3。

从而选择的毛坯为:Φ=25mm, H=15m进行锻造。

二、用CAD软件画出1/2的毛坯、上模、下模平面图,如下图所示:毛坯上模下模(2):建模过程:将单位定义为公制。

坯料的参数设计,首先定义坯料对坯料进行网格划分:(600个网格)定义材料为AL-5083:定义坯料的边界条件:上模的参数设计:上模定义为刚体下压速度为5mm/s:定义下模,刚体材料调整上模、坯料和下模的位置:定义摩擦系数为0.2:定义步长为0.0158mm/s:对模型进行检查、保存,然后进行计算:(3)后处理结果分析:锻件模拟结果如下,可以看到模腔填充完整,但产生少量飞边。

一、等效应力分析:从应力图可以看到红色区域内承受较大的应力。

二、等效应变:分析:从应变图可以看出在坯料的圆角附近区域,其应变值较大。

三、速度场矢量图:分析:从流线图可以看出,坯料向上下两凹腔和分型面出流动。

四、载荷——行程图:分析:从图中可以看出,开始时随着上模的下行载荷缓慢增加,当坯料圆柱外表面与上下模接触后,载荷随着上模的下行急剧增加,当坯料充满模腔时,载荷达到最大值。

五:流线图:分析:从图中可以看出在坯料中部流线变形很小,随着半径的增大流线越往外弓曲。

实验二:非等温问题数值模拟问题:用实验一的模型对坯料,上下模在锻后温度进行模拟。

其中坯料材料选择AlMgMn,温度选择3000C,模具材料选择D5-1U,温度为1000C。

(1)具体建模过程如实验一所示,主要区别是对模具的网格划分和坯料与模具、模具与环境、坯料与环境的热交换。

上下模网格划分都是200格,热交换定义如下图:坯料与模具热交换定义:对建立的模型进行检查、保存并计算:(2)后处理:模拟结果如下图所示:有图可以看出,锻件充型完好。

2024年Deform入门教程

2024年Deform入门教程
模拟结果与分析能力
能够正确解读模拟结果,分析模拟过程中出现的问题并提出解决方案。
2024/2/29
32
后续学习方向建议
2024/2/29
深入学习材料模型
进一步研究不同材料模型的适用场景和参数设置方法,提高模拟的准 确性和可靠性。
掌握高级功能
学习Deform软件的高级功能,如多步模拟、子模型技术等,以应对 更复杂的模拟需求。
节点约束
直接在节点上施加约束,限制其 自由度。
面约束
在模型的面上施加约束,限制该 面上所有节点的自由度。
体载荷
在整个模型体积内施加均匀的载 荷。
2024/2/29
表面载荷
在模型的表面上施加压力、摩擦 力等表面载荷。
21
2024/2/29
06
模拟过程与结果分析
22
模拟过程设置及运行
模型建立
根据实际需求,在Deform软件中建立相应的几 何模型,并设置材料属性、边界条件等参数。
01
安装包下载不完整
建议重新下载安装包,并确保下载过 程中网络连接稳定。
02
安装过程中出现错误 提示
根据错误提示信息,检查系统环境是 否满足软件安装要求,或尝试以管理 员权限运行安装程序。
03
软件启动失败
检查软件安装路径是否存在中文字符 或特殊符号,若有,则修改为全英文 路径;同时检查系统是否缺少必要的 运行库文件,如.NET Framework等 。
2024/2/29
27
模型建立过程中的问题
01 02
几何模型建立不准确
在建立几何模型时,应确保所有尺寸和位置均按照实际要求进行设置; 对于复杂的几何形状,可以尝试使用软件的高级建模功能或第三方建模 软件进行辅助建模。

Deform详细教程

Deform详细教程
材料热物理性质
输入材料的热物理性质,如热导率、比热容、热膨胀系数 等,以便在模拟过程中考虑温度对材料性能的影响。
材料失效准则
根据实际需要,选择适当的材料失效准则,如最大主应力 准则、等效塑性应变准则等,并设置相应的失效参数。
边界条件设置
几何边界条件
定义模型的几何形状、尺寸和边 界类型,如固定边界、自由边界 、对称边界等。
04 Deform软件基本操作
用户界面介绍
主界面
包括菜单栏、工具栏、模型树、属性窗口等,提供全 面的操作功能和视图展示。
图形界面
支持多种图形显示模式,如实体、网格、轮廓等,方 便用户进行模型分析和后处理。
自定义界面
用户可根据个人习惯自定义界面布局,提高工作效率 。
基本操作命令
鼠标操作
通过鼠标左键选择、拖拽、旋转等操作,实现模型的交互操作。
未来发展趋势预测
A
随着计算机技术的不断发展,有限元分析软件 的计算能力和效率将不断提高,使得更大规模 、更复杂的仿真分析成为可能。
人工智能、机器学习等技术的引入,将为 有限元分析提供更强大的数据处理和挖掘 能力,进一步提高分析的精度和效率。
B
C
多物理场耦合分析将成为未来发展的重要方 向,Deform等软件将不断完善多物理场分 析功能,满足更广泛的应用需求。
配置环境变量和启动软件
启动软件 在完成安装和环境变量配置后,可以通过以下方式启动Deform软件 1. 点击桌面或开始菜单中的Deform图标。
配置环境变量和启动软件
2. 在命令行中输入Deform的可执行 文件名并回车。
3. 如果设置了文件关联,可以直接双 击与Deform关联的文件类型来启动 软件并打开相应文件。

DEFORM基本操作指南

DEFORM基本操作指南

,更加直观地了解变形过程和结果。
数据提取、分析和报告生成
在DEFORM软件中,可以通 过选择“分析”菜单下的不 同选项,提取模拟结果中的 各种数据,如位移、应力、
应变、温度等。
提取的数据可以以图表形式 展示,方便进行数据分析和
比较。
可以将提取的数据和图表导 出为报告文件,如Word、 PDF等格式,供后续分析和交 流使用。
解决方法
检查安装目录是否正确,并确保已将DEFORM添加到 系统路径中。
使用过程中遇到的常见问题及解决方法
问题1
DEFORM启动失败或崩溃
01
解决方法
02 检查是否有最新的更新或补丁
可用,并尝试重新安装或修复 安装。

问题2
03 在使用特定功能时出现问题
解决方法
04 查阅DEFORM的官方文档或
用户手册,了解该功能的使用 方法和限制。
快捷键
支持多种快捷键组合,如Ctrl+C(复制)、Ctrl+V(粘贴)、Ctrl+S(保存)等,提高操作效率。
03
前处理操作指南
导入几何模型
支持的几何模型格式
DEFORM支持多种CAD软件输出 的几何模型格式,如IGES、STEP 、STL等。
导入步骤
在DEFORM前处理界面中,选择 “文件”->“导入”->选择对应 的几何模型格式进行导入。
网格划分与边界条件设置
网格类型
DEFORM支持多种网格类型,如四面体网 格、六面体网格等,用户可以根据模型特点 和计算精度要求进行选择。
网格划分
对几何模型进行网格划分,可以通过设置网格大小 、密度等参数来控制网格质量和计算精度。
边界条件

2024年Deform培训教程-(特殊条款版)

2024年Deform培训教程-(特殊条款版)

Deform培训教程-(特殊条款版)Deform培训教程引言Deform是一款功能强大的有限元分析软件,广泛应用于结构工程、机械制造、航空航天等领域。

本教程旨在帮助初学者快速掌握Deform软件的基本操作,了解有限元分析的基本原理,并能运用Deform软件解决实际问题。

通过本教程的学习,读者将能够熟练使用Deform软件进行前处理、求解和后处理操作,为后续深入学习Deform的高级功能打下基础。

第一章:Deform软件概述1.1Deform软件简介Deform软件是由美国ScientificFormingTechnologiesCorporation(SFTC)开发的一款专业的有限元分析软件。

它主要用于金属塑性成形过程的模拟分析,如锻造、挤压、拉拔、轧制等。

Deform软件具有强大的前处理、求解和后处理功能,能够模拟金属在复杂应力条件下的塑性变形行为,为工程师提供有力的设计依据。

1.2Deform软件的特点(1)基于有限元方法:Deform软件采用有限元方法进行求解,具有较高的计算精度和可靠性。

(2)强大的前处理功能:Deform软件提供了丰富的几何建模、网格划分、材料属性定义等功能,方便用户快速建立分析模型。

(3)高效的求解器:Deform软件采用自适应网格技术,能够自动调整网格密度,提高计算效率。

(4)丰富的后处理功能:Deform软件提供了多种后处理工具,如应力、应变、温度等云图显示,以及动画演示等,方便用户分析计算结果。

第二章:Deform软件基本操作2.1软件安装与启动(1)Deform软件安装包,按照提示完成安装。

(2)启动Deform软件,进入主界面。

2.2建立分析模型(1)导入几何模型:通过文件菜单导入外部几何模型,或使用内置建模工具创建几何模型。

(2)定义材料属性:根据实际材料性能,设置材料属性参数。

(3)划分网格:对几何模型进行网格划分,有限元网格。

(4)设置边界条件:根据实际工况,设置模型的边界条件,如位移、力、温度等。

DEFORM 3D基本操作及实例演练

DEFORM 3D基本操作及实例演练

五、划分模具的网格
由于上下模要与工件接触,会发生热传递现象,所以我们也要对模具进行划 分网格。 1、选中上模Top Die,然后再选择按钮 。 2、在默认的情况下,点击按钮 。 3、选中上模Top Die,然后再选择按钮 。 4、在默认的情况下,点击按钮 。
六、定义模具的材料
1.在物体列表窗口中选择Top Die。 2.点击菜单 下的按钮 。 3、在deform材料库中,选择材料Die Material Carbide(24%Cabalt)。 4.点击按钮选择Bottom Die,重复1-4操作。
在选择上述三个面的过程中,你可能不能在一个视角内将三个面都能找到, 必须通过旋转工件。
在选中Workpiece的前提下,点击按钮设定毛坯的初始温度为2000°F
四、定义毛坯的材料
1、在物体列表窗口中选择Workpiece 2、点击菜单 下的按钮 。 3、在deform材料库中,选择材料Steel AISI 1025(1800-2200F(1000-1200C) 4.点击按钮 。
3.Close返回上一级窗口,点击按钮
,这个操作的意义是将Top Die-
Workpiece的接触关系直接等效到Bottom Die-Workpice的关系上。
4.最后不要忘记在Inter–Object窗口中点击按钮 。
十、调整毛坯和模具位置
前面定义了毛坯和模具的接触关系,但在几何上还没有实现,所以必须通过Object Positioning功能将它们接触上。这主要是为了节省时间,将模具与毛坯接触的过程省略。
五、模拟参数的定义
这里定义的参数,主要是为了进行有效的数值模拟。因为成形分析 一连续的过程,分许多时间步来计算,所以需要用户定义一些基本的参 数: 1、总步数:决定了模拟的总时间和行程。 2、步长:有两种选择,可以用时间或每步的行程。 3、主模具:选择主运动模具。 4、存储步长:决定每多少步存一次,不要太小,

DEFORM软件应用实例2

DEFORM软件应用实例2

3 -11 锻件有限元网格图
3 -12 锻件终锻截面图
3 -13 不同飞边的 锻件图
分析上面的模拟结果图可以知道, φ78×228mm的坯料足以充满型
腔,锻件没有产生任何缺陷。图3-13中的第一个锻件采用φ75×228mm
的坯料,第二个锻件采用的是φ78×228mm的坯料,从图中两个锻件的
飞边比较来看,第一个锻件的飞边较薄,而第二个锻件的飞边大而且厚,
数设定为0.25,假定模具为刚体,不发生变形。
3.1.2.2 有限元模拟
3.1.2.2.1 坯料优化 模拟首先选用了φ72×223mm的坯料,并经压扁工步压扁30mm,模拟
结果如图3 -18~3-21所示。
图3 -18 坯料压扁状态
图3 -19 锻件终锻状态
图3-20 锻件有限元网格图
图3-21 锻件终锻截面图
件的侧面与飞边的连接处出现了折叠。采用压扁工步合理地分配了坯料的
体积,使坯料更符合金属的变形规律,变形比较均匀,因此锻件质量较好。
3.1.1.2.3 温度场模拟 温度场模拟结果如图3 -15所示。
(a) 锻件温度场
图3 -15 温度场模拟图
(b) 锻模温度场
3.1.2 084锻件
084锻件的锻件图和模具图如图3 -16和3 -17所示。
2、精化坯料尺寸,减少产品和材料的费用;
3、优化锻造工艺、优化锻模设计
4、降低产品成本,缩短新产品研制周期,提高企业的市场竞争力。
DEFORM不同于一般目的的通用有限元模拟软件,其被设计成
适合用于对锻造过程中金属变形的模拟。DEFORM提供了友好的用
户界面,为前处理的数据准备工作以及分析过程提供了方便,该软件
第二部分 UG软件及其与DEFORM间数据交换

《Deform详细教程》课件

《Deform详细教程》课件

Deform的工具介绍
前处理工具
用于对模型进行预处理,如网格优化、边界约束和顶点颜色设置。
变形工具
提供各种变形操作选项,包括拉伸、扭曲、挤压和膨胀,并支持实时预览。
后处理工具
用于优化和调整变形结果,如平滑处理、细节增强和光照效果优化。
如何优化Deform的性能
1 减小模型面数
2 优化变形算法
通过简化模型的几何细节, 减少面数,可以提高 Deform的运行效率。
打开Deform运行缓慢
优化计算机性能,关闭不必 要的后台程序,并降低 Deform的渲染质量。
Deform的未来发展
1 多平台支持
2 增加更多变形工具
3 实时渲染功能
支持在不同操作系统和硬 件平台上运行Deform,并 提供跨平台的文件兼容性。
进一步扩展Deform的变形 工具库,以满足不同领域 和应用的需求。
加强Deform的渲染能力, 实现实时渲染效果,提供 更加真实的模型展示和交 互体验。
结语
Deform的未来前景
随着计算机技术和图形处理 能力的不断提升,Deform在 3D变形领域的应用前景十分 广阔。
Deform的应用前景
Deform将在游戏、电影、虚 拟现实等领域发挥重要作用, 为用户带来更加真实和身临 其境的体验。
《Deform详细教程》PPT 课件
欢迎参加《Deform详细教程》PPT课件,本课程将带您深入了解Deform技术, 探索其在实际应用中的价值与潜力。
什么是Deform
定义
Deform是一种3D变形技术,通过对模型进行实时变形操作,可适用于角色动画、虚拟现实 和仿真等领域。
应用场景
Deform广泛应用于游戏开发、电影制作和工程设计等行业,为模型带来更加生动逼真的外 观效果。

deform11.0实施例

deform11.0实施例

deform11.0实施例
DEFORM 11.0是一款专业的金属成型仿真软件,它可以模拟金属加工过程中的各种现象,为工程师提供优化工艺方案的依据。

下面是一个DEFORM 11.0实施例,以演示如何模拟落料拉伸成形过程:
1. 打开DEFORM 11.0软件,创建一个新的项目。

2. 在项目浏览器中,双击“材料”节点,添加所需的金属材料属性,如密度、弹性模量、泊松比等。

3. 双击“几何”节点,创建一个拉伸件的3D模型。

可以使用软件内置的绘图工具或导入现有的CAD文件。

4. 在“工艺”节点下,设置拉伸工序的参数,如拉伸方向、拉伸速度、摩擦系数等。

5. 双击“分析”节点,启动仿真分析。

DEFORM 11.0将根据设定的工艺参数,模拟拉伸过程中的应力、应变、厚度分布等变化。

6. 分析完成后,查看结果。

软件会自动生成各种分析报告,包括最大应力、最小厚度、成形极限等。

7. 根据分析结果,优化工艺参数,如调整拉伸速度、增加润滑等,以提高成形质量。

8. 若需进一步优化,可以重复步骤5和6,直至达到满意的成形效果。

9. 最后,将优化后的工艺方案应用于实际生产,以提高金属拉伸成品的质量。

这个实施例仅是DEFORM 11.0软件应用的一个简要概述。

实际上,DEFORM 11.0还具备丰富的功能,可以模拟多种金属成型工艺,为工程师提供全面的工艺优化解决方案。

Deform模拟软件功能介绍

Deform模拟软件功能介绍
• 后处理器用于显示计算结果,结果可以是 图形形式,也可以是数字、文字混编形式, 获取的结果可为每一步的有限元网格;等 效应力、等效应变;速度场、温度场及压 力行程曲线等。
4、前处理功能操作
5、后处理功能操作
第二节 锻压模拟
一、实验目的 • 熟悉模拟软件Deform的基本操作。 • 认识锻压过程中材料各部位的变形情况。
• 进入切削前处理界面,如图所示
• 设定工作条件
• 选择加工方式为旋转加工(Turning),选 择国际单位制(System International), 选择整体使用国际单位制。
• 给出加工参数:表面加工速度400mm/min,背 吃刀量0.5mm,进给率0.3mm/r。
• 刀具设定并进行网格划分
?设置1道次参数需?进刀过程热交换参数设定?进刀过程变形参数设定?设置2道次参数?设置2道次进刀过程热交换及变形参数?设定方法和1道次类似?模拟预览及创建主文件?可以观测每一模拟步中模具的位置胎具的位置?初轧模拟后处理第十节高温压缩过程的再结晶模拟???实验目的熟悉如何模拟高温压缩中再结晶过程掌握再结晶过程中实验参数的设定步骤??实验内容再结晶过程是材料成型过程中非常重要的一个环节它对组织控制起着至关重要的影响
• 模拟控制设定
• 打开变形分析开关(Deformation)和热传 导开关(Heat Transfer),此时两种分析 均被激活,热力耦合分析被建立。
• 模拟总步数的确定与工件的最小网格和上 模压下量有关。在本例中模拟过程上模压 下量是0.75in,工件的最小网格平均尺寸为 0.06in,所以取0.25(最小网格尺寸的1/3 到1/2)作为计算步长,通过计算步长,用 上模总压下量除以计算步长得到总模拟步 数为30步。

deform热锻模拟实例

deform热锻模拟实例

deform热锻模拟实例1. 简介热锻是一种常用的金属加工方法,通过在高温下对金属进行塑性变形,以改变其形状和结构。

deform热锻模拟是一种计算机仿真技术,可以模拟和预测金属在热锻过程中的行为和性能。

本文将介绍deform热锻模拟的基本原理、应用领域以及一个实际的模拟实例。

2. 原理deform热锻模拟基于有限元分析方法,通过将复杂的连续体问题离散化为有限个单元,在每个单元内进行力学和热学计算。

其基本原理如下:1.几何建模:将待加工金属件的几何形状转换为计算机可识别的三维模型。

2.材料建模:根据待加工金属的物理和力学性质,选择适当的材料参数,如杨氏模量、泊松比、导热系数等。

3.网格划分:将几何模型划分为有限个小单元,并对每个单元进行编号。

4.增量加载:根据实际加工过程的加载条件,逐步施加外部力或温度,模拟金属在热锻过程中的变形和温度变化。

5.力学计算:根据材料力学性质和外部加载条件,计算每个单元内的应力、应变和位移。

6.热学计算:根据材料的热传导特性和外部温度场,计算金属在热锻过程中的温度分布。

7.结果分析:根据力学和热学计算结果,评估金属在热锻过程中的变形行为、残余应力分布以及可能出现的缺陷(如裂纹、变形不均匀等)。

3. 应用领域deform热锻模拟广泛应用于以下几个领域:3.1 制造业在制造业领域,deform热锻模拟可以帮助工程师预测金属在热锻过程中的行为,并优化工艺参数。

通过模拟实验前进行虚拟试验,可以减少实际试验次数和成本,并提高产品质量和生产效率。

例如,在汽车制造业中,deform热锻模拟可用于设计发动机零件、转向器件等金属件的热锻工艺。

3.2 航空航天在航空航天领域,deform热锻模拟可以用于设计和优化各种关键部件的热锻工艺,如涡轮叶片、发动机壳体等。

通过模拟实验,可以预测材料在高温下的变形和残余应力分布,以及可能出现的缺陷。

这有助于提高部件的强度和耐久性,并确保飞行安全。

3.3 能源领域在能源领域,deform热锻模拟可用于设计和改进各种能源设备的关键部件,如核电站反应堆压力容器、风力发电机叶片等。

Deform3D 操作介绍

Deform3D 操作介绍

第二章DEFORM-3D操作介绍2.1DEFORM-3D软件介绍20世纪70年代后期,位于美国加州伯克利的加利福尼亚大学小林研究室在美国军方的支持下开发出有限元软件ALPID,20世纪90年代在这一基础上开发出DEFORM-2D软件,该软件的开发者后来独立出来成立了SFTC公司,并推出了DEFORM-3D软件。

DEFORM-3D 是一套基于有限元分析方法的专业工艺仿真系统,用于分析金属三维成形及其相关的各种成形工艺和热处理工艺。

二十多年来的工业实践证明其有着卓越的准确性和稳定性,模拟引擎在大流动、行程、载荷和产品缺陷预测等方面同实际生产相符,被国际成形模拟领域公认为处于同类模拟软件的领先地位。

DEFORM-3D不同于一般的有限元软件,它是专门为金属成形而设计。

DEFORM-3D可以用于模拟零件制造的全过程,从成形、机加工到热处理。

通过DEFORM-3D模拟整个加工过程,可以帮助设计人员:设计工具和产品的工艺流程,减少实验成本;提高模具设计效率,降低生产和材料成本;缩短新产品的研究开发周期;分析现有工艺存在的问题,辅助找出原因和解决方法。

2.1.1DEFORM-3D特点1)DEFORM-3D具有非常友好的图形用户界面,可方便用户进行数据准备和成形分析。

2)DEFORM-3D具有完善的IGES、STL、IDEAS、PATRAN、等CAD和CAE接口,方便用户导入模型。

3)DEFORM-3D具有功能强大的有限元网格自动生成器以及网格重划分自动触发系统,能够分析金属成形过程中多个材料特性不同的关联对象在耦合作用下的大变形和热特性,由此能够保证金属成形过程中的模拟精度,使得分析模型、模拟环境与实际生产环境高度一致。

DEFORM-3D采用独特的密度控制网格划分方法,方便地得到合理的网格分布。

计算过程中,在任何有必要的时候能够自行触发高级自动网格重划生成器,生成细化、优化的网格模型。

4)DEFORM-3D系统自带材料模型包含有弹性、弹塑性、刚塑性、热弹塑性、热刚粘塑性、粉末材料、刚性材料及自定义材料等类型,并提供丰富的开放式材料数据库,包括美国、日本、德国的各种钢、铝合金、钛合金、高温合金等250种材料的相关数据。

2024版Deform详细教程(苍松书苑)

2024版Deform详细教程(苍松书苑)

Deform详细教程(苍松书苑)•引言•Deform 软件概述•Deform 软件安装与配置•Deform 软件基本操作•建模与网格划分技术•材料属性定义及数据库管理•模拟计算过程控制与结果分析•高级功能应用与拓展目录引言教程目的和背景教程目的背景介绍苍松书苑介绍苍松书苑概述教程特色学习资源Deform软件概述直观的图形界面提供友好的图形界面,方便用户进行模型建立、结果查看等操作。

用户可以根据实际工艺需求,自定义工艺参数和边界条件。

丰富的材料数据库内置大量金属材料的物理和力学性能数据,方便用户进行模拟分析。

强大的模拟功能形工艺的模拟,包括锻造、轧高精度分析软件功能和特点机械制造领域金属成形领域航空航天领域科研与教育领域汽车制造领域应用领域和范围Deform软件安装与配置系统要求和硬件配置Windows内存至少处理器显卡硬盘空间Intel 或AMD 多核处理器,推荐Intel i5或更高系统要求和硬件配置1. 下载软件访问Deform官方网站或授权下载站点,下载最新版本的Deform安装程序。

0203双击下载的安装程序,开始安装向导。

阅读并同意软件许可协议。

2. 运行安装程序01020304013. 选择安装目录选择合适的安装目录,建议安装在非系统盘符下。

4. 等待安装完成安装程序将自动完成软件的安装过程,包括复制文件、创建快捷方式等。

01 02 034. 保存配置完成配置后,点击“保存”或“应用”按钮,使配置生效。

Deform软件基本操作用户界面介绍主界面图形界面命令行界面基本操作命令模型创建与编辑提供丰富的建模工具,支持模型的创建、修改和编辑,包括基本几何体、复杂曲面等。

材料定义与属性设置允许用户定义材料并设置其物理和机械属性,如弹性模量、泊松比、屈服强度等。

网格划分与控制提供灵活的网格划分工具,支持网格的自动生成、手动调整和局部加密等操作。

文件管理和数据导入导文件格式支持数据导入数据导出建模与网格划分技术几何建模曲面建模实体建模030201建模方法介绍网格划分原则及技巧网格类型选择根据模型特点和求解需求,选择合适的网格类型,如四面体网格、六面体网格、混合网格等。

deform热锻模拟实例

deform热锻模拟实例

deform热锻模拟实例Deform热锻模拟实例热锻是一种常用的金属成形加工方法,可以使金属材料在高温下变形,从而获得所需的形状和性能。

Deform是一款专业的有限元分析软件,可以进行热锻模拟分析。

本文将介绍Deform热锻模拟实例。

一、Deform软件介绍Deform是一个专业的有限元分析软件,主要用于金属成形加工过程中的模拟分析。

它可以对各种金属材料进行热力学、动力学和变形学等方面的分析,并且具有精度高、计算速度快等优点。

二、Deform热锻模拟实例在进行Deform热锻模拟之前,需要先准备好所需的材料和工具。

本次实例采用的是铝合金6061-T6材料,并使用了一台100吨压力的液压机。

1. 准备工作首先需要准备好所需的CAD文件,包括初始状态下的零件图和最终状态下的零件图。

然后使用Deform软件导入这些CAD文件,并设置好模拟参数。

2. 模型建立在建立模型时,需要注意以下几点:(1)设置材料参数。

在Deform软件中,需要设置材料的热力学参数、动力学参数和变形学参数等。

对于铝合金6061-T6材料,其热力学参数为:比热容=0.9 J/g·K,导热系数=167 W/m·K,线膨胀系数=23.6×10-6/K;动力学参数为:流变应力=100 MPa,应变率敏感度m=0.25;变形学参数为:最大等效应力=200 MPa,最大有效塑性应变=0.3。

(2)设置边界条件。

在模拟过程中,需要设置好零件的边界条件,即固定边界和载荷边界。

对于本实例中使用的液压机,在Deform软件中需要设置好其施加的压力和速度等。

(3)生成网格。

在建立模型后,需要对其进行网格划分,并根据实际情况进行调整。

3. 模拟分析在进行模拟分析时,需要注意以下几点:(1)选择合适的求解器。

Deform软件提供了多种求解器选项,包括隐式求解器、显式求解器和混合求解器等。

根据实际情况选择合适的求解器可以提高计算效率和精度。

Deform详细教程课件

Deform详细教程课件

求解器设置
选择适当的求解器和迭代方法,以及 设置收敛准则和迭代次数等。
结果文件类型及查看方法
结果文件类型
Deform软件支持多种结果文件类型 ,如.odb、.frd、.plt等。其中,.odb 文件为二进制格式,包含完整的模拟 结果数据;.frd和.plt文件为文本格式 ,可方便地进行后处理和数据分析。
结构
教程将按照由浅入深、由易到难的原则进行组织,首先介绍软件的基本操作和基 础知识,然后逐步深入到高级功能的应用和案例分析。同时,教程中将穿插大量 的实例和案例,以帮助用户更好地理解和掌握相关知识和技能。
02
Deform软件概述
软件功能和特点
01
02
03
04
强大的模拟功能
Deform软件支持各种金属成 形工艺的模拟,包括锻造、轧
网格密度控制
在关键区域(如应力集中区、流动边界层等 )加密网格,以提高求解精度。
边界层处理
对于涉及流动或传热问题的模型,需在边界 层处划分合适的网格以捕捉物理现象。
实例演示:建模与网格划分
1
以简单几何体为例,演示从建模到网格划分的完 整流程。
2
针对复杂模型,展示高级建模技巧和网格划分策 略。
3
通过对比不同网格类型和密度对求解结果的影响 ,强调网格划分在数值仿真中的重要性。
实例四
演示如何在模拟过程中修改材料属性 和边界条件,以便更准确地模拟实际 工况。
05
模拟计算与结果分析
模拟计算参数设置
材料参数
包括弹性模量、泊松比、密度等,用 于描述材料的力学性质。
边界条件
定义模型的约束和载荷,如固定支撑 、压力、温度等。
网格划分
将模型离散化为有限个单元,用于数 值计算。网格密度和类型会影响计算 精度和效率。

(完整word版)Deform-3d热处理模拟操作全解

(完整word版)Deform-3d热处理模拟操作全解

Deform-3d热处理模拟操作热处理工艺在机械制造中占有十分重要的地位。

随着机械制造现代化和热处理质量管理现代化的发展,对热处理工艺提出了更高的要求。

热处理工艺过程由于受到加热方式、冷却方式、加热温度、冷却温度、加热时间、冷却时间等影响,金属内部的组织也会发生不同的变化,因此是个十分复杂的过程,同时工艺参数的差异,也会造成热处理加工对象硬度过高过低、硬度不均匀等现象。

Deform-3d 软件提供一种热处理模拟模块,可以帮助热处理工艺员,通过有限元数值模拟来获得正确的热处理参数,从而来指导热处理生产实际。

减少批量报废的质量事故发生。

热处理模拟,涉及到热应力变形、热扩散和相变等方面,因此计算很复杂,软件采用牛顿迭代法,即牛顿-拉夫逊法进行求解。

它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。

多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。

方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。

牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根等。

但由于目前Deform-3d软件的材料库只带有45钢、15NiCr13和GCr15等三种材料模型,而且受到相变模型的局限,因此只能做淬火和渗碳淬火分析,更多分析需要进行二次开发。

本例以45钢热处理淬火工艺的模拟过程为例,通过应用Deform-3d 热处理模块,让读者基本了解热处理工艺过程有限元模拟的基本方法与步骤。

1 、问题设置点击“文档”(File)或“新问题”(New problem),创建新问题。

在弹出的图框中,选择“热处理导向”(heat treatment wizard),见图1。

图1 设置新问题2、初始化设置完成问题设置后,进入前处理设置界面。

首先修改公英制,将默认的英制(English)修改成公制(SI),同时选中“形变”(Deformation)、“扩散”(Diffusion)和“相变”(Phase transformation),见图2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一:挤压变形过程数值模拟
题目:
工艺参数
•锻造速度:5mm/s
•摩擦系数:剪切摩擦,
0.2
材料:AL-5083
要求
•独立完成模拟过程分
析,写出详细的分析报

•给出盘形件的等效应
力、等效应变及流线分
布图
•给出载荷曲线
答:
(1)
一、以UG软件作出锻件的三维实体图如
图所示,算得其体积V=7086.4369mm3。

从而选择的毛坯为:Φ=25mm, H=15m
进行锻造。

二、用CAD软件画出1/2的毛坯、上模、下模平面
图,如下图所示:
毛坯上模下模
(2):建模过程:将单位定义为公制。

坯料的参数设计,首先定义坯料
对坯料进行网格划分:(600个网格)定义材料为AL-5083:
定义坯料的边界条件:
上模的参数设计:上模定义为刚体
下压速度为5mm/s:
定义下模,刚体材料
调整上模、坯料和下模的位置:定义摩擦系数为0.2:
定义步长为0.0158mm/s:
对模型进行检查、保存,然后进行计算:
(3)后处理结果分析:
锻件模拟结果如下,可以看到模腔填充完整,但产生少量飞边。

一、等效应力
分析:从应力图可以看到红色区域内承受较大的应力。

二、等效应变:
分析:从应变图可以看出在坯料的圆角附近区域,其应变值较大。

三、速度场矢量图:
分析:从流线图可以看出,坯料向上下两凹腔和分型面出流动。

四、载荷——行程图:
分析:从图中可以看出,开始时随着上模的下行载荷缓慢增加,当坯料圆柱外表面与上下模接触后,载荷随着上模的下行急剧增加,当坯料充满模腔时,载荷达到最大值。

五:流线图:
分析:从图中可以看出在坯料中部流线变形很小,随着半径的增大流线越往外弓曲。

实验二:非等温问题数值模拟
问题:用实验一的模型对坯料,上下模在锻后温度进行模拟。

其中坯料材料选择AlMgMn,温度选择3000C,模具材料选择D5-1U,温度为1000C。

(1)具体建模过程如实验一所示,主要区别是对模具的网格划分和坯料与模具、模具与环境、坯料与环境的热交换。

上下模网格划分都是200格,热交换定义如下图:
坯料与模具热交换定义:
对建立的模型进行检查、保存并计算:
(2)后处理:
模拟结果如下图所示:有图可以看出,锻件充型完好。

1.锻件温度分布图:
分析:有温度分布图可以看出,在锻压过程中,锻件中心部位温度最高达到2800C 左右,锻件外围温度降低。

2.上模温度分布图:
分析:由温度分布图可以看出,在模具与锻件接触部分的温度最高,达到1900C,离锻件距离较远部位温度降低。

3.下模温度分布图:
分析:同上模一样,在与锻件接触部位温度最高,达到1900C,离锻件距离越远温度越低。

实验三:复合挤压过程数值模拟
问题:
复合挤压模具图
复合挤压坯料图
工艺参数:
坯料材料 -6061
摩擦因子:0.6
不计算模具传热和变形
冲头运动速度
=24
=50
坯料初始温度=300
第二组:
一、用CAD软件画出1/2的毛坯、上模、下模平面图,如下图所示:
毛坯冲头下模二、定义毛坯模型,参数如下图所示:
毛坯网格划分:(800格)定义毛坯边界条件:
定义毛坯初始温度为3000C:定义冲头参数:
冲头下压速度为3mm/s:
定义凹模参数:
调整毛坯、冲头和凹模:
定义毛坯与模具摩擦系数为0.6
定义步长为0.025:
对模型检查、保存并计算:模拟结果如下图所示:
三、后处理:
1.复合挤压件等效应变图:
分析:从应变图可以看出在挤压件与冲头角处、挤压件与凹模角出及两者连线附近,其应变最大。

2.等效应力图:
分析:从应力图可以看出,挤压件应力在冲头角、凹模角处最大,在两者连线上应力也较大。

3.速度场矢量图:
分析:从速度场矢量图可以看出毛坯中心部位坯料向凹模中心孔处流动,在1/2半径处金属下部分向凹模中心孔处流动,而上部分往冲头与凹模间隙处流动,而毛坯与凹模接触处的金属基本上不发生流动。

4.载荷—行程图
分析:从载荷-行程图可以看出,冲头刚开始下行阶段载荷增加较小,当冲头与坯料接触挤压时载荷急剧增加,随着冲头的下行到一定程度后,载荷随行程成现锯齿状,载荷基本不再增加。

5.流线图:
分析:从图中可以看出,坯料的流线不发生弯曲变形,可能原因是压下量较小,流线变形还较小。

相关文档
最新文档