基于labview的温度测量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于labview的温度测量
1.系统设计
1.1 系统总体设计方案
设计框图如下所示:
图1 系统总体设计框图
1.2 单元电路方案的论证与选择
硬件电路的设计是整个实验的关键部分,我
们在设计中主要考虑了这几个方面:电路简单易懂,较好的体现物理思想;可行性好,操作方便。在设计过程中有的电路有多种备选方案,我们综合各种因素做出了如下选择。
1.2.1 温度信号采集电路的论证与选择
方案:本系统中我们采用MF58型高精度负温度系数热敏电阻器及其外围电路,组成温度信号采 LabVIE W 温
度
信
号 温度控制继电
继电器控
集电路。相比较方案一,方案二后续电路较复杂,且需进行温度标定,但由于此方案能够较好的体现物理思想,通过实验标定温度,可以使我们更好的理解模拟信号与数字信号的转化,故我们采用了此方案。
MF58型高精度负温度系数热敏电阻器有许多优点:稳定性好,可靠性高;阻值范围宽:0.1-1000K ;阻值精度高;由于玻璃封装,可在高温和高温等恶劣环境下使用;体积小、重量轻、结构坚固,便于自动化安装(在印制线路板上);热感应速度快、灵敏度高。故我们采用此温敏元件。
1.2.2 温度控制接口电路的论证与选择
我们采用频压转化电路将频率信号转化成电压信号,进而控制加热与降温电路工作。选用集成式频率/电压转换器LM2907,配以外加电路,能将经PC机处理后输出的频率信号转换为直流电压信号,电压信号控制继电器(相当于开关)工作从而使电路联通,电风扇或加热丝工作。
在一定范围内,LM2907的频率和电压转换可成线性关系,可以实现电热丝加热功率和风扇
转速的连续可调。由于技术原因,我们未能实现这项功能,预留此项功能,可以作为功能扩展。
1.2.3 加热与降温电路的论证与选择
由数据选择器与两片LM2907(后接功率放大电路)分别连接加热和降温电路,实现加热功率与风扇转速的连续可调,如1.2.2所述。原理图如下:
图2 加热功率与风扇转速的连续可调电路原理图
频
压
转
频
压
转
数据选择功率放功率放 升温 降温 计 算 机
1.3 软件设计
1.3.1 主程序流程图
图3 主程序流程图 1.3.2 PID 算法 读取从声卡输入的正弦电压,经过处理得到该正将有效电压值按照电压——温度函数关系,转换将实时温度T 与目标温度T r 相减得到温度差 E ,再将实时温度等相关信息控制声卡输出t 秒正弦延时,直到下次循环的开判断是否停系统的结束操作,包括关系统初始化设置,包括创N Y
PID算法是本程序中的核心部分。我们采用PID模糊控制技术,通过Pvar、Ivar、Dvar(比例、积分、微分)三方面的结合调整形成一个模糊控制来解决惯性温度误差问题。其原理如下:本系统的温度控制器的电热元件之一是发热丝。发热丝通过电流加热时,内部温度都很高。当容器内温度升高至设定温度时,温度控制器会发出信号停止加热。但这时发热丝的温度会高于设定温度,发热丝还将会对被加热的器件进行加热,即使温度控制器发出信号停止加热,被加热器件的温度还往往继续上升几度,然后才开始下降。当下降到设定温度的下限时,温度控制器又开始发出加热的信号,开始加热,但发热丝要把温度传递到被加热器件需要一定的时候,这就要视发热丝与被加热器件之间的介质情况而定。通常开始重新加热时,温度继续下降几度。所以,传统的定点开关控制温度会有正负误差几度的现象,但这不是温度控制器本身的问题,而是整个热系统的结构性问题,使温度控制器控温产生一种惯性温度误差。
增量式PID算法的输出量为
ΔUn =
Kp[(e n-e n-1)+(T/Ti)e n+(Td/T)(e n-2*e n-1+e n-2 )]
式中,e n、e n-1、e n-2分别为第n次、n-1次和n-2次的偏差值,Kp、Ti、Td分别为比例系数、积分系数和微分系数,T为采样周期。
计算机每隔固定时间 T将现场温度与用户设定目标温度的差值带入增量式PID算法公式,由公式输出量决定PWM方波的占空比,后续加热电路根据此PWM方波的占空比决定加热功率。现场温度与目标温度的偏差大则占空比大,加热电路的加热功率大,使温度的实测值与设定值的偏差迅速减少;反之,二者的偏差小则占空比减小,加热电路加热功率减少,直至目标值与实测值相等,达到自动控制的目的。
PID参数的选择是实验成败的关键,它决定了温度控制的准确度。数字PID调节器参数的整定可以仿照模拟PID调节器参数整定的各种方法,根据工艺对控制性能的要求,决定调节器的参数。各个参数对系统性能的影响如下:
①比例系数P对系统性能的影响:比例系数加大,使系统的动作灵敏,速度加快,稳态误差减小;P偏大,振荡次数加多,调节时间加长;
P太大时,系统会趋于不稳定;P太小,又会使系统的动作缓慢。P可以选负数,这主要是由执行机构、传感器以及控制对象的特性决定的。如果P的符号选择不当对象测量值就会离控制目标的设定值越来越远,如果出现这样的情况P的符号就一定要取反。
②积分控制I对系统性能的影响:积分作用使系统的稳定性下降,I小(积分作用强)会使系统不稳定,但能消除稳态误差,提高系统的控制精度。
③微分控制D对系统性能的影响:微分作用可以改善动态特性,D偏大时,超调量较大,调节时间较短;D偏小时,超调量也较大,调节时间也较长;只有D合适,才能使超调量较小,减短调节时间。
1.3.3 前面板与虚拟仪器框图
图4 前面板样图
图5 源程序(一)
图6源程序(二)
2.单元电路设计
2.1 温度信号采集电路
信号发生器与热敏电阻串联,提供交流信号。热敏电阻阻值随温度改变,流经电阻的交流电流有效值保持恒定,由欧姆定律可知,电阻两端的电压亦随之改变。经电压跟随器(降低信号输出阻抗)输出后,通过声卡采集数据。电路图如下所示。
加入电压跟随器可以对前后级电路起到“隔离”作用。电压隔离器输出电压近似输入电压幅度,并对前级电路呈高阻状态,对后级电路呈低