简单的轴对称图形 ppt课件8
合集下载
课件简单的轴对称图形课时.ppt
B 小区
A小区
煤气主管
)
道)
17
1、下列图形是否是轴对称图形,说出它的对称轴, 并验证你的判断。 (1)圆,(2)矩形,(3)直角梯形,(4)扇形
2、如图,⊿ABC中,AB=AC,求其它角的度数 A
A
A
90°
30 °
B 60°
B C
C
B
C
18
二、判断: 1.等腰三角形一角的平分线,一边上的 中线,一边上的高都是它的对称轴( )
找出图中的对称轴:
1
有两条边相等的三角形叫做等腰三角形
顶
腰角
腰
底角 底角 底边
2
3
4
5
比一比,看谁反应快!
E
如右图,在△DEF中,DE=DF,请问:
D
底底顶哪边角些是是边哪哪是条些个腰边角???
F
6
等腰三角形是轴对称图形, 请找出它的对称轴;
顶
腰角
腰
底角 底角 底边
7
在等腰三角形中,画出顶角的平 分线、底边上的中线和高线,你 又发现了什么?
A D (2) F D
C GE
(1)
E
A
HD
B
B
P
CP E
F
2.如图示,在等腰△ ABC中,底边BC上有一点P,则
P点到两腰的距离之和等于定长(腰上的高)即
PD+PE=CF,若P点在BC的延长线上,那么PD,PE
和CF存在什么等式关系?写出你的猜想,并说明
30
5.如图,BD=DC,ED⊥BC交∠BAC的平分线 于点E,作EM⊥AB,EN⊥AC垂足分别为M,N, 试判断BM,CN的大小关系,并说明理由
A小区
煤气主管
)
道)
17
1、下列图形是否是轴对称图形,说出它的对称轴, 并验证你的判断。 (1)圆,(2)矩形,(3)直角梯形,(4)扇形
2、如图,⊿ABC中,AB=AC,求其它角的度数 A
A
A
90°
30 °
B 60°
B C
C
B
C
18
二、判断: 1.等腰三角形一角的平分线,一边上的 中线,一边上的高都是它的对称轴( )
找出图中的对称轴:
1
有两条边相等的三角形叫做等腰三角形
顶
腰角
腰
底角 底角 底边
2
3
4
5
比一比,看谁反应快!
E
如右图,在△DEF中,DE=DF,请问:
D
底底顶哪边角些是是边哪哪是条些个腰边角???
F
6
等腰三角形是轴对称图形, 请找出它的对称轴;
顶
腰角
腰
底角 底角 底边
7
在等腰三角形中,画出顶角的平 分线、底边上的中线和高线,你 又发现了什么?
A D (2) F D
C GE
(1)
E
A
HD
B
B
P
CP E
F
2.如图示,在等腰△ ABC中,底边BC上有一点P,则
P点到两腰的距离之和等于定长(腰上的高)即
PD+PE=CF,若P点在BC的延长线上,那么PD,PE
和CF存在什么等式关系?写出你的猜想,并说明
30
5.如图,BD=DC,ED⊥BC交∠BAC的平分线 于点E,作EM⊥AB,EN⊥AC垂足分别为M,N, 试判断BM,CN的大小关系,并说明理由
新人教版八年级数学上册13.1.1轴对称ppt课件
轴对称
形状
是否轴对称图 对称轴的数
形
量(条)
是
2
是 不是
4 -------
是
是
20
1
无数
可编辑课件PPT
轴对称
对称轴问题
(1)有些轴对称图形的对称轴只有一条, 但有的轴对称图形的对称轴却不止一条,有的 轴对称图形的对称轴甚至有无数条。
(2)对称轴通常画成虚线,是直线,不 能画成线段。
21
可编辑课件PPT
形,那么这两个图形关于这条直线_对_称_;如果
把两个成轴对称的图形看成一个图形,那么这个
图形就是__轴__对__称__图__形___.
30
可编辑课件PPT
想一想:0-9十个数字中,哪些是
轴对称图形?(抢答)
01234
56789
31
可编辑课件PPT
猜字游戏: 在艺术字中,有些汉字是轴对称的, 你能猜一猜下列是哪些字的一半吗?
3、(日照·中考)已知以下四个汽车标志图案: 其中是轴对称图形的图案是 (只需填入图案代号).
【解析】根据轴对称的定义可以得出①③是轴对称图形. 答案:①③
39
可编辑课件PPT
通过本课时的学习,需要我们: 1.了解轴对称图形和两个图形关于某直线对称的概念.
2.能识别简单的轴对称图形及其对称轴(直线),能找出 两个图形关于某直线对称的对称点.
28
可编辑课件PPT
想一想
轴对称
轴对称图形
两个图形成轴对称
29
可编辑课件PPT
比较归纳
轴对称
区别 联系
轴对称图形
_一___个图形
两个图形成轴对称
__两___个图形
人教版八年级数学上册《画轴对称图形》轴对称PPT课件
(1)找特殊点 (2)作垂线 (3)截取等长 (4)依次连线
学以致用
1.如图,把下列图形补成关于直线l的对称图形.
学以致用
2.下面是四位同学作△ABC关于直线MN的轴对称图形,其中正
确的是( B )
A.
B.
C.
D.
学以致用
3.如图(1)所示,在3×3的正方形网格中已有两个小正方形被涂 黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个
轴对称图形的办法有 ( ) C
A.3种 B.4种 C.5种 D.6种
• 克莱因说:“数学是人类最高超的智力成就,也是人类心灵最独特 的创作。音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能扣 人心弦,哲学使人获得智慧,科学可以改善物质生活,但数学却 能提供以上的一切。”
学习目标
1.能够按要求画简单平面图形经过一次对称后的图形。
2.掌握作轴对称图形的方法。
3.通过画轴对称图形,增强学生学习几何的趣味感。
重点
作已知图形的对称图形的一般步骤。
难点
怎样确定已知图形的关键点并根据这些点作出对称图形。
新知引入
这些图案是怎样形成的? 你想学会制作这种图案的方法吗?
)剪出的轴对称图形的点与原图形上的点有什么关系?
新图形上的每一点都是原图形上的某一点关于直线l的对称点。
(3)对应点所连线段与对称轴有什么关系? 连接任意一对对应点的线段被对称轴垂直平分。
新知应用
画一画1:画出一个点关于直线l对称的图形
已知:直线l和一个点A ,作出点A关于直线l的对称点.
并写出你的画法.
作法: (1)如图,过点A画直线l的垂线,垂 足为O;
(2)在垂线上截取OA′=OA; 则点A′就是点A关于直线l的对称点.
学以致用
1.如图,把下列图形补成关于直线l的对称图形.
学以致用
2.下面是四位同学作△ABC关于直线MN的轴对称图形,其中正
确的是( B )
A.
B.
C.
D.
学以致用
3.如图(1)所示,在3×3的正方形网格中已有两个小正方形被涂 黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个
轴对称图形的办法有 ( ) C
A.3种 B.4种 C.5种 D.6种
• 克莱因说:“数学是人类最高超的智力成就,也是人类心灵最独特 的创作。音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能扣 人心弦,哲学使人获得智慧,科学可以改善物质生活,但数学却 能提供以上的一切。”
学习目标
1.能够按要求画简单平面图形经过一次对称后的图形。
2.掌握作轴对称图形的方法。
3.通过画轴对称图形,增强学生学习几何的趣味感。
重点
作已知图形的对称图形的一般步骤。
难点
怎样确定已知图形的关键点并根据这些点作出对称图形。
新知引入
这些图案是怎样形成的? 你想学会制作这种图案的方法吗?
)剪出的轴对称图形的点与原图形上的点有什么关系?
新图形上的每一点都是原图形上的某一点关于直线l的对称点。
(3)对应点所连线段与对称轴有什么关系? 连接任意一对对应点的线段被对称轴垂直平分。
新知应用
画一画1:画出一个点关于直线l对称的图形
已知:直线l和一个点A ,作出点A关于直线l的对称点.
并写出你的画法.
作法: (1)如图,过点A画直线l的垂线,垂 足为O;
(2)在垂线上截取OA′=OA; 则点A′就是点A关于直线l的对称点.
简单的轴对称图形(课堂PPT)
2.在操作过程中,你发现了哪些相等的线 段?说说你的理由。
3.在角平分线上取其他点,结果还一样吗?
8
结论:
(1)角是轴对称图形,它的对称轴是 它的角平分线所在的直线。
(2)角平分线上的点到这个角两边的距 离相等——角平分线性质。
9
A F D
O C C’
几何语言:
E
G B
∵O角C的平平分分∠线A上OB的,点C到D角⊥的O两A边于的点距D离, 相等 CE⊥OB于点E,
14
如图所示,A,B表示两个城市,CD,CE
是两条交叉的公路,为了方便向两市供应
物资,某公司打算在∠DCE内建一个物资供 .
应站P,要求P到两公路的距离相等,且
PA=PB,你能帮公司确定P点的位置吗?
.B
. D
A
E
C
15
16
2. 线段的垂直平分线上的点到线段两端的 距离相等——垂直平分线的性质。
12
C D
A
O
B
几何语言 ∵CO⊥AB,且CO平分线段A轴对称 图形 , 对称轴是 角平分线所在的直线
角平分线性质: 角平分线上的点到这个角两 边的距离相等。
中垂线性质:线段的中垂线上的点到线段两端的 距离相等。
∴CD=CE
10
思考:
1.线段是轴对称图形吗?如果是,你能找出 它的对称轴吗?
2.折痕所在直线与线段有什么位置关系?说 明你的理由。
3.AO与BO相等吗?为什么?CA与CB呢?
4.在折痕上移动C的位置,结果还是一样吗?
11
结论:
1. 线段是轴对称图形,它的对称轴有两条, 2. 一条是它本身,另一条是它的垂直平分线。
授课人:俞细红
3.在角平分线上取其他点,结果还一样吗?
8
结论:
(1)角是轴对称图形,它的对称轴是 它的角平分线所在的直线。
(2)角平分线上的点到这个角两边的距 离相等——角平分线性质。
9
A F D
O C C’
几何语言:
E
G B
∵O角C的平平分分∠线A上OB的,点C到D角⊥的O两A边于的点距D离, 相等 CE⊥OB于点E,
14
如图所示,A,B表示两个城市,CD,CE
是两条交叉的公路,为了方便向两市供应
物资,某公司打算在∠DCE内建一个物资供 .
应站P,要求P到两公路的距离相等,且
PA=PB,你能帮公司确定P点的位置吗?
.B
. D
A
E
C
15
16
2. 线段的垂直平分线上的点到线段两端的 距离相等——垂直平分线的性质。
12
C D
A
O
B
几何语言 ∵CO⊥AB,且CO平分线段A轴对称 图形 , 对称轴是 角平分线所在的直线
角平分线性质: 角平分线上的点到这个角两 边的距离相等。
中垂线性质:线段的中垂线上的点到线段两端的 距离相等。
∴CD=CE
10
思考:
1.线段是轴对称图形吗?如果是,你能找出 它的对称轴吗?
2.折痕所在直线与线段有什么位置关系?说 明你的理由。
3.AO与BO相等吗?为什么?CA与CB呢?
4.在折痕上移动C的位置,结果还是一样吗?
11
结论:
1. 线段是轴对称图形,它的对称轴有两条, 2. 一条是它本身,另一条是它的垂直平分线。
授课人:俞细红
北师大版七年级数学下册课件简单的轴对称图形
B
C
D
性质2可以分解为三个命题,本节课证明“等腰三 角形的底边上的中线也是底边上的高和顶角平分线”.
证明等腰三角形的性质
已知:如图,△ABC 中,AB =AC,AD 是底边BC 的中线.求证:∠BAD =∠CAD,AD⊥BC.
A 证明:∵ AD 是底边BC 的中线,
∴ BD =CD.
∵ AB =AC,
A
B
C
等边三角形
请分别画出一个等腰三角形和等边三角形,结合
你画的图形说出它们有什么区分和联系?
A
A
B
CB
C
联系:等边三角形是特殊的等腰三角形; 区分:等边三角形有三条相等的边,而等腰三角形 只有两条.
问题 等腰三角形有哪些特殊的性质呢?
从边的角度:两腰相等; 从角的角度:等边对等角; 从对称性的角度:轴对称图形、三线合一.
呢?从剪图、折纸的过程中你能获得什么启示?
证明等腰三角形的性质
已知:如图,△ABC 中,AB =AC.求证:∠B =
∠C. A
证明:作底边的中线AD.
∵ AB =AC,
BD =CD,
AD =AD,
∴ △ABD ≌△ACD(SSS).
∴ ∠B =∠C.
B
C
D
证明等腰三角形的性质
你还有其他方法证明性质1吗? 可以作底边的高线或顶角的角平分线. A
3.上面剪出的等腰△ABC是轴对称图形吗?如果是,其对 称轴是什么(借助图中的线表示)?
(1)由折叠和对称可知,在△ABC中,∠B与∠C的大小关系如 何;
(2)由折叠和对称又可知:∠BAD与∠DAC, BD与DC大小关 系如何, AD与BC的位置关系是什么?
学习目标
《轴对称图形》PPT课件
北师大版三年级数学下册
轴对称图形
教学目标
1 结合欣赏民间艺术的剪纸图案;以及服饰 工 艺品与建筑等图案;感知现实世界中普遍存 在的对称现象
2 通过折纸 剪纸 画图 图形分类等操作活动; 体会对称图形的特征;能画出简单的图形的 对称轴
3 培养同学们的观察能力 自主探究能力 动手 操作能力以及归纳概括能力 使同学们能画 出简单的图形形
打开 对称轴
把镜子放在虚线上;看一看 镜子中的图形和整个图形;你发现了什么
下面哪些图形是轴对称图形
从镜子中看到的左边图形的样子是哪 个
镜子
找一找哪些数字或字母是轴对称图形 89ABCDEFJHIGKLMNOPQR
你还知道生活中哪些东西 是轴对称图形
智慧城堡
说一说下面哪些图形是轴 对称图形
在方格纸上画出轴对称图形
欣赏之旅
本课总结
了解对称轴的特征;能够画 一个对称图形的对称轴
轴对称图形
教学目标
1 结合欣赏民间艺术的剪纸图案;以及服饰 工 艺品与建筑等图案;感知现实世界中普遍存 在的对称现象
2 通过折纸 剪纸 画图 图形分类等操作活动; 体会对称图形的特征;能画出简单的图形的 对称轴
3 培养同学们的观察能力 自主探究能力 动手 操作能力以及归纳概括能力 使同学们能画 出简单的图形形
打开 对称轴
把镜子放在虚线上;看一看 镜子中的图形和整个图形;你发现了什么
下面哪些图形是轴对称图形
从镜子中看到的左边图形的样子是哪 个
镜子
找一找哪些数字或字母是轴对称图形 89ABCDEFJHIGKLMNOPQR
你还知道生活中哪些东西 是轴对称图形
智慧城堡
说一说下面哪些图形是轴 对称图形
在方格纸上画出轴对称图形
欣赏之旅
本课总结
了解对称轴的特征;能够画 一个对称图形的对称轴
鲁教版(五四制)七年级数学上册简单的轴对称图形课件
为什么不 一样呢?
B
C
D
D
“三线合一”应该对应等腰三角 形顶角的平分线,底边上的中线 和底边上的高.
B
E
D
F
C
应用
等腰三角形 的性质
2.等腰三角 形顶角的平 分线,底边 上的中线和 底边上的高 互相重合( 等腰三角形 三线合一)
例1 已知:△ABC中,AB=AC.小明想 作∠BAC的平分线,但他没有量角器,只 有刻度尺,他如何作出∠BAC的平分线?
解析:∵ AB=AC,D是BC边上的中点,
1
BAC 2
,∠ADC= 90(° 三线合一).
∠C= ∠B=30°(等边对等角)
∵ ∠BAC=180°-30°-30°=120°, 1 60 .
课堂总结
这节课你学习了那
些内容?
等腰三角形的性质
文字叙述
等腰三角形的两底角相 等(简称等边对等角).
等腰三角形顶角的平分 线平分底边并且垂直于 底边(简称三线合一).
认一认,想一想
A
顶角
腰
腰
底角
B
底边
底角
C
等腰三角形
A
B
C
学习目标
1.能准确说出等腰三角形的对称性,作出等腰 三角形的对称轴。 2.掌握等腰三角形的性质,并利用前面所学的 知识证明等腰三角形的性质。 3.应用等腰三角形的性质进行计算和证明。
自主学习
如图,拿出一张长方形的纸按图中虚线对折, 并剪去阴影部分,再把它打开,得到的△ABC 有 什么特点?
呢?等腰三角形底边上的中线所在的 A 直线是它的对称轴
等腰三角形底边上的高所在的直 线是它的对称轴
重合的线段 重合的角
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
C
思考 线段是轴对称图形吗? 你能找到它的一条对称轴吗?
你能用折纸的方法折出它的对称轴吗?
A
B
C
A O
B
CO与AB有怎样的位置关系? AO与BO相等吗?
垂直平分线(简称中垂线)
在折痕上任意取一点D,沿DA将纸折叠;
D
A(B) A(B) O A(B)A(B) A(B) A(B) A(B) A(B) A(B)
(3)把纸展开,得到折痕DA和DB。
D
A
O
B
DA与DB相等吗?
结论:线段垂直平分线上 的点到这条线段两个端点 的距离相等。
MN是AB的垂直平分线, EF是BC垂直平分线。PA与 PC是否相等,为什么?
M
E
P
C
F
A N B
试一试 如图所示,要在街道旁修建一个奶 站,向居民区A、B提供牛奶,奶站 应建在什么地方,才能使从A、B到 它的距离之和最短?
简单的轴对称图形
思考: 角是轴对称图形吗?
A
你能找出它的一条对称轴吗? 你能用折纸的方法折出角 的对称轴E
在折痕(即角平分线)上任意取一点C;
A
B
你能用折纸的方法折出CD和 CE吗? CD与CE是否相等?
结论:角的平分线上的点 到这个角的两边的距离相 等。
E
A
随堂练习 如图,在Rt△ABC 中,BD是∠B的平 B 分线,DE⊥AB ,垂 足为E。DE与DC相 等吗?为什么?
B
街道
A
D C
E
试一试 如图所示,要在街道旁修建一个 奶站,向居民区A、B提供牛奶, 奶站应建在什么地方,才能使从 A、B到它的距离之和最短?
居民区A 街道 D
居民区B
C A’
作业: 课本193页 第2、3题