反激式开关电源设计详解(上)
反激式开关电源设计培训教材(第一节)
5、开关管峰值电流Ip
6、初级绕组匝数Np 天通TP4/TP4A的磁芯Bs为5100GS,FSDM0265R有过温保护,因 此Bw可选0.6Bs,则Bw=3060GS,如IC无过温保护,则要留一定
的裕量,否则,在过载状态时,变压器易饱和,在饱和状态,
易发生故障损坏开关管,Bw要选低一点,选(0.3-0.5)Bs; 气隙Lg选0.025cm
• 参数计算 1、最大允许的反激电压
Vf=650V-373V-32.5V –100V=144.5V 选反激电压Vf为75V,则Mosfet的漏极最高电压为: 373V+100V+75V=548V<617.5V,是比较安全的。
2、原、副边的匝比n 次级选用3A/100V肖特基整流,则1.25A输出电流时的
输入过流保护主要是靠保险管、保险丝绕线电阻的过电流过功 率熔断特性。保险管主要用在高输出功率的电源上,绕线电阻用 在低输出功率的电源上。保险管重要的参数有额定电流、熔断时 间、分断能力,额定电流大、熔断时间长、分断能力低,容易炸 裂管壁,这在安全认证时是不允许的,因此,要尽量选择分断能 力高的保险管;保险丝绕线电阻重要的参数主要是过功率熔断时 间,一般加在电阻两端的电压与电流的乘积为电阻标称功率的25 倍时,要在60S内熔断
•PWM控制芯片(Fairchildsemi的FSDM0265R)
第二章、变压器设计
单端反激开关电源的变压器实质上是一个耦合电感, 它要承担着储能、变压、传递能量等工作。下面对工 作于连续模式和断续模式的单端反激变换器的变压器 设计进行总结。 • 1、已知的参数 根据需求和电路的特点确定,包括:输入电压Vin、输
S012B系列变压器设计步骤
• 已知条件 1、输入电压Vin:90Vac-264Vac 2、输出电压Vout:12V 3、输出电流Iout:1.25A 4、Mosfet耐压Vmos:650V 5、开关频率f:67KHz 6、FSDM0265R最大输出功率:
反激式开关电源(flyback)环路设计基础
反激式开关电源(flyback)是一种常见的电源结构,广泛应用于电子设备中。
它具有结构简单、成本低廉、效率高等优点,在消费电子、工业控制和通信设备等领域被广泛应用。
本文旨在介绍反激式开关电源环路设计的基础知识,包括工作原理、设计步骤和注意事项。
一、反激式开关电源的工作原理1.1 反激式开关电源的基本结构反激式开关电源由输入滤波器、整流桥、高频变压器、功率开关器件、输出整流滤波器、控制电路等组成。
其中,高频变压器是反激式开关电源的关键部件,通过变压器实现输入电压的隔离和变换,功率开关器件则控制变压器的工作状态,实现电源的调节和稳定输出。
1.2 反激式开关电源的工作原理反激式开关电源通过功率开关器件周期性地将输入电压斩波,将输入电能存储在变压器的磁场中,然后再将其转换为输出电压。
在工作周期的后半段,存储的能量释放到输出负载上,从而实现对输出电压的调节。
通过控制功率开关器件的导通时间和断态时间,可以实现对输出电压的调节和稳定。
二、反激式开关电源环路设计的基础知识2.1 反激式开关电源的设计步骤(1)确定电源的输入输出参数:包括输入电压范围、输出电压、输出电流、负载调整范围等;(2)选择功率开关器件和高频变压器:根据电源的输入输出参数和工作频率选择合适的功率开关器件和高频变压器;(3)设计反激式开关电源的控制电路:根据所选的功率开关器件和高频变压器设计相应的控制电路,包括PWM控制电路、电源启动电路等;(4)设计输入输出滤波器和保护电路:设计输入输出滤波器,保证电源的输入输出稳定和干净,设计过压、过流、过温等保护电路,保证电源的安全稳定工作。
2.2 反激式开关电源环路设计的注意事项(1)磁性元件的设计:高频变压器和输出感应元件的设计是整个反激式开关电源设计的关键,应合理设计磁芯、线圈匝数等参数,保证磁性元件承载功率、效率和体积的平衡;(2)功率开关器件的选择和驱动:应选择合适的功率开关器件,并设计合理的驱动电路,保证功率开关器件的可靠工作和转换效率;(3)控制电路的设计:应根据功率开关器件的工作特性和工作频率设计合适的PWM控制电路和反馈控制电路,保证电源的稳定可调;(4)输入输出滤波器和保护电路的设计:应合理设计输入输出滤波器和保护电路,保证电源的输入输出稳定和安全可靠。
反激式开关电源设计详细流程
用SG6849设计反激式开关电源摘要:SG6849芯片是SG(System General)公司生产的开关电源专用集成电路,使用该芯片设计小功率开关电源,可大大减少外围电路,降低成本,电路可靠性高,且可以不带副边反馈。
详细介绍了SG6849芯片的工作原理,并基于此芯片设计了一个5.6W的单端反激式开关电源,给出了实验结果。
关键词:SG6849;反激;副边反馈O 引言开关电源因具有重量轻、体积小、效率高、稳压范围宽等优点,在电视、电声、计算机等许多电子设备中得到了广泛的应用。
为了进一步追求开关电源的小型化和低成本,人们不断研制成功一些新的开关电源集成电路芯片。
台湾SG System General)公司开发的SG6 849,集内部振荡器、比较器、反馈补偿电路于一体,只需较少的外围元器件,就可构成一个电路结构简洁、成本低、性能稳定、制作及调试方便的单端反激式开关电源。
在负载调整率要求不高的情况下,甚至可去掉副边反馈,进一步减少体积,节省成本。
1 SG6849芯片功能介绍1.1 内部结构及管脚功能SG6849芯片是台湾SG(System General)公司2004年底推出的SG684X系列PWM集成电路控制芯片。
该芯片具有如下特点:不带副边反馈的恒压和恒流控制;轻载时工作于省电模式;较低的启动电流和较低的工作电流;65kHz和100kHz的固定频率;较少的外围元件;输出过流保护、过温保护和短路保护。
该芯片采用S0T-26或DlP-8封装形式,内部结构如图1所示。
下面就以DIP-8封装为例,说明各管脚的功能。
脚l(GATE) 门极,用来驱动功率NOSFET。
脚2(VDD) 提供芯片的工作电压,当不带副边反馈时,靠VDD来提供反馈信息,调整输出电压。
脚3、5、6(NC) 悬空。
脚4(SENSE) 过流保护。
该引脚也可用于电流模式的PWM控制。
脚7(FB) 为PWM控制器的内部比较器提供反馈信息,控制占空比;当不带副边反馈的时候,该引脚开路。
反激式开关电源设计资料要点
反激式开关电源设计资料前言反激式开关电源的控制芯片种类非常丰富,芯片厂商都有自己的专用芯片,例如UC3842、UC3845、OB2262、OB2269、TOPSWITCH 等等。
虽然控制芯片略有不同,但是反激式开关电源的拓扑结构和电路原理基本上是一样的,本资料以UC3842为控制芯片设计了一款反激式开关电源。
单端反激式开关稳压电源的基本工作原理如下:D1ET ON T OFFL P L STI PQ1C O R L图1 反激式开关电源原理图当加到原边主功率开关管Q1的激励脉冲为高电平使Q1导通时,直流输入电压V IN加载原边绕组N P两端,此时因副边绕组相位是上负下正,使整流管D1反向偏置而截止;当驱动脉冲为低电平使Q1截止时,原边绕组N P两端电压极性反向,使副边绕组相位变为上正下负,则整流管被正向偏置而导通,此后存储在变压器中的磁能向负载传递释放。
因单端反激式电源只是在原边开关管到同期间存储能量,当它截止时才向负载释放能量,故高频变压器在开关工作过程中,既起变压隔离作用,又是电感储能元件。
因此又称单端反激式变换器是一种“电感储能式变换器”。
学习了反激式开关电源的工作原理之后,我们可以自行设计一款电源进行调试。
开关电源是一门实验科学,理论知识的学习是必不可少的,但是光掌握了理论知识是远远不够的,还要多做实验,测试不同环境不同参数下的电源工作情况,这样才能对电源有更深的认识。
除此之外,掌握大量的实验数据可以对以后设计电源和电源的优化提供很大帮助,可以更快速更合理的设计出一款新电源或者排除一些电源故障。
通过阅读下面的章节,可以使你对电源从原理理解到设计能力有一个快速的提升。
第一章电源参数的计算第一步,确定系统的参数。
我们设计一个电源首先要确定电源工作在一个什么样的环境,比如说输入电压的范围、频率、网侧电压是否纯净,接下来是电源的输出能力包括输出电压、电流和纹波大小等等。
先要确定这些相关因素,才能更好的设计出符合标准的电源。
小功率反激式开关电源设计与计算
小功率反激式开关电源设计与计算
一、原理分析 下图为一开关电源原理图
学习园地
220V 市电经开关、保险管、热敏电阻、共模抑制电感电容和差模抑制电容, 经桥式整流成脉动直流,经电解电容滤波,得到约 300V 直流电压,通过开关变 压器的初级加至开关管漏极(或集电极),这其中在保险管的后面接有压敏电阻, 可消除来自电网的超高瞬态尖峰脉冲干扰,如果市电电压异常升高,在一个不 太长的毫秒级时间内,压敏电阻阻值迅速降低至欧姆级,大电流熔断保险丝, 从而保护了后面的电路。在 220V 电路中,串有热敏电阻,该电阻在常温下约十 几欧姆,开机瞬间利用这一电阻有效减小冲击电流,保护线路、电源开关接点、 整流二极管。当电流稳定后,热敏电阻温度升高电阻下降即负温度系数,整机 正常工作。
8
肯普科技
i) 其它
Cin=3µF/W(85~265V AC) IP=IR/KRP
IP=
P0
+
VImin * Dmax *η
IR 2
2µF/W(195~265V AC)
IP=
2P0 VImin * Dmax *η(2 − KRP)
ISP=IP* N P NS
ISRMS=ISP*
(1
−
D max
)(
PO =0.032A η * V1min
c) IP=
I AVG
=0.15A
(1- 0.5KRP ) * Dmax
d) NP=
LP =210T ALG
e)
LP=
IP
2
*
K
106 PO RP (1- 0.5KRP
)
*
f
* Z(1-η) +η η
=6
反激开关电源设计解析上
04
Y电容是指跨与L-G/N-G之间的电容器.
单击此处添加小标题
X电容多选用耐纹波电流比较大的聚脂薄膜类电容。这种类型的电容,体积较大,但其允许瞬间充放电的电流也很大,而其内阻相应较小。 X电容容值选取是uF级,此时必须在X电容的两端并联一个安全电阻,用于防止电源线拔插时,由于该电容的充放电过程而致电源线插头长时间带电。 安全标准规定,当正在工作之中的机器电源线被拔掉时,在两秒钟内,电源线插头两端带电的电压(或对地电位)必须小于原来额定工作电压的30%。 作为安全电容之一的X电容,也要求必须取得安全检测机构的认证。X电容一般都标有安全认证标志和耐压AC250V或AC275V字样,但其真正的直流耐压高达2000V以上,使用的时候不要随意使用标称耐压AC250V或者DC400V之类的的普通电容来代用。
反激开关电源特点
在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电 压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以自行车充电器为例,详细讲解反激开关电源的设计流程及元器件的选择方法。
共模磁芯的选择
从前述设计要求中可知,共模电感器要不易饱和,如此就需要选择低B-H(磁芯损耗与饱和磁通密度)温度特性的材料,因需要较高的电感量,磁芯的μi值也就要高,同时还必须有较低的磁芯损耗和较高的BS(饱和磁通密度)值,符合上述要求之磁芯材质,目前以铁氧体材质最为合适,磁芯大小在设计时并没有一定的规定,原则上只要符合所需要的电感量,且在允许的低频损耗范围内,所设计的产品体积最小化。 因此,磁芯材质及大小选取应以成本、允许损耗、安装空间等做参考。共模电感常用磁芯的μi约在2000~10000之间。
反激ACDC开关电源设计解析(上)
(上)彭磊•10W以内常用RCC(自激振荡)拓扑方式•10W-100W以内常用反激式拓扑(75W以上电源有PF值要求)•100W-300W 正激、双管反激、准谐振•300W-500W 准谐振、双管正激、半桥等•500W-2000W 双管正激、半桥、全桥•2000W以上全桥•在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。
优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出.缺点:输出纹波比较大。
(输出加低内阻滤波电容或加LC噪声滤波器可以改善)•今天以自行车充电器为例,详细讲解反激开关电源的设计流程及元器件的选择方法。
EMI整流滤波变压器次级整流滤波开关器件PWM 控制IC隔离器件采样反馈输出高压区域低压区域—保险管•作用:安全防护。
在电源出现异常时,为了保护核心器件不受到损坏。
•技术参数:额定电压V、额定电流I、熔断时间I^2RT。
•分类:快断、慢断、常规•0.6为不带功率因数校正的功率因数估值•Po输出功率•η 效率(设计的评估值)•Vinmin 最小的输入电压•2为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。
•0.98 PF值相关知识•大部分用电设备中,其工作电压直接取自交流电网。
所以电网中会有许多家用电器、工业电子设备等等非线性负载,这些用电器在使用过程中会使电网产生谐波电压和电流。
没有采取功率因数校正技术的AC-DC整流电路,输入电流波形呈尖脉冲状。
交流网侧功率因数只有0.5~0.7,电流的总谐波畸变(THD)很大,可超过100%。
采用功率因数校正技术,功率因数值为0.999时,THD约为3%。
为了防止电网的谐波污染,或限制电子设备向电网发射谐波电流,国际上已经制定了许多电磁兼容标准,有IEEE519、IEC1000-3-2等。
•功率因数的校正(PFC)主要有两种方法:无源功率因数校正和有源功率因数校正。
单端反激式开关电源-主电路设计讲解
摘要开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制、IC 和MOSFET构成。
本设计在大量前人设计开关电源的的基础上,以反激式电路的框架,用TOP244Y 构成12V、2.5A开关电源模块,通过整流桥输出到高频变压器一次侧,在二次侧经次级整流滤波输出。
输出电压经采样与TL431稳压管内部基准电压进行比较,经过线性光偶合器PC817改变TOP244Y的占空比,从而使电路能直流稳压输出。
关键词开关电源;脉冲宽度调制控制;高频变压器;TOP244YABSTRACT Switching power supply is the use of modern electronic technology, control switching transistor turn-on and turn-off time ratio of the output voltage to maintain a stable power supply, switching power supply generally by the pulse width modulation (PWM) control,IC and MOSFET form.The design of a large number of predecessors in the switching power supply design based on the flyback circuit to the framework, using TOP244Y constitute a 12V, 2.5A switching power supply module, through the rectifier bridge output to high-frequency transformer primary side, the secondary side by the time level rectifier output. TL431 by sampling the output voltage regulator with an internal reference voltage comparison, after a linear optical coupler PC817 change TOP244Y duty cycle, so the circuit can be DC regulated output.Keyword Switching Power Supply;PWM Control;high frequency transformer;TOP244Y目录前言 (3)1.反激式PWM高频开关电源的工作原理 (4)1.1 PWM开关电源 (5)1.1.1 开关电源简介 (5)1.1.2 PWM开关电源原理 (6)1.2 反激式变换器 (8)1.2.1 反激变换器的工作原理 (8)1.2.2 反激变换器的工作模式 (9)1.3 单相二极管整流桥 (9)1.4 缓冲电路(吸收电路) (10)2.TOPSwitch-GX芯片 (11)2.1 TOPSwitch-GX的性能 (12)2.2 TOPSwitch-GX的内部结构及引脚 (12)2.2.1 TOPSwitch-GX的内部结构 (12)2.2.2 TOPSwitch-GX的引脚功能 (14)3.反激式变换器的高频变压器设计 (15)3.1 开关电源变压器的绕线技术 (16)3.1.1 绕组符合安全规程 (16)3.1.2 低漏感的绕制方法 (17)3.1.3 变压器紧密耦合的绕制方法 (19)3.2 确定磁心的尺寸 (20)3.3 反激式变压器的设计 (22)4.单端反激式开关电源-主电路设计 (24)4.1 单端反激式开关电源主电路介绍 (25)4.2 单端反激式开关电源驱动电路介绍 (26)5.设计结果及分析 (27)5.1 设计输出电压及波形 (28)5.2 设计结果分析 (32)结论 (33)致谢 (34)参考文献 (34)附录 (35)前言本课题主要掌握反激式PWM高频开关电源的工作原理。
反激式开关电源原理与工程设计讲解
反激式开关电源原理与工程设计讲解反激式开关电源原理与工程设计一.反激式开关电源的原理分析二.反激式开关电源实际电路的主要部件及其作用三.反激式开关电源电路各主要器件的参数选择四.反激式开关电源pcb排板原则五.变压器的设计六.反激式开关电源的稳定性问题反激式开关电源原理与工程设计一.反激式开关电源的原理分析1.反激式开关电源电路拓扑2.为什么是反激式a.变压器的同名端相反b.利用了二极管的单向导电特性3.电感电流的变化为何不是突变电压加在有电感的闭合回路上,流过电感上电流不是突变的,而是线性增加。
愣次定律:a.当电感线圈流过变化的电流时会产生感生电动势,其大小于与线圈中电流的变化率成正比;b.感生电动势总是阻碍原电流的变化4.变压器的主要作用与能量的传递理想变压器与反激式变压器的区别反激式变压器的作用a.电感(储能)作用遵守的是安匝比守恒(而不是电压比守恒)储存的能量为1/2×L×Ip2b.限流的作用c.变压作用初次级虽然不是同时导通,它们之间也存在电压转换关系,也是初级按匝比变换到次级,次级按变比折射回初级。
d.变压器的气隙作用扩展磁滞回线,能使变压器更不易饱和磁饱和的原理图电感值跟导磁率成正比,导磁率=B/HB是磁通密度H是磁场强度简单一点,H跟外加电流成正比就是了,增加电流,磁流密度会跟着增加, 当加电流至某一程度时,我们会发现,磁通密度会增加得很慢, 而且会趋近一渐近线.当趋近这一渐近线时,这时的磁通密度,我们就称為饱和磁通密度,电感值跟导磁率成正比,导磁率=B/HB是磁通密度,H是磁场强度(电流增加,H会增加.) H会增加,但B不会增加, 导磁率变化量会趋近零啦!电感值跟导磁率变化量成正比, 导磁率变化量趋近零,那电感值会是多少? 零5.开关管漏极电压的组成a. 高压为基础部分b. 折射回来的电压部分c. 漏感产生的尖峰部分波形6.反激式拓扑开关电源有两种工作模式:(1) 完全能量转换,也叫做非连续导通模式。
反激式开关电源设计详解上共44页共46页
谢谢!Βιβλιοθήκη 反激式开关电源设计详解上共44页
11、不为五斗米折腰。 12、芳菊开林耀,青松冠岩列。怀此 贞秀姿 ,卓为 霜下杰 。
13、归去来兮,田蜀将芜胡不归。 14、酒能祛百虑,菊为制颓龄。 15、春蚕收长丝,秋熟靡王税。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
反激式(RCD)开关电源原理及设计
反激式(RCD)开关电源原理及设计[导读]反激拓扑的前身是Buck-Boost变换器,只不过就是在Buck-Boost变换器的开关管和续流二极管之间放入一个变压器,从而实现输入与输出电气隔离的一种方式,因此,反激变换器也就是带隔离的Buck-Boost变换器。
关键词:反激式开关电源因该电源是公司产品的一个配套使用,且各项指标都不是要求太高,故选用最常用的反激拓扑,这样既可以减小体积(给的体积不算大),还能降低成本,一举双的!反激拓扑的前身是Buck-Boost变换器,只不过就是在Buck-Boost变换器的开关管和续流二极管之间放入一个变压器,从而实现输入与输出电气隔离的一种方式,因此,反激变换器也就是带隔离的Buck-Boost变换器。
先学习下Buck-Boost变换器工作原理简单介绍下1.在管子打开的时候,二极管D1反向偏置关断,电流Is流过电感L,电感电流IL线性上升,储存能量!2.当管子关断时,电感电流不能突变,电感两端电压反向为上负下正,二极管D1正向偏置开通!给电容C充电及负载提供能量!3.接着开始下个周期!从上面工作可以看出,Buck-Boost变换器是先储能再释放能量,VS不直接向输出提供能量,而是管子打开时,把能量储存在电感,管子关断时,电感向输出提供能量!根据电流的流向,可以看出上边输出电压为负输出!根据伏秒法则Vin*Ton=Vout*ToffTon=T*DToff=T*(1-D)代入上式得Vin*D=Vout*(1-D)得到输出电压和占空比的关系Vout=Vin*D/(1-D)看下主要工作波形从波形图上可以看出,晶体管和二极管D1承受的电压应力都为Vs+Vo(也就是Vin+Vout);再看最后一个图,电感电流始终没有降到0,所以这种工作模式为电流连续模式(Ccm模式)。
如果再此状态下把电感的电感量减小,减到一定条件下,会出现这个波形!从上图可以看出,电感电流始终降到0后再到最大,所以这种模式叫不连续模式(DCM模式)。
一步一步精通单端反激式开关电源设计
一步一步精通单端反激式开关电源设计————————————————————————————————作者:————————————————————————————————日期:一步一步精通单端反激式开关电源设计目录■系统应用需求 (5)■步骤1_确定应用需求 (5)■步骤2_根据应用需求选择反馈电路和偏置电压VB (6)■步骤3_确定最小和最大直流输入电压VMIN和VMAX,并基于输入电压和PO选择输入存储电容CIN的容量 (8)3.1、选择输入存储电容CIN的容量 (8)3.2、确定最小和最大直流输入电压VMIN和VMAX (11)■步骤4_输入整流桥的选择 (11)■步骤5_确定发射的输出电压VOR以及钳位稳压管电压VCLO (13)■步骤6_对应相应的工作模式及电流波形设定电流波形参数KP:当KP≤1时,KP=KRP;当KP≥1时,KP=KDP (16)■步骤7_根据VMIN和VOR确定DMAX (18)■步骤8_计算初级峰值电流IP、输入平均电流IAVG和初级RMS电流IRMS (18)■步骤9_基于AC输入电压,VO、PO以及效率选定MOS管芯片 (20)■步骤10_设定外部限流点降低的ILIMIT降低因数KI (20)■步骤11_通过IP和ILIMIT的比较验证MOS芯片选择的正确性 (20)■步骤12_计算功率开关管热阻选择散热片验证MOS芯片选择的正确性 (20)■步骤13_计算初级电感量LP (21)■步骤14_选择磁芯和骨架,再从磁芯和骨架的数据手册中得到,,和BW的参考值 (22)■步骤15_设定初级绕组的层数L以及次级绕组圈数(可能需要经过迭代的过程) (29)■步骤16_计算次级绕组圈数以及偏置绕组圈数 (29)■步骤17_确定初级绕组线径参数OD、DIA、AWG (29)■步骤18_步骤23-检查。
如果有必要可以通过改变L、或磁芯/骨架的方法对其进行迭代,知道满足规定的范围 (30)■步骤24 –确认4200高斯。
(完整版)反激式开关电源的设计方法
1 设计步骤:1.1 产品规格书制作1.2 设计线路图、零件选用.1.3 PCB Layout.1.4 变压器、电感等计算.1.5 设计验证.2 设计流程介绍:2.1 产品规格书制作依据客户的要求,制作产品规格书。
做为设计开发、品质检验、生产测试等的依据。
2.2 设计线路图、零件选用。
2.3 PCB Layout.外形尺寸、接口定义,散热方式等。
2.4 变压器、电感等计算.变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,2.4.1 决定变压器的材质及尺寸:依据变压器计算公式Gauss x NpxAeLpxIp B 100(max ) ➢ B(max) = 铁心饱合的磁通密度(Gauss)➢ Lp = 一次侧电感值(uH)➢ Ip = 一次侧峰值电流(A)➢ Np = 一次侧(主线圈)圈数➢ Ae = 铁心截面积(cm 2)➢B(max) 依铁心的材质及本身的温度来决定,以TDK FerriteCore PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。
2.4.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。
2.4.3 决定变压器线径及线数:变压器的选择实际中一般根据经验,依据电源的体积、工作频率,散热条件,工作环境温度等选择。
当变压器决定后,变压器的Bobbin 即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。
反激式开关电源变压器的设计
反激式开关电源变压器的设计反激式开关电源变压器是一种常见的变压器类型,广泛应用于电子设备和通信设备中。
它具有体积小、效率高以及输出电压稳定等优点。
本文将分别从设计原理、工作方式和设计步骤等方面对反激式开关电源变压器的设计进行详细介绍。
一、设计原理二、工作方式反激式开关电源变压器的工作方式可以分为两个阶段:储能和传输。
在储能阶段,开关管打开,电流通过变压器一侧的绕组进行储能;在传输阶段,开关管关闭,储存的能量被转移到变压器另一侧的绕组上,最后输出所需的电压。
三、设计步骤1.确定输入电压和输出电压的需求。
根据实际应用需求确定输入电压和输出电压的范围。
2.计算变压器的变比。
根据输入电压和输出电压的比例计算变压器的变比N。
3.计算变压器的功率。
根据输出电压和输出电流计算变压器的功率,确保变压器能够承受所需的功率。
4.确定变压器的工作频率。
根据实际应用需求选择合适的工作频率,通常在20kHz到200kHz之间。
5.计算变压器的参数。
根据变压器的变比、工作频率和功率计算变压器的参数,包括绕组的匝数、铁芯的尺寸等。
6.选择合适的磁性材料。
根据变压器的参数选择适合的磁性材料,常用的材料有软磁合金和磁性氧化铁等。
7.进行原型设计和测试。
根据上述设计参数制作变压器的原型,并进行测试以验证设计结果的准确性。
8.进行参数调整和优化。
根据原型测试结果进行参数调整和优化,以实现更好的性能和效果。
9.进行批量生产。
当设计满足要求时,可以进行批量生产并进行产品验证和测试。
总结:。
(完整版)反激式开关电源的设计方法
1 设计步骤:1.1 产品规格书制作1.2 设计线路图、零件选用.1.3 PCB Layout.1.4 变压器、电感等计算.1.5 设计验证.2 设计流程介绍:2.1 产品规格书制作依据客户的要求,制作产品规格书。
做为设计开发、品质检验、生产测试等的依据。
2.2 设计线路图、零件选用。
2.3 PCB Layout.外形尺寸、接口定义,散热方式等。
2.4 变压器、电感等计算.变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,2.4.1 决定变压器的材质及尺寸:依据变压器计算公式Gauss x NpxAeLpxIp B 100(max ) ➢ B(max) = 铁心饱合的磁通密度(Gauss)➢ Lp = 一次侧电感值(uH)➢ Ip = 一次侧峰值电流(A)➢ Np = 一次侧(主线圈)圈数➢ Ae = 铁心截面积(cm 2)➢B(max) 依铁心的材质及本身的温度来决定,以TDK FerriteCore PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。
2.4.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。
2.4.3 决定变压器线径及线数:变压器的选择实际中一般根据经验,依据电源的体积、工作频率,散热条件,工作环境温度等选择。
当变压器决定后,变压器的Bobbin 即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。
单端反激式开关电源(毕业设计).
单端反激式开关电源(毕业设计).二、单端反激式开关电源的工作原理单端反激式开关电源的工作原理依靠开关管的开关动作来实现交流电到直流电的转换。
其基本原理如下:1、输入电压滤波单端反激式开关电源在工作之前,必须对输入电压进行滤波,以保证输入电压的平稳、稳定。
2、交流电输入输入电压通过电容滤波后,在交流电路中形成一定的电压波形,交流电通过变压器的原、次绕组的磁耦合作用,将输入电压变换成所需要的电压等级。
本设计选择220V交流电输入,变压器原、次绕组变比为1:26。
3、整流滤波变压器将220V交流电转换成24V直流电,然后通过扁平电容进行电压滤波,使直流电平滑化,得到更加稳定的直流电。
4、开关转换在直流电经过扁平电容滤波后,进入开关电路,在开关电路中,开关管CD4049B作为单向触发器,通过555定时器形成一定的工作周期,改变开关管的通断状态,使得直流电在开关管通断状态变化的控制下,进行输出电流的调整。
5、输出变压器通过输出变压器,将捕获后的直流电变压,以输出需要的电压级别。
三、单端反激式开关电源的电路设计本电路设计基于CD4049B和555定时器,整体电路如下所示。
(注:图中VCC为12V直流电源)1、输入电压滤波电路输入电压滤波电路通过电容电感联合滤波,能够有效抑制交流电中杂波的干扰,提高了直流电的稳定性和可靠性。
本设计采用C1、L1、C2的电容电感联合滤波电路。
2、交流电输入电路交流电输入电路采用变压器进行变压,将220V交流电输入变成24V交流电。
3、整流滤波电路整流滤波电路主要由二极管D1、扁平电容C3组成,二极管和扁平电容组合起来,实现对变压器的24V直流电进行滤波工作。
四、单端反激式开关电源的实验结果本设计所设计并实验验证的单端反激式开关电源,输出电压稳定在12V左右,基本符合设计要求,并成功实现正常工作。
实验中,对于开关管的选择,采用MOS管比较理想,名称为FDPF33N25B。
五、结论本文基于CD4049B和555定时器,设计了一种单端反激式开关电源方案,并在实验中验证了该设计方案的可行性,证明该方案具有开发简单、可靠的特点,可以用于一些小功率电子设备的电源供应。
反激式开关电源设计详细流程
反激式开关电源设计详细流程1.确定需求:首先要明确设计电源的输入电压和输出电流的需求,以及设计的环境条件,如工作温度范围和工作效率等。
2.选择主要元器件:根据需求确定选择适配器的主要元器件,包括变压器、MOSFET、二极管、电感器、电容器等。
3.设计变压器:变压器是反激式开关电源中的一个重要元器件,主要功能是提供电源输出的隔离和变压功能。
根据需求设计变压器的变比和功率,确定铁芯材料和绕线参数,如线径和绕线圈数等。
4.选择MOSFET:MOSFET是电源开关的关键元器件,它需要具备低导通和开关损耗、高效率和可靠性等特点。
根据需求选择合适的MOSFET,通过计算和模拟分析确定导通和关断时的最大功率损耗。
5.设计电感器和电容器:电感器和电容器用于滤波和稳压,通过计算和模拟模拟设计电流和电压波形,选择合适的电感值和电容值,以保证输出电流和电压的稳定。
6.设计控制电路:根据反激式开关电源的工作原理,设计适当的控制电路,用于控制开关管的导通和关断。
控制电路包括脉宽调制(PWM)控制和电流/电压反馈控制,以确保输出电流和电压的稳定和可靠。
7.选择和设计保护电路:反激式开关电源需要一些保护电路,如过压保护、过流保护、短路保护等。
根据设计需求选择合适的保护元器件和电路,以防止电源和被供电设备的损坏。
8.PCB设计:根据电路设计和布局要求进行PCB设计,包括元器件的布局、走线、线宽、间距等。
同时要考虑电磁兼容性(EMC)和热管理的问题。
9.原理图和PCB布线优化:通过仿真软件对电路进行仿真和优化,优化电路的参数和特性,如输出电压波形、效率和稳定性等。
10.系统测试与调试:完成PCB的制作和组装后,进行系统测试与调试,测试电源的输出性能、稳定性和保护功能等,并进行必要的调整和优化。
11.电源性能评估:对设计的电源进行性能评估,包括效率、功率因数、纹波和噪声等,以确保其符合设计要求和行业标准。
12.生产和质量控制:根据设计要求进行电源的批量生产,并进行质量控制,包括检测和测试,以确保产品的质量和可靠性。
【2019年整理】反激式开关电源变压器设计(1)
2.1设计条件 J =9.8 A/mm2 VBIAS=11.7V VD =0.7V η =0.8
2.2设计步骤 第一步:面积乘积Ap
1.1xPOUTxDMAXx103
Ap≥
=
1.1x(5.1x1.1)x0.5x103
ηxKPxKTxKUxJxBMAXxfSW 0.8x0.5x0.4x0.55x9.8x0.12x262
1.5 计算次级绕组匝数Ns
Ns= Np Ls (匝)
(5)
Lp
1.6 计算偏置绕组匝数NBIAS
VBIAS
NBIAS =
NS
(6)
Vo+VD
式中: VDB ---- 偏置绕绕组整流二极管正向压降(V) 技术部培训教材
反激式开关电源变压器设计(1)
1.7 计算初级绕组RMS电流IPRMS
POUT
DMAX
1.2 计算次级电感Ls
(VO+VD)x(DOFF(MAX))2 x10-3
Ls≥
(H)
(2)
2xIOUTxfSW 式中:VO ----- 次级输出电压(V)
VD ----- 次级整流二极管正向压降(V) DOFF(MAX)– 最大截止占空比 IOUT ---- 次级输出电流(A)
1.3 计算初级电感LP
非连续反激模式KT ≈0.55~0.65 KU ------ 窗口填充系数(一般取0.4) J ------- 电流密度(一般取3 ≈10 A/mm2 )
BMAX ----- 最大工作磁通密度(反激式一般取0.12T ~ 0.15T)
fSW ------ 开关工作频度(KHz)
技术部培训教材
反激式开关电源变压器设计(1)
f 262x103
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(下)杨忠孝•10W以内常用RCC(自激振荡)拓扑方式•10W-100W以内常用反激式拓扑(75W以上电源有PF值要求)•100W-300W 正激、双管反激、准谐振•300W-500W 准谐振、双管正激、半桥等•500W-2000W 双管正激、半桥、全桥•2000W以上全桥•在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。
优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出.缺点:输出纹波比较大。
(输出加低内阻滤波电容或加LC噪声滤波器可以改善)•今天以自行车充电器为例,详细讲解反激开关电源的设计流程及元器件的选择方法。
EMI整流滤波变压器次级整流滤波开关器件PWM 控制IC隔离器件采样反馈输出高压区域低压区域—保险管•作用:安全防护。
在电源出现异常时,保护核心器件不受到损坏。
•技术参数:额定电压V、额定电流I、熔断时间I^2RT。
•分类:快断、慢断、常规•0.6为不带功率因数校正的功率因数估值•Po 输出功率•η 效率(设计的评估值)•Vinmin 最小的输入电压•2为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。
•0.98 功率因数值(PF )⎪⎪⎭⎫ ⎝⎛⋅=6.02min 01in V P F η⎪⎪⎭⎫ ⎝⎛⋅=98.02min 01in V P F η•大部分用电设备,其工作电压直接取自交流电网。
所以电网中会有许多家用电器、工业电子设备等非线性负载,这些用电器在使用过程中会使电网产生谐波电压和电流。
没有采取功率因数校正技术的AC-DC整流电路,输入电流波形呈尖脉冲状。
交流网侧功率因数只有0.5~0.7,电流的总谐波畸变(THD)很大,可超过100%。
采用功率因数校正技术后,功率因数值为0.999时,THD约为3%。
为了防止电网的谐波污染,或限制电子设备向电网发射谐波电流,国际上已经制定了许多电磁兼容标准,如IEEE519、IEC1000-3-2等。
•功率因数的校正(PFC)主要有两种方法:无源功率因数校正和有源功率因数校正。
–无源功率因数校正利用线性电感器和电容器组成滤波器来提高功率因数、降低谐波分量。
这种方法简单、经济,在小功率中可以取得好的效果。
但是,在较大功率的供电电源中,大量的能量必须被这种滤波器储存和管理,因此需要大电感器和电容器,这样体积和重量就比较大也不太经济,而且功率因数的提高和谐波的抑制也不能达到理想的效果。
–有源功率因数校正是使用所谓的有源电流控制功率因数的校正方法,可以迫使输入电流跟随供电的正弦电压变化。
这种功率因数校正有体积小、重量轻、功率因数可接近1等优点。
电阻的作用•NTC(负温度系数)电阻,是以氧化锰等为主要原料制造的精细半导体电子陶瓷元件。
电阻值随温度升高而降低且呈现非线性变化。
利用这一特性,在电路的输入端串联一个负温度系数热敏电阻增加线路的阻抗,这样可以有效的抑制电路开机时产生的浪涌电压形成的浪涌电流。
当电路进入稳态工作时,由于线路中的持续工作电流引起NTC发热,使得电阻器的电阻值变得很小,对线路的影响可以完全忽略。
1. Rt 是热敏电阻在T1温度下的阻值;2. Rn 是热敏电阻在常温Tn 下的标称阻值;3. B 是材质参数(常用范围2000K~6000K);4. exp 是以自然数e 为底的指数(e =2.71828 );5. T1和Tn 为绝对温度K (即开尔文温度),K 度=273.15(绝对温度)+摄氏度;)]11([1nT T B n t e R R ⋅=NTC 的选择依据压敏电阻的作用•压敏电阻是一种限压型保护器件。
利用压敏电阻的非线性特性,当过电压出现在压敏电阻的两极间时,压敏电阻可以将电压钳位到一个相对固定的电压值,从而实现对后级电路的保护。
•主要作用:过电压保护、防雷、抑制浪涌电流、吸收尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器件等。
•主要参数有:压敏电压、通流容量、结电容、响应时间等。
•压敏电阻的响应时间为ns级,比空气放电管快,比TVS 管(瞬间抑制二极管)稍慢一些,一般情况下用于电子电路的过电压保护,其响应速度可以满足电路要求。
•压敏电阻虽然能吸收很大的浪涌电能量,但不能承受毫安级以上的持续电流,在用作过压保护时必须考虑到这一点。
压敏电阻的选用,一般选择标称压敏电压V1mA 和通流容量两个参数。
•a 为电路电压波动系数,一般取值1.2;•V rms 为交流输入电压有效值;•b 为压敏电阻误差,一般取值0.85;•C 为元件的老化系数,一般取值0.9;•√2 为交流状态下要考虑峰峰值;•V 1mA 为压敏电阻电压实际取值近似值;•通流容量,即最大脉冲电流的峰值是环境温度为25℃情况下,对于规定的冲击电流波形和规定的冲击电流次数而言,压敏电压的变化不超过±10%时的最大脉冲电流值。
V V bc aV V c b V V a mA rms mArms 042.48829.085.02202.111======,,,,,•结合前面所述,来看一下本电路中压敏电阻的型号所对应的相关参数。
EMI电路•X电容,共模电感(也叫共模扼流圈),Y 电容–根据IEC 60384-14,安规电容器分为X电容及Y电容:•1. X电容是指跨与L-N之间的电容器,•2. Y电容是指跨与L-G/N-G之间的电容器.•X电容多选用耐纹波电流比较大的聚脂薄膜类电容。
这种类型的电容,体积较大,但其允许瞬间充放电的电流也很大,而其内阻相应较小。
•X电容容值选取是μF级,此时必须在X电容的两端并联一个安全电阻,用于防止电源线拔掉时,由于该电容被充电荷没泄放而致电源线插头长时间带电。
安全标准规定,当正在工作之中的机器电源线被拔掉时,在两秒钟内,电源线插头两端带电的电压(或对地电位)必须小于原来额定工作电压的30%。
•作为安全电容之一的X电容,也要求必须取得安全检测机构的认证。
X电容一般都标有安全认证标志和耐压AC250V 或AC275V字样,但其真正的直流耐压高达2000V以上,使用的时候不要随意使用标称耐压AC250V或者DC400V之类的普通电容来代用。
•X电容主要用来抑制差模干扰•安全等级峰值脉冲电压等级(IEC664)•X1 >2.5kV ≤4.0kV Ⅲ•X2 ≤2.5kV Ⅱ•X3 ≤1.2kV ——•X电容没有具体的计算公式,前期选择都是依据经验值,后期在实际测试中,根据测试结果做适当的调整。
•经验:若电路采用两级EMI,则前级选择0.47uF,后级采用0.1uF电容。
若为单级EMI,则选择0.47uF电容。
(电容的容量大小跟电源功率没有直接关系)•单相交流电源输入分为3个端子:火线(L)/零线(N)/地线(G)。
在火线和地线之间以及在零线和地线之间并接的电容, 这两个Y电容连接的位臵比较关键,必须要符合相关安全标准, 以防引起电子设备漏电或机壳带电,容易危及人身安全及生命。
它们都属于安全电容,从而要求电容值不能偏大,而耐压必须较高。
•Y电容主要用于抑制共模干扰•Y电容的存在使得开关电源有一项漏电流的电性能指标。
•工作在亚热带的机器,要求对地漏电电流不能超过0.7mA;工作在温带的机器,要求对地漏电电流不能超过0.35mA。
因此,Y电容的总容量一般都不能超过4700PF(472)。
电容的作用及取值经验•Y电容底下又分为Y1, Y2, Y3,Y4, 主要差別在于:– 1. Y1耐高压大于8 kV,属于双重绝缘或加强绝缘|额定电压范围≥ 250V– 2. Y2耐高压大于5 kV,属于基本绝缘或附加绝缘|额定电压范围≥150V ≤250V– 3. Y3耐高压≥2.5KV ≤5KV 属于基本绝缘或附加绝缘|额定电压范围≥150V ≤250V– 4. Y4耐高压大于2.5 kV属于基本绝缘或附加绝缘|额定电压范围<150V•JB151中规定Y电容的容量应不大于0.1μF。
Y电容除符合相应的电网电压耐压外,还要求这种电容器在电气和机械性能方面有足够的安全余量,避免在极端恶劣环境条件下出现击穿短路现象,Y电容的耐压性能对保护人身安全具有重要意义。
•共模电感有A和B两个电感线圈绕在同一铁芯上,匝数和相位都相同(绕制方向相反)。
当电路中的正常电流(差模电流)流经共模电感时,电流在同相位绕制的电感线圈中会产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当有共模电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,抑制高速信号线产生的电磁波向外发射,达到滤波的目的。
•第一步:确定客户的规格要求,EMI 允许级别•第二步:电感值的确定•第三步:core (磁芯)材质及规格确定•第四步:绕组匝数及线径的确定•第五步:打样•第六步:测试共模电感实物图共模电感中差模磁场示意图•EMI等級: Fcc Class B•已知条件:C2=C7=3300pF•EMI测试频率:传导150KHz~30MHz。
•EMC测试频率: 30MHz~3GHz。
•实际的滤波器无法达到理想滤波器那样陡峭的阻抗曲线,通常可将截止频率设定在50KHz左右。
在此,假设Fo=50KHz。
则•以上,得出的是理论要求的电感值,若想获得更低的截止频率,则可进一步加大电感量,截止频率一般不低于10KHz。
理论上电感量越高对EMI抑制效果越好,但过高的电感将使截止频率将的更低,而实际的滤波器只能做到一定的带宽,也就使高频杂讯的抑制效果变差(一般开关电源的杂讯成分约为5~10MHz之间)。
另外,感量越高,则绕线匝数越多,就要求磁芯的ui值越高,如此将造成低频阻抗增加。
此外,匝数的增加使分布电容也随之增大,使高频电流全部经过匝间电容流通,造成电感发热。
过高的ui值使磁芯极易饱和,同时在生产上,制作比较困难,成本较高。
•从前述设计要求中可知,共模电感器要不易饱和,如此就需要选择低B-H(磁芯损耗与饱和磁通密度)温度特性的材料,因需要较高的电感量,磁芯的μi值也就要高,同时还必须有较低的磁芯损耗和较高的BS(饱和磁通密度)值,符合上述要求之磁芯材质,目前以铁氧体材质最为合适,磁芯大小在设计时并没有一定的规定,原则上只要符合所需要的电感量,且在允许的低频损耗范围内,所设计的产品体积最小化。
•因此,磁芯材质及大小选取应以成本、允许损耗、安装空间等做参考。
共模电感常用磁芯的μi约在2000~10000之间。
•在本电路中,我们选用的磁芯型号为•TDK UU9.8•磁芯材质PC40•μi值2300•AL值500nH/N^2•J为无强制散热情况下每平方毫米所通过的电流值,若有强制散热可选择6A。