生物固氮作用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物固氮作用

生物固氮作用

生物固氮作用(biological nitrogen fixation): 生物固氮是指固氮微生物将大气中的氮还原成氨的过程。生物固氮只发生在少数的细菌和藻类中。

估计全球每年生物固氮作用所固定的氮(N2)约达17500万吨,其中耕地土壤约有4400万吨,超过了每年施入土壤4000万吨肥料氮素(工业固氮)的量(Burris,1977)。因此,生物固氮作用有很大潜力。

生物固氮概括地说是指某些微生物和藻类通过其体内固氮酶系的作用将分子氮转变为氨的作用。因地壳含有极少的可溶性无机氮盐,所有生物几乎都需要依赖固氮生物固定大气中的氮而生存,因此生物固氮对维持自然界的氮循环起着极为重要的作用。对固氮生物的研究和利用能为农业开辟肥源,对维持和提高土壤肥力有很大意义。

固氮生物又叫做固氮微生物。固氮微生物种类到1982年固氮微生物达70多个属,大多数是原核微生物(细、放、蓝细菌),也有真菌。根据固氮微生物与高等植物以及其他生物关系,分为三个类型:自生固氮微生物、共生固氮微生物和联合固氮微生物。

1( 自生固氮微生物: 在土壤中或培养基中生活时,可以自行固定空气中的分子态氮(氨态氮)。在进行固氮作用时对植物或其它生物没有明显的依存关系。

常见的自生固氮微生物包括以圆褐固氮菌为代表的好氧性自生固氮菌、以梭菌为代表的厌氧性自生固氮菌,以及以鱼腥藻、念珠藻和颤藻为代表的具有异形胞的固氮蓝藻(异形胞内含有固氮酶,可以进行生物固氮)。

(1) 光合固氮微生物能进行光合作用,以二氧化碳为碳源、光合产物为能源进行固氮作用的微生物。有蓝细菌(见蓝藻门)中的许多属种(如念珠藻属、鱼腥藻属等)和光合细菌中的红螺菌属以及绿硫菌属等。

(2) 化能自养固氮微生物有些化能自养微生物(如氧化亚铁硫杆菌等)能以二氧化碳、亚铁氧化物和分子态氮为碳、能、氮源。

(3) 异养固氮微生物进行异养生活,以适宜的有机碳化合物为碳源和能源,满足生活和固氮的需要。这个生理、生态群包括许多种类,如固氮菌科的所有属、芽孢杆菌属、梭菌属的一些种、固氮螺菌属、肠杆菌科的一些属种、反硫化细菌、产甲烷细菌和其他一些异养细菌的种类。

2( 共生固氮微生物: 只有和植物互利共生时,才能固定空气中的分子态氮。也就是说,二种微生物紧密地生长在一起时,由固氮的共生菌进行分子态氮的还原作用。

3. 联合固氮微生物: 有些固氮微生物如固氮螺菌、雀稗固氮菌等,能够生活在玉米、雀稗、水稻和甘蔗等植物根内的皮层细胞之间。这些固氮微生物和共生的植物之间具有一定的专一性,但是不形成根瘤那样的特殊结构。这些微生物还能够自行固氮,它们的固氮特点介于自生固氮和共生固氮之间,这种固氮形式叫做联合固氮。联合固氮微生物常见的有以下两种类型:

(1) 红萍和鱼腥藻联合体系红萍(又称绿萍,学名满江红)鳞片叶的叶腔内有鱼腥藻生长,行共生固氮作用。

(2) 固氮地衣有些地衣的光合伙伴是固氮蓝细菌,能进行固氮作用。自生固氮微生物生物固氮作用的条件: 1、防氧保护系统(好气性固定微生物需具备之);

2、能量和电子供体,以及传递电子的电子载体系统;

3、固氮酶催化系统;

4、氨、氨基酸同化成蛋白质系统;

共生固氮微生物生物固氮作用的条件则更复杂。生物固氮系统具有生物固氮能力的仅限于原核生物,即细菌和蓝绿藻。有些固氮微生物,如蓝绿藻自生于陆地或水域生态系统中,其他则群生于寄生植物的根际,其中对高等植物最为重要的有与豆科植物或结瘤的非

豆科植物共生的固氮微生物。在陆地生态系统中主要有三种固氮体系,即共生固氮、联合固氮和自生固氮体系。三种固氮体系中,能源和固氮能力都存在明显差异。共生体系由于固氮微生物直接从寄主植物获得碳水化合物作为固氮能源,其固氮能力最强。豆科(Leguminosae)植物近2000个种中约有15%具有共生固氮系统,其中近300种豆科植物中有90%与根瘤菌共生形成根瘤。如大豆、蚕豆、三叶草、苜蓿与根瘤菌的共生,是农业中最重要的共生体系。在森林和林地中有8个科23个属的植物与固氮微生物形成共生体系。如赤杨属(Alnus)和蓟木属(Ceanothus)与放线菌之间形成结瘤共生体系。这些非豆科植物是缺氮土壤的先锋植物。

豆科植物根上的根瘤是由于根瘤菌侵入根部后形成的,根瘤是固氮的场所。根瘤菌侵入寄主的过程很复杂。在根瘤菌入侵寄主根毛或表皮细胞之前,土壤中的根瘤菌是一种不能运动的小球菌(图5-19)。由于植物根分泌物(氨基酸、维生素)的影

响,这些小球菌产生鞭毛,具有移动侵入寄主的能力。根瘤菌在根表面分泌某种未知物质(分子)使根毛弯曲。这种物质的分泌受到根释放成分(如类黄酮)的促进。此后,根瘤菌分泌酶溶解根毛细胞壁,根瘤菌随即由此处侵入根毛,根毛形成侵染丝(infectionthread)。根瘤菌在侵染丝中大量繁殖随侵染丝进入皮层。根瘤菌被释放到皮层细胞质中,刺激细胞的分裂和生长形成根瘤(root nodule)(图5-19)。根瘤中大部分为含有根瘤菌的四倍体细胞,只有少部分为未被侵染的二倍体细胞。成熟根瘤中的根瘤菌失去鞭毛而成为不能移动的类菌体(bacteriod),一个典型的根瘤细胞中通常含有数千个类菌体,这些类菌体在细胞内聚成一个个小群体,每个小群体有数个类菌体组成(大豆根瘤中为4,6个)。每群体外面有一层膜包着,此膜称为类菌体外周膜(peribacteroid membrane),在此膜与类菌体之间的空间称为类菌体外周空间(peribacteriodspace)。在类菌体外周膜以外的细胞质中存在着豆血红蛋白(leghemoglobin)。此蛋白含有红色的血红素基团(hemegroup)。据认为豆血红蛋白的作用是为类菌体在严格控制的条件下供应氧。因为类菌体的呼吸作用需要氧,但过多的氧则会抑制催化氮素固定的固氮酶的活性。

根瘤中的固氮作用只在类菌体内进行。寄主植物向类菌体供给碳水化合物,主要形式是蔗糖。类菌体利用这些糖进行呼吸作用,产生电子和ATP,将N2还原成NH4+。

2.固氮的生物化学与生理学

生物固氮的总反应式如下:

N2+8e+16MgATP+16H2O2NH3+H2+16MgADP+16Pi+8H+

催化此反应的酶是固氮酶。固氮酶是多功能的氧化还原酶,除了还原N2以外,还能还原多种类型的底物,如乙炔、氰化物、氧化亚氮、联氨、叠氮化物和H+等。用气相色谱仪能很容易测定乙炔还原成乙烯的产生量,这为研究固氮酶活性提供了极为简单的方法。该法对生物固氮研究取得重大进展发挥了作用。

固氮酶由铁钼蛋白(Fe-Moprotein)和铁蛋白(Fe-protein)组成。这两个蛋白单独存在时都不呈现固氮酶活性,只有两者聚合构成复合体时才有催化氮还原的功能。铁钼蛋白由分子量分别为51kD和60kD的2个α亚基和2个β亚基组成的四聚体(α2β2),分子量约为220,245kD。每分子铁钼蛋白含有两个钼原子,28个铁原子。铁蛋白的分子量在59,73kD之间,由两个分子量同为30kD的亚基组成(γ2)。铁蛋白含有4个铁原子。在氮还原为NH4+的过程中,固氮酶中的Fe和Mo都发生氧化还原反应,如图5-20所示。类菌体利用碳水化合物进行呼吸作用

相关文档
最新文档