饱和蒸汽工业汽轮机的成功运用

饱和蒸汽工业汽轮机的成功运用
饱和蒸汽工业汽轮机的成功运用

汽轮机运行考试题库问答题

1、凝汽器的的作用是什么? 答:凝汽器的作用是把汽轮机排出乏汽凝结成水,在汽轮机排汽口建立并保持高度真空。 2、什么是凝汽器的最有利真空? 答:当提高真空使汽轮发电机组增加的电功率与增加冷却水流量所造成的循环水泵多耗的电功率之差值为最大时,对应的凝汽器真空即称为最有利真空(也称为经济真空)。 3、加热器端差增大原因可能有那些? 答:(1)加热器受热面结垢,使传热恶化。 (2)加热器内积聚空气,增加了传热热阻。 (3)水位过高,淹没部分管束,减少了换热面积。 (4)抽汽门或止回阀未全开或卡涩。 (5)旁路门漏水或水室隔板不严使短路。 4、除氧器的作用是什么? 答:除氧器的作用就是除去给水中的氧气,保证给水品质。同时除氧器也是一级混合式加热器。 5、试述热力除氧原理。 答:加热除氧器的工作原理是这样的:用压力稳定的蒸汽通入除氧器内,把水加热到除氧器压力下的饱和温度,在加热过程中,水面上蒸汽分压力逐渐增加,气体分压力逐渐降低,使溶解在水中的气体不断地逸

出,待水加热到饱和温度时,气体分压力接近于零,水中气体也就被除去了。 6、什么叫“自生沸腾”? 答:自生沸腾是指:过量较高压力疏水进入除氧器时,其热量足以使除氧器给水不需抽汽加热即可达到沸腾,这种情况将使除氧器内压力升高,排汽量增大,内部汽水流动工况受到破坏,除氧效果恶化。 7、凝结水泵空气管有什么作用? 答:因为凝结水泵开始抽水时,泵内空气难以从排气阀排出,因此在上部设有与凝汽器连通的抽气平衡管,以便将空气排至凝汽器由抽气器抽出,并维持泵入口腔室与凝汽器处于相同的真空度。这样,即使在运行中凝结水泵吸入新的空气,也不会影响泵入口的真空度。 8、离心泵都有那些主要零部件? 答:离心泵的主要零部件有叶轮、吸入室、压出室、径向导叶及流道式导叶、密封环、密封机构、轴向力平衡机构、轴承部件、轴承等。 9、给水泵在运行中入口发生汽化有哪些象征? 答:给水泵在运行中入口发生汽化的象征有:泵的电流、出口压力、入口压力剧烈变化,本内伴随有“沙沙”声音。

汽轮机概念及其分类

第1章汽轮机概念及其分类 1.1 汽轮机概述 1.1.1 汽轮机的概念 概念:汽轮机是一种将蒸汽的热能转换成机械能的蒸汽动力装置,又称为蒸汽透平。 汽轮机是以蒸汽为工质的旋转式机械,主要用作发电原动机,也用来直接驱动各种泵、风机、压缩机和船舶螺旋桨等,还可以利用汽轮机的排汽或中间抽汽满足生产和生活上的供热需要。 特点:功率大、转速高、运行平稳、热经济性高、易损件少,运行安全可靠,调速方便、振动小、噪音小等。 1.1.2 汽轮机的工作原理 1、具有一定温度(T)和压力(P)的蒸汽(锅炉或核反应堆)首先进入固定不动的喷嘴(也称静叶),蒸汽在喷嘴内膨胀,蒸汽的压力(P)、温度(T)不断降低,速度(V)增大,形成一股高速汽流,蒸汽的热能转化为动能。 2、高速汽流流经动叶(也称叶片)做功,动叶片带动汽轮机转子以一定的速度均匀转动,蒸汽的动能转化为机械能。 能量转换过程:蒸汽在汽轮机中,能量转换包括2个阶段,如图1所示: 图1 汽轮机能量转换过程 1.1.3 汽轮机的分类 汽轮机的类别和型式很多,可按工作原理、主蒸汽(进汽)参数、热力特性、结构类型、转速、用途等几个方面进行分类(如表1所示)。 1、按工作原理分类 (1)冲动式汽轮机:各级按照冲动原理设计,蒸汽主要在静叶(喷嘴)叶栅槽道中膨胀,在动叶叶栅槽道中主要改变流动方向,只有少量膨胀。 (2)反动式汽轮机:各级按冲动和反动原理设计,蒸汽在静叶(喷嘴)叶

栅槽道和动叶叶栅槽道中都发生膨胀,且膨胀程度相等。 备注:调节级采用冲动级,其它级均为反动级。 (3)冲动反动组合式汽轮机:转子各级动叶片既有冲动级又有反动级。 2、按主蒸汽(进汽)参数分类 (1)低压汽轮机:压力小于1.47 Mpa(0.12~1.5MPa) (2)中压汽轮机:压力为1.96~3.92 Mpa(2~4 MPa) (3)次高压汽轮机:压力为5~6 MPa (4)高压汽轮机:压力为5.88~9.81 Mpa(6~12Mpa) (5)超高压汽轮机:压力为11.77~13.93 Mpa(12~14 MPa) (6)亚临界压力汽轮机:压力为15.69~17.65 Mpa(16~18 MPa) (7)超临界压力汽轮机:压力大于22.15 Mpa (8)超超临界压力汽轮机:压力大于32 Mpa 3、按热力特性分类 (1)凝汽式汽轮机(N):蒸汽在汽轮机内做功后,乏汽(排汽)在低于大气压力的真空状态下全部排入凝汽器,凝结成水。 备注:有些小汽轮机没有回热系统,称为纯凝汽式汽轮机。 (2)背压式汽轮机(B):蒸汽在汽轮机内做功后,乏汽(排汽)在高于大气压力的状态下供热用户使用,没有布置凝汽器用于乏汽的冷凝。 备注:若乏汽(排汽)作为其它中低压汽轮机的新汽时,称为前置式汽轮机。 (3)抽汽凝汽式汽轮机(调节抽汽式汽轮机):在汽轮机的级间某一位置抽出部分蒸汽,调整压力后对外供热,其余蒸汽在汽轮机内做功,做功后乏汽(排汽)在低于大气压力的真空状态下全部排入凝汽器,凝结成水。 (4)抽气背压式汽轮机:在汽轮机的级间某一位置抽出部分蒸汽,供热用户使用,其余蒸汽在汽轮机内做功,做功后乏汽(排汽)在高于大气压力的状态下供热用户使用,没有布置凝汽器用于乏汽的冷凝。 备注:调节抽汽和排汽都供热用户使用。 (5)中间再热式汽轮机:新汽在高压缸做功后,进入锅炉再热器再热,经过再热后的高压缸排汽进一步进入低中压缸做功,最后乏汽(排汽)在低于大气压力的真空状态下全部排入凝汽器,凝结成水。

ECT饱和蒸汽汽轮机优点

ECT饱和蒸汽汽轮机优点: (1)ECT饱和蒸汽汽轮机既适用于过热蒸汽,也适用于饱和蒸汽,还适用于含污热液热水,适用于工质种类多,用途广泛。工业锅炉E CT饱和蒸汽汽轮机压差发电时,锅炉不需改造,工程实施比较简 单,不误正常生产。 (2)结构简单、紧凑,整机装配出厂,现场就位联接调试即可投入运行。ECT饱和蒸汽汽轮机维护简单,正常运行10年内无大修;机 组检修技术和设备要求低,无需专业队伍及场地设备要求,检修 工期短。 (3)可自动调节转速以适应按被驱动的工作机械转速变化,实现变频调节效能。直接驱动,不需要减速器,机组运转平稳,振动小, 噪音低。除泄漏损失外,很少其他损失,效率较高。 (4)适用于汽液两相湿蒸气,液相的存在及闪蒸效益不仅使机组运转平稳安全,还可以减少机内泄漏损失,提高效率。 (5)在负荷变化较大的情况下运行时10—120%,还可保持高效率,效率不随负荷变化显著下滑。 (6)由于有独特的结构特点,转子特性运转时具有自清洁功能。由于具有自除垢能力。所以,运行时对工质品质没有特别的要求,能 适应于低品质和不清洁的热源工质做功。 (7)能够适应进口工质参数的变化或波动,并能提供稳定出口压力、安全、高效地运行。 (8)不需要任何热力处理附属设备,热力系统非常简单,系统单位投

资少,投资回报期短。 (9)对非蒸汽热源(如炉烟、废气、热液、热水等),可以按照热力学三角形回圈工作,热损失小,回圈效率高,在同等条件下功率回 收比传统汽轮机高60%。 (10)转动惯量小,不会产生“飞车”事故;启动力矩大,可以直接带负荷启动,并能承受很大的冲击负荷(达到1/3的额定负荷以上); 启停时间短,不需要“盘车”过程和相应的设备装置 (11)由于其结构特点,其最大的单机做功功率受到限制,目前的加工技术水平只能在2500kw以下单机容量水平应用。 饱和蒸汽汽轮机 由于公司业务拓展,为ECT饱和蒸汽涡轮发电机组中国区独家代理,我即涉入了蒸汽汽轮机发电。不看不知道,一看才知道!其间的空间很大很深-------余热发电部分,在国内的

汽轮机试题库1

汽轮机试题库 一、填空 1、除氧器并列前应检查,并使两台除氧器的(水位)、(压力)、(水温)基本相同,否则不能并列。 2、正常运行中,除氧器压力维持在(0.02~0.04) 3、正常运行中,除氧器水温应控制在(102~104℃) 4、正常运行中,除氧器水位保持在(2/3)左右,高于(3/4)或低于(2/5)报警。 5、双减在运行期间应经常监视其出口(压力)、(温度),保持在规定范围之内。 6、机组停运后,后汽缸排汽温度降至50℃以下时,停冷凝器。 7、凝结水过冷却度应在(1~2℃),最大(3℃)。 8、冷凝器两侧循环水出水温度差不大于(2℃)。 9、冷凝器端差,应在(7~12℃)之间。 10、热井水位应维持在(1/2)左右。 11、凝结水硬度正常运行中不大于(3),启动时不大于(20)方可回收。 12、正常运行中,凝结水含氧量不大于(50)。 13、开机时油温达40℃时投入冷油器,保持润滑油温在(35~45℃)之间。 14、若冷油器停后备用,其出口油门、出口水门应在(开启)位置。 15、当发电机风温达(30℃)时,投入空冷器,保持发电入口风温在(20~35℃之间),最高不超过(40℃)。 16、发电机两侧进口风湿差不应超过(3℃)。 17、低加的投入1#机组应在负荷大于1500,2#、3#机组应在负荷大于(3000)时进行。 18、正常运行中,低加水位保持在(1/2)左右,最高不超过(2/3)刻度。 19、正常运行中,低加(空气门)应调整到一定开度,防止蒸汽漏入冷凝器,影响真空。 20、高加的投入,1#机在负荷达3500,2#、3#机在负荷达7000时进行。 21、及时调整高加进汽量,保证其出口水温150℃ 22、凝结水泵启动前的检查,电机绝缘良好,盘动转子灵活,水泵及电机内无杂音,保护罩牢固可靠。 23、凝结水泵启动前向热井补水至3/4。

第十章 蒸汽动力循环及汽轮机基础知识

- 113 - 第十章 蒸汽动力循环及汽轮机基础知识 10.1 蒸汽动力循环 核电站二回路系统的功能是将一回路系统产生的热能(高温、高压饱和蒸汽)通过汽轮机安全、经济地转换为汽轮机转子的动能(机械能),并带动发电机将动能转换为电能,最终经电网输送给用户。 热能转换为机械能是通过蒸汽动力循环完成的。蒸汽动力循环是指以蒸汽作为工质的动力循环,它由若干个热力过程组成。而热力过程是指热力系统状态连续发生变化的过程。工质则是指实现热能和机械能相互转换的媒介物质,其在某一瞬间所表现出来的宏观物理状态称为该工质的热力状态。工质从一个热力状态开始,经历若干个热力过程(吸热过程、膨胀过程、放热过程、压缩过程)后又恢复到其初始状态就构成了一个动力循环,如此周而复始实现连续的能量转换。核电厂二回路基本的工作原理如图10.1所示。 节约能源、实现持续发展是当今世界的主流。如何提高能源的转换率也是当今工程热力学所研究的重要课题。电厂蒸汽动力循环也发展出如卡诺循环、朗肯循环、再热循环、回热循环等几种循环形式。 10.1.1 蒸汽动力循环形式简介 1.卡诺循环 卡诺循环是由二个等温过程和二个绝热过程组成的可逆循环,表示在温熵(T -S )图中,如图10.2所示。图中, A-B 代表工质绝热压缩过程,过程中工质的温度由T 2升到T 1,以便于从热源实现等温传热; B-C 代表工质等温吸热过程,工质在温度 凝 结 水 水 蒸 汽 蒸汽推动汽轮机做功,将蒸汽热能转换成汽轮机动能;继而汽轮机带动发电机发电 。 凝结水从蒸汽发生器内吸收一回路冷却剂的热量变成蒸汽 热力循环 图10.1核电厂二回路基本的工作原理 T 1 S T 2

汽轮机的数学模型

汽轮机的数学模型 一.汽轮机的定义、发展历史与分类 1.1定义 汽轮机是将蒸汽的热能转换为机械能的叶轮式旋转原动机。 汽轮机是能将蒸汽热能转化为机械功的外燃回转式机械,来自锅炉的蒸汽进入汽轮机后,依次经过一系列环形配置的喷嘴和动叶,将蒸汽的热能转化为汽轮机转子旋转的机械能。其主要用作发电用的原动机,也可直接驱动各种泵、风机、压缩机和船舶螺旋桨等。还可以利用汽轮机的排汽或中间抽汽满足生产和生活上的供热需要。汽轮机具有单机功率大、效率高、寿命长等优点. 1.2 汽轮机的发展历史 公元一世纪时,亚历山大的希罗记述了利用蒸汽反作用力而旋转的汽转球,又称为风神轮,这是最早的反动式汽轮机的雏形;1629年意大利的布兰卡提出由一股蒸汽冲击叶片而旋转的转轮。 19世纪末,瑞典拉瓦尔和英国帕森斯分别创制了实用的汽轮机。拉瓦尔于1882年制成了第一台5马力(3.67千瓦)的单级冲动式汽轮机,并解决了有关的喷嘴设计和强度设计问题。单级冲动式汽轮机功率很小,现在已很少采用。 20世纪初,法国拉托和瑞士佐莱分别制造了多级冲动式汽轮机。多级结构为增大汽轮机功率开拓了道路,已被广泛采用,机组功率不断增大。帕森斯在1884年取得英国专利,制成了第一台10马力的多级反动式汽轮机,这台汽轮机的功率和效率在当时都占领先地位。 20世纪初,美国的柯蒂斯制成多个速度级的汽轮机,每个速度级一般有两列动叶,在第一列动叶后在汽缸上装有导向叶片,将汽流导向第二列动叶。现在速度级的汽轮机只用于小型的汽轮机上,主要驱动泵、鼓风机等,也常用作中小型多级汽轮机的第一级。 与往复式蒸汽机相比,汽轮机中的蒸汽流动是连续的、高速的,单位面积中能通过的流量大,因而能发出较大的功率。大功率汽轮机可以采用较高的蒸汽压力和温度,故热效率较高。19世纪以来,汽轮机的发展就是在不断提高安全可靠性、耐用性和保证运行方便的基础上,增大单机功率和提高装置的热经济性。 汽轮机的出现推动了电力工业的发展,到20世纪初,电站汽轮机单机功率已达10兆瓦。随着电力应用的日益广泛,美国纽约等大城市的电站尖峰负荷在20年代已接近1000兆瓦,如果单机功率只有10兆瓦,则需要装机近百台,因此20年代时单机功率就已增大到60兆瓦,30年代初又出现了165兆瓦和208

汽轮机-问答题综合

为什么说多级汽轮机的相对效率较单级汽轮机可得到明显的提高? ①在全机总比焓降一定时,每个级的比焓降较小,每级都可在材料强度允许的条件下,设计在最佳速比附近工作,使级的相对效率较高;②除级后有抽汽口,或进汽度改变较大等特殊情况外,多级汽轮机各级的余速动能可以全部或部分地被下一级所利用,提高了级的相对效率;③多级汽轮机的大多数级可在不超临界的条件下工作,使喷嘴和动叶在工况变动条件下仍保持一定的效率。同时,由于各级的比焓降较小,速度比一定时级的圆周速度和平均直径也较小,根据连续性方程可知,在容积流量相同的条件下,使得喷嘴和动叶的出口高度增大,叶高损失减小,或使得部分进汽度增大,部分进汽损失减小,这都有利于级效率的提高;④由于重热现象的存在,多级汽轮机前面级的损失可以部分地被后面各级利用,使全机相对效率提高。 简述在汽轮机的级中,蒸汽的热能是如何转化为机械能的。 具有一定压力、温度的蒸汽通过汽轮机的级时,首先在喷管叶栅通道中膨胀加速,将蒸汽的热能转化为高速汽流的动能,然后进入动叶通道,在其中改变方向或者既改变方向同时又膨胀加速,推动叶轮旋转,将高速汽流的动能转变为旋转机械能。 汽轮机主蒸汽温度不变时,主蒸汽压力升高有哪些危害? 当主蒸汽温度不变,主蒸汽压力升高时,蒸汽的初焓减小;此时进汽流量增加,回热抽汽压力升高,给水温度随之升高,给水在锅炉中的焓升减小,一公斤蒸汽在锅炉的吸热量减少。此时进汽量虽增大,但由于进汽量的相对变化小于机组功率的相对变化,故热耗率相应减小,经济性提高,反之亦然。 当凝汽器漏入空气后将对汽轮机组运行产生什么影响? ① 影响机组运行的经济性:a.使传热恶化,凝汽器压力Pc 上升,蒸汽的做功能力↓ ,使循环效率降低。b.使凝结水过冷度↑,低压抽汽量↑,机组的功率下降。② 影响机组运行的安全性:a.使Pc 上升,排汽温度↑→机组振动和冷却水管泄漏。b.使过冷度↑→凝结水含氧量↑,加剧低压设备、管道及附件的腐蚀。 为了满足等截面直叶片强度要求,其出口边越厚越好,这种说法是否准确?请分析说明理由。 不准确。出口边厚度越厚,对叶片来说,强度更安全,但是由于尾迹损失 与叶片出口边厚度成正比, 厚度增加, 将使叶片出口边尾迹损失增大, 叶型损失会显著增加, 效率降低。所以在满足强度允许的情况下,出口边厚度不是越厚越好。 某喷嘴的进口处过热蒸汽压力0p 为1.0Mpa ,温度为300℃,若喷嘴出口处压力1p 为0.6Mpa ,问该选用哪一种喷嘴? 什么是多级汽轮机的重热系数?重热系数的大小与哪些因素有关? 将各级的理想焓降之和大于汽轮机理想焓降部分占汽轮机理想焓降的份额叫做重热系数。 影响因素:(1)多级汽轮机各级的效率(2)多级汽轮机的级数(3)各级的初参数 某汽轮机型号为N600—24.2/566/566,解释说明型号中各字母、数字表示的含义。根据压力大小分类,该机属于什么压力等级? N-汽轮机型式是凝汽式,600-额定功率为600MW ,24.2-蒸汽初压是24.2MPa ,566-蒸汽初温是566摄氏度,566-再热温度是566摄氏度。亚

汽轮机介绍

1.600MW-1000MW超临界及超超临界汽轮机研制 汽轮机研究和实际运行表明:24.1MPa/538℃/566℃超临界机组热效率可比同量级亚临界机组提高约2~2.5%。而31MPa/566℃/566℃/566℃的超超临界机组热效率比同量级亚临界提高4~6%。国外各大公司更趋向于采用超临界参数来提高机组效率。就600MW~1000MW 等级超临界汽轮机而言,可以说已经发展到成熟阶段,而且其蒸汽参数还在不断提高,以期获得更好的经济性,如采用超超临界参数。 目前哈汽公司与日本三菱公司联合设计了型号为CLN600-24.2/566/566型超临界参数、一次中间再热、单轴、三缸、四排汽反动式汽轮机。高中压部分采三菱公司的技术,低压缸采用哈汽厂自主开发的新一代亚临界600MW汽轮机技术,哈汽厂与日本三菱公司联合设计,合作制造。 为进一步提高机组效率,哈汽公司已开展超超临界汽轮机前期科研开发工作。 2.600MW-1000MW核电汽轮机研制 我国通过秦山核电站(一、二、三期)和广东大亚湾、岭澳等核电站的建设,已经在核电站建设上迈出了坚实的第一步。哈汽公司成功地为秦山核电站研制了两台650MW核电汽轮机,积累了丰富的设计制造经验,为进一步发展百万等级核电准备了必要的条件。 目前哈汽公司已完成百万千瓦半转速核电汽轮机制造能力分析,并开展了前期科研开发工作。 3.大型燃气-蒸汽联合循环发电机组 联合循环由于做到了能量的梯级利用从而得到了更高的能源利用率,已以无可怀疑的优势在世界上快速发展。目前发达国家每年新增的联合循环总装机容量约占火电新增容量的 40%~50%,所有世界生产发电设备的大公司至今(如美国的GE公司87年开始、ABB90年开始)年生产的发电设备总容量中联合循环都占50%以上。最高的联合循环电站效率(烧天然气)已达55.4%,远远高于常规电站,一些国家(如日本等)已明确规定新建发电厂必须使用联合循环。 由于整体煤气化联合循环发电机组 (IGCC) 是燃煤发电技术中效率最高最洁净的技术 , 工业发达国家都十分重视,现在世界上已建成或在建拟建IGCC电站近20座,一些已进入商业运行阶段。 燃气轮发电机组在我国近几年才有较大发展,目前装机占火电总容量的3.5%,大部分由国外购进,国产机组只占9.4%,且机组容量小、初温低,机组水平只处于国外80年代水平,且关键部件仍有外商提供远不能满足大容量、高效率的联和循环机组的需要。 目前,哈汽公司与美国通用电气公司联合生产制造9F级重型燃气轮机及联合循环汽轮机。 4.300MW-600MW空冷汽轮机研制 大型空冷机组的研制与开发,不仅是国家重点扶持的攻关项目,对一个地区而言也是一个新的增长点,因为它可以带动一大批相关产业的发展。哈汽公司早期就已开展了空冷系统的研究,八.五期间,为内蒙丰镇电厂设计制造了200MW空冷汽轮机组,该机组启停灵活,安全满发,而且振动小、轴系十分稳定。为本项目创造了开发设计制造等有利的依托条件。 空冷系统与常规湿冷系统相比,电厂循环水补充量减少95%以上,空冷机组在缺水地区广泛采用,发展空冷技术是公司产品发展方向。 哈汽公司在发展空冷技术方面占有一定优势,成功地设计、制造了内蒙丰镇电厂4台200MW间接海勒系统空冷机组,目前机组运行良好,在高背压-0.1MPa下,机组安全满发,启停灵活,轴系稳定,同时在丰镇空冷机组上,做了大量试验研究: ①海勒间冷系统中混合式喷淋冷凝器试验。 ② 710mm动叶片的频率和动应力试验。 ③末级流场及湿度的测量 公司有进一步发展空冷奠定基础。曾为叙利亚阿尔电站设计了二台200MW直接空冷机组,针对直接空冷机组运行特点:高背压、背压变化范围 宽的特点,设计了落地轴承,低压缸和带冠520末级叶片。在300MW间接与直接空冷机组的设计和运行基础上进行了空冷300MW汽轮机初步设计,并针对大同二电厂,设计了二个600MW空冷机组方案。 ①哈蒙间接空冷600MW机组

适用于汽轮机建模的饱和水和饱和水蒸汽焓值近似公式

适用于汽轮机建模的饱和水和饱和水蒸汽焓值近似 公式 张宇,赵书强 华北电力大学电力工程系,河北保定(071003) E-mail :hillonwind@https://www.360docs.net/doc/a25085246.html, 摘 要:为了建立电力系统中长期稳定仿真的详细汽轮机模型,必须把抽汽的影响考虑进去。目前对于饱和水和饱和水蒸汽焓值的计算方法主要有IFC 公式读热力性质表,然后用插值法算出某压力或温度状态的焓值,和IAPWS—IF97公式非显式代数方程迭代法。这些方法在仿真软件上应用十分困难,本文提出计算饱和水和饱和水蒸汽焓值的近似公式,适用于目前电力系统的主要机组135MW ~1000MW ,相对误差2%。 关键词:饱和水;饱和水蒸汽;焓;汽轮机模型 1. 引言 汽轮机是以水蒸汽作为工质,因此在汽轮机的分析计算中,确定某种状态下水蒸汽的性质和参数至关重要。目前广泛使用的计算水和水蒸汽性质参数的公式是国际水和水蒸汽热力性质协会1997年制订的IAPWS—IF97公式,仍然在使用的是国际公式化委员会1967年制订的IFC67公式。这两个公式采用迭代和插值法计算水和水蒸汽焓值,单独详细的研究汽轮机时,可以使用这两套公式,而在电力系统仿真中,由于要多机仿真,在建立汽轮机模型时,如果还使用这两套公式,将会导致计算速度下降,甚至无法取得结果。 进入汽轮机做功的是过热蒸汽,低加后几级抽汽和低压缸排汽是饱和蒸汽,抽汽加热凝结水和给水后冷却成饱和水。所以研究汽轮机时,主要研究过热蒸汽、饱和蒸汽和饱和水的性质。 汽轮机的内功率可以表示为:1()n t tc si tc ci i N G h G h h ==??∑ 式中:G t 为主蒸汽流量;h tc 为凝汽汽流在汽轮机的比焓降;n 为汽轮机抽汽总数;G si 为汽轮机第i 级抽汽的质量流量;h ci 为第i 级抽汽 在汽轮机的比焓降。 第i 级加热器的动态热平衡为[5]:m si si dwit di woi wi i mi m d G h G h G h m c dt θμ+=+V V V 式中:G si 、G dwit 分别为进入第i 级加热器的抽汽和疏水的质量流量;G woi 为该加热器出口处的给水质量流量;?h si 、?h di 、?h wi 分别为相应的焓值;m mi 、c m 分别为加热器的金属质量和比热容;μ为考虑工质热容影响后的金属有效因子。 水和水蒸汽的已知量为压力p 和温度t ,只要求过热蒸汽焓h 、饱和蒸汽焓h”和饱和水h’即可,其他参数不需要求。 2. IFC67公式 [1]国际公式化委员会提供的IFC67公式的适用范围为温度从273.16K 到1073.15K ,压力从 理想气体极限值(p=0MPa )到100Mpa ,把整个区域分成6个不同的子区域,用1到6来标号,如图1所示。不同的子区域采用不同的计算公式,各子区域之间的边界线方程也分别用函数表达。

汽轮机技术及产品介绍

汽轮机技术及产品介绍 1.设置于最后一级高加后,利用回热抽汽的过热度来提升最终给水温度,提升经济性的装置是()。(6.0分) A.除氧器 B.低压加热器 C.省煤器 D.外置式蒸冷器 2.火力发电厂汽轮机的主要任务是:(6.0分) A.将热能转化为电能 B.将热能转化为机械能 C.将电能转化为机械能 D.将机械能转化为电能 3.汽轮机的热力循环过程称之为()(6.0分) A.卡诺循环 B.朗肯循环 C.布雷登循环 D.联合循环

4.汽轮机的级是由()组成的。(6.0分) A.隔板+喷嘴 B.汽缸+转子 C.喷嘴+动叶 D.主轴+叶轮 5.主蒸汽参数为1 6.7MPa.a的汽轮机为()(6.0分) A.高压汽轮机 B.超高压汽轮机 C.亚临界汽轮机 D.超临界汽轮机 1.热电联产汽轮机,调整抽汽可调整抽汽时,采用的手段包括()(8.0分)) A.直接打孔抽汽 B.回热抽汽 C.旋转隔板 D.座缸阀 E.联通管抽汽

2.下列属于汽轮机和电厂性能指标的是()(8.0分)) A.汽轮机热耗 B.汽轮机内效率 C.汽轮机热效率 D.供电煤耗 E.发电煤耗 3.下列属于火力电站的设备的是()(8.0分)) A.锅炉 B.汽轮机 C.发电机 D.核岛 E.凝汽器 4.汽轮机热力循环系统中,系统上的管道损失主要包括()(8.0分)) A.主汽水管道损失 B.再热压损 C.回热抽汽管道压损 D.汽轮机进汽压损

E.排汽损失 5.下述汽轮机属于按热力特性分类的是()(8.0分)) A.凝汽式汽轮机 B.抽汽式汽轮机 C.空冷汽轮机 D.多压式汽轮机 E.电站汽轮机 1.火电厂中汽轮机的热力循环过程叫朗肯循环。(6.0分) 2.反动级中,蒸汽在动叶中不仅受到冲动力的作用,仅受到反动力的作用。(6.0分) 3.双轴汽轮机就是两台汽轮机,两台机组间没有任何关系。(6.0分) 4.反动度为0.5的级称为反动级。(6.0分)

汽轮机_问答题综合

为什么说多级汽轮机的相对内效率较单级汽轮机可得到明显的提高? ①在全机总比焓降一定时,每个级的比焓降较小,每级都可在材料强度允许的条件下,设计在最佳速比附近工作,使级的相对内效率较高; ②除级后有抽汽口,或进汽度改变较大等特殊情况外,多级汽轮机各级的余速动能可以全部或部分地被下一级所利用,提高了级的相对内效 率;③多级汽轮机的大多数级可在不超临界的条件下工作,使喷嘴和动叶在工况变动条件下仍保持一定的效率。同时,由于各级的比焓降较 小,速度比一定时级的圆周速度和平均直径也较小,根据连续性方程可知,在容积流量相同的条件下,使得喷嘴和动叶的出口高度增大,叶 高损失减小,或使得部分进汽度增大,部分进汽损失减小,这都有利于级效率的提高;④由于重热现象的存在,多级汽轮机前面级的损失可 以部分地被后面各级利用,使全机相对内效率提高。 简述在汽轮机的级中,蒸汽的热能是如何转化为机械能的。 具有一定压力、温度的蒸汽通过汽轮机的级时,首先在喷管叶栅通道中膨胀加速,将蒸汽的热能转化为高速汽流的动能,然后进入动叶通道, 在其中改变方向或者既改变方向同时又膨胀加速,推动叶轮旋转,将高速汽流的动能转变为旋转机械能。 汽轮机主蒸汽温度不变时,主蒸汽压力升高有哪些危害? 当主蒸汽温度不变,主蒸汽压力升高时,蒸汽的初焓减小;此时进汽流量增加,回热抽汽压力升高,给水温度随之升高,给水在锅炉中的焓 升减小,一公斤蒸汽在锅炉内的吸热量减少。此时进汽量虽增大,但由于进汽量的相对变化小于机组功率的相对变化,故热耗率相应减小, 经济性提高,反之亦然。 当凝汽器漏入空气后将对汽轮机组运行产生什么影响? ① 影响机组运行的经济性:a.使传热恶化,凝汽器压力Pc 上升,蒸汽的做功能力↓ ,使循环效率降低。b.使凝结水过冷度↑,低压抽汽 量↑,机组的功率下降。② 影响机组运行的安全性:a.使Pc 上升,排汽温度↑→机组振动和冷却水管泄漏。b.使过冷度↑→凝结水含氧量 ↑,加剧低压设备、管道及附件的腐蚀。 为了满足等截面直叶片强度要求,其出口边越厚越好,这种说法是否准确?请分析说明理由。 不准确。出口边厚度越厚,对叶片来说,强度更安全,但是由于尾迹损失 与叶片出口边厚度成正比, 厚度增加, 将使叶片出口边尾迹损 失增大, 叶型损失会显著增加, 效率降低。所以在满足强度允许的情况下,出口边厚度不是越厚越好。 某喷嘴的进口处过热蒸汽压力0p 为1.0Mpa ,温度为300℃,若喷嘴出口处压力1p 为0.6Mpa ,问该选用哪一种喷嘴? 什么是多级汽轮机的重热系数?重热系数的大小与哪些因素有关? 将各级的理想焓降之和大于汽轮机理想焓降部分占汽轮机理想焓降的份额叫做重热系数。 影响因素:(1)多级汽轮机各级的效率(2)多级汽轮机的级数(3)各级的初参数 某汽轮机型号为N600—24.2/566/566,解释说明型号中各字母、数字表示的含义。根据压力大小分类,该机属于什么压力等级? N-汽轮机型式是凝汽式,600-额定功率为600MW ,24.2-蒸汽初压是24.2MPa ,566-蒸汽初温是566摄氏度,566-再热温度是566摄氏度。亚

(完整word版)汽轮机原理名词解释整理

1.速度比和最佳速比:将(级动叶的)圆周速度u与喷嘴出口(蒸汽的)速度c 的比值定义为速度比,轮周效率最大时的速度比称为最佳速度比。 1 2.假想速比:圆周速度u与假想全级滞止理想比焓降都在喷嘴中等比熵膨胀的假想出口速度的比值。 3.汽轮机的级:汽轮机的级是汽轮机中由一列静叶栅和一列动叶栅组成的将蒸汽热能转换成机械能的基本工作单元。 4.级的轮周效率:1kg蒸汽在轮周上所作的轮周功与整个级所消耗的蒸汽理想能量之比。 5.滞止参数:具有一定流动速度的蒸汽,如果假想蒸汽等熵地滞止到速度为零时的状态,该状态为滞止状态,其对应的参数称为滞止参数。 6.临界压比:汽流达到音速时的压力与滞止压力之比。 7.级的相对内效率:级的相对内效率是指级的有效焓降和级的理想能量之比。8.喷嘴的极限膨胀压力:随着背压降低,参加膨胀的斜切部分扩大,斜切部分达到极限膨胀时喷嘴出口所对应的压力。 9.级的反动度:动叶的理想比焓降与级的理想比焓降的比值。表示蒸汽在动叶通道内膨胀程度大小的指标。 10.余速损失:汽流离开动叶通道时具有一定的速度,且这个速度对应的动能在该级内不能转换为机械功,这种损失为余速损失。 11.临界流量:喷嘴通过的最大流量。 12.漏气损失:汽轮机在工作中由于漏气而产生的损失。 13.部分进汽损失:由于部分进汽而带来的能量损失。 14.湿气损失:饱和蒸汽汽轮机的各级和普通凝汽式汽轮机的最后几级都工作与湿蒸汽区,从而对干蒸汽的工作造成一种能量损失称为湿气损失。 15.盖度:指动叶进口高度超过喷嘴出口高度的那部分叶高。 16.级的部分进汽度:装有喷嘴的弧段长度与整个圆周长度的比值。 1.汽轮发电机组的循环热效率:每千克蒸汽在汽轮机中的理想焓降与每千克蒸汽在锅炉中所吸收的热量之比称为汽轮发电机组的循环热效率。 2.热耗率:每生产1kW.h电能所消耗的热量。 3.汽轮发电机组的汽耗率:汽轮发电机组每发1KW·h电所需要的蒸汽量。 4.汽轮机的极限功率:在一定的初终参数和转速下,单排气口凝汽式汽轮机所能发出的最大功率。 5.汽轮机的相对内效率:蒸汽实际比焓降与理想比焓降之比。 6.汽轮机的绝对内效率:蒸汽实际比焓降与整个热力循环中加给1千克蒸汽的热量之比。 7.汽轮发电机组的相对电效率和绝对电效率:1千克蒸汽所具有的理想比焓降中最终被转化成电能的效率称为汽轮发电机组的相对电效率。 1千克蒸汽理想比焓降中转换成电能的部分与整个热力循环中加给1千克蒸汽的热量之比称为绝对电效率。 8.轴封系统:端轴封和与它相连的管道与附属设备。 9.叶轮反动度:各版和轮盘间汽室压力与级后蒸汽压力之差和级前蒸汽压力与级后压力之差的比值。 10.进汽机构的阻力损失:由于蒸汽在汽轮机进汽机构中节流,从而造成蒸汽在汽轮机中的理想焓降减小,称为进汽机构的阻力损失。

联合循环汽轮机的热力设计探讨

联合循环汽轮机的热力设计探讨 发表时间:2018-01-28T21:43:09.497Z 来源:《基层建设》2017年第32期作者:徐承浩1 鉴小宝2 [导读] 摘要:本文对综合气化联合循环(IGCC)系统优化研究的集体设计进行了研究:归纳IGCC系统的主要热特性、两级、组合周期和IGCC系统,提出了大型交叉迭代设计优化的新思路;采用模块化建模方法建立系统设计优化模型。 1.青岛特温暖多能生态科技有限公司山东 266000; 2.山东金诺建设项目管理有限公司山东 266000 摘要:本文对综合气化联合循环(IGCC)系统优化研究的集体设计进行了研究:归纳IGCC系统的主要热特性、两级、组合周期和IGCC系统,提出了大型交叉迭代设计优化的新思路;采用模块化建模方法建立系统设计优化模型。介绍了联合循环汽轮机的热设计和设计特点。 关键词:联合循环;汽轮机;热力设计 1前言 燃料和燃气联合循环电厂,在80年代后期发展迅速,因为它可以快速启动,越来越多的熊峰剃须,因此,在联合循环中为汽轮机提出了许多新的要求,主要体现在以下几个方面:(1)由于燃气轮机的启动速度非常快,相应的涡轮可快速启动; (2)为了提高整个循环的效率,需要汽轮机运行; (3)根据燃气轮机、废热锅炉和蒸汽轮机启动时间的不同步,可以配备旁路系统; (4)燃气轮机进口单位或国外技术生产,数字电液控制系统的控制系统,为了使整个电厂控制水平一致,要求涡轮也可以采用数字电液控制系统。 综合煤气化联合循环(IGCC)是一种先进的动力系统,结合高效的联合循环和清洁煤技术,提供了最有前景的洁净煤发电技术。IGCC是一种集热发电、煤化工、环境技术、多学科、多设备组合为一体的复杂能源动力系统,与许多高新技术相结合。很长一段时间,IGCC系统的优化设计研究是围绕提高热性能为主要目标,以提高整体性能的IGCC系统,一方面,继续完善关键设备技术,寻求新的突破,另一方面,每个设备全面优化匹配的规则的深入研究,找到一个系统作为一个整体解决方案。 2热力设计 2.1热力设计主要过程见图1 图1热力设计主要过程 2.2热力设计原则 与传统的汽轮机相比,组合式循环汽轮机有很大的不同。主要特点:(1)无调节水平,节流调整的蒸汽分配方式; (2)汽轮机排汽流量比常规蒸汽流量高出30%。 (3)最后阶段的特殊设计需要特别考虑热应力对结构设计的影响。 (4)采用东旗厂的成熟模式和最先进的现代设计技术,确保运行的可靠性和最先进的经济; (5)结构和辅助系统的设计是为了满足两班换班和快速起动的需要。 2.3热力设计特点 (1)没有热量返回系统。为了尽可能多地使用燃气轮机的废气,增加汽轮机的输出功率,蒸汽轮机在联合循环中一般不购买给水加热器,热水和由废热锅炉承担的氧气,有时是由冷凝器氧。 (2)优化蒸汽参数。在热锅炉的合理传热区域内选择最优的蒸汽循环系统和蒸汽初始参数,使联合循环机组达到最佳的供电效率。 (3)优化流程设计。常规汽轮机流动优化技术可用于联合循环汽轮机。 (4)汽轮机由滑动压操作,调整阶段不再设置,汽轮机的所有级别都使用汽轮机。在这种情况下,滑动压力达到50%的负载情况:一方面,锅炉在可变工况下产生相对较多的蒸汽。另一方面,在变工况下,温度变化引起的热应力减小。 (5)由于无抽汽热水平,对于双压力、三中压汽轮机和注气量,因此,常规热电式汽轮机总发电容量的组合式循环汽轮机排汽量比为30%左右。因此,与常规机组相比,低压水位的流动区域应该增加30%左右。 (6)除了排汽,冷凝器也有各种形式,如轴向蒸汽排气和侧向排气。其中,轴向流阻力小;该单元的对称性很好,所以该单元不能设置两层操作平台,这样可以降低工厂成本。但单缸轴向排气的体积流量是有限的,只能在较小的动力涡轮中使用。 3汽轮机的通流及本体部分设计

汽轮机理论简答题全解

汽轮机理论简答题 1.什么叫工质?火力发电厂采用什么作为工质? 答:工质是热机中热能转变为机械能的一种媒介物质(如燃气、蒸汽等),依靠它在热机中的状态变化(如膨胀)才能获得功。 为了在工质膨胀中获得较多的功,工质应具有良好的膨胀性。在热机的不断工作中,为了方便工质流入与排出,还要求工质具有良好的流动性。因此,在物质的固、液、气三态中,气态物质是较为理想的工质。目前火力发电厂主要以水蒸气作为工质。 2. 什么叫动态平衡?什么叫饱和状态、饱和温度、饱和压力、饱和水、饱和蒸汽? 答:一定压力下汽水共存的密封容器内,液体和蒸汽的分子在不停地运动,有的跑出液面,有的返回液面,当从水中飞出的分子数目等于因相互碰撞而返回水中的分子数时,这种状态称为动态平衡。 处于动态平衡的汽、液共存的状态叫饱和状态。 在饱和状态时,液体和蒸汽的温度相同,这个温度称为饱和温度;液体和蒸汽的压力也相同,该压力称为饱和压力。饱和状态的水称为饱和水;饱和状态下的蒸汽称为饱和蒸汽。 3.为何饱和压力随饱和温度升高而增高? 答:温度升高,分子的平均动能增大,从水中飞出的分子数目越多,因而使汽侧分子密度增大。同时蒸汽分子的平均运动速度也随着增加,这样就使得蒸汽分子对器壁的碰撞增强,其结果使得压力增大,所以说:饱和压力随饱和温度升高而增高。 4. 什么叫喷管?电厂中常用哪几种喷管? 答:凡用来使气流降压增速的管道叫喷管。电厂中常用的喷管有渐缩喷管和缩放喷管两种。渐缩喷管的截面是逐渐缩小的;而缩放喷管的截面先收缩后扩大。 5. 什么叫节流?什么叫绝热节流? 答:工质在管内流动时,由于通道截面突然缩小,使工质流速突然增加,压力降低的现象称为节流。

(完整版)汽轮机习题

概念 1.速度比和最佳速比:将(级动叶的)圆周速度u与喷嘴出口(蒸汽的)速度c1的比值定义为速度比,轮周效率最大时的速度比称为最佳速度比。 3.汽轮机的级:汽轮机的级是汽轮机中由一列静叶栅和一列动叶栅组成的将蒸汽热能转换成机械能的基本工作单元。 4.轮周功率:单位时间内蒸汽推动叶轮旋转所作出的机械功。 5.级的轮周效率:1kg蒸汽在轮周上所作的轮周功与整个级所消耗的蒸汽理想能量之比。 6.滞止参数:具有一定流动速度的蒸汽,如果假想蒸汽等熵地滞止到速度为零时的状态,该状态为滞止状态,其对应的参数称为滞止参数。 7.临界压比:汽流达到音速时的压力与滞止压力之比。 8.级的相对内效率:级的相对内效率是指级的有效焓降和级的理想能量之比。 9.喷嘴的极限膨胀压力:随着背压降低,参加膨胀的斜切部分扩大,斜切部分达到极限膨胀时喷嘴出口所对应的压力 10.级的反动度:动叶的理想比焓降与级的理想比焓降的比值。表示蒸汽在动叶通道内膨胀程度大小的指标。 11.余速损失:汽流离开动叶通道时具有一定的速度,且这个速度对应的动能在该级内不能转换为机械功,这种损失为余速损失。 12.临界流量:喷嘴通过的最大流量。 13.漏气损失:汽轮机在工作中由于漏气而产生的损失。 14.部分进汽损失:由于部分进汽而带来的能量损失。 15.湿气损失:饱和蒸汽汽轮机的各级和普通凝汽式汽轮机的最后几级都工作与湿蒸汽区,从而对干蒸汽的工作造成一种能量损失称为湿气损失。 17.级的部分进汽度:装有喷嘴的弧段长度与整个圆周长度的比值。 18.汽轮发电机组的循环热效率:每千克蒸汽在汽轮机中的理想焓降与每千克蒸汽在锅炉中所吸收的热量之比称为汽轮发电机组的循环热效率。 19.热耗率:每生产1kW.h电能所消耗的热量。 20.发电机组的汽耗率:汽轮发电机组每发1KW·h电所需要的蒸汽量。 21.汽轮机的极限功率:在一定的初终参数和转速下,单排气口凝汽式汽轮机所能发出的最大功率。 22.汽轮机的相对内效率:蒸汽实际比焓降与理想比焓降之比。 23.汽轮机的绝对内效率:蒸汽实际比焓降与整个热力循环中加给1千克蒸汽的热量之比。 24.汽轮发电机组的相对电效率:1千克蒸汽所具有的理想比焓降中最终被转化成电能的效率称为汽轮发电机组的相对电效率。 25.汽轮发电机组的绝对电效率:1千克蒸汽理想比焓降中转换成电能的部分与整个热力循环中加给1千克蒸汽的热量之比称为绝对电效率。 26.轴封系统:端轴封和与它相连的管道与附属设备。 27.叶轮反动度:各版和轮盘间汽室压力与级后蒸汽压力之差和级前蒸汽压力与级后压力之差的比值。 28.进汽机构的阻力(节流)损失:由于蒸汽在汽轮机进汽机构中节流,从而造成蒸汽在汽轮机中的理想焓降减小,称为进汽机构的阻力(节流)损失。 29.多级汽轮机的重热现象:在多级汽轮机中,前面各级所损失的能量可以部分在以后各级中被利用的现象。 30.重热系数:因重热现象而增加的理想焓降占汽轮机理想焓降的百分比,称为多级汽轮机

目前国内汽轮机制造行业情况

目前国内汽轮机制造行业情况 小汽轮机(工业驱动汽轮机)厂家最好的是杭汽; 化工常用的汽轮机基本都是工业驱动汽轮机,杭汽绝对是国内最好的,现在沈鼓、陕鼓,甚至日立等在国内成套都是杭汽的汽轮机。 杭汽:不比上汽、哈汽、东汽差,但没有150MW以上的机组,核心技术是西门子三系列的工业汽轮机,在石油化工、电站锅炉给水泵小汽机方面占75%左右的绝对市场份额。在热电联产机组上划分出来的子公司(中能汽轮动力)独立运作。 青汽:150MW以下小汽机,曾经是小汽机上的风云厂商。 广汽:与斯柯达合资后主要用于出口。 大汽轮机(工业发电汽轮机)好的厂家有上海、哈尔滨、东方。 上汽、哈汽、东汽,这三厂各有特色 三大厂从50MW~1000MW的产品线均已完成布局,均为技术引进; 南汽:产品从25MW~330MW都已完成布局; 北重:固守已有的产品体系,一个旋转隔板20年不变,研发和基础部件试验越来越少。 武汽:近年在市场上的声音越来越小。 西门子与中国汽轮机制造业 西门子早期看中杭汽,杭汽是最理想的标的物,它目的是控股,遗憾的是没有实现。 失去杭汽之后西门子仍不甘心,武汽也是理想的标的物,它希望达到控股70%的目的,但这一希望也因为可能涉及到国家安全而被否决。 “只要不是行业的排头兵,都可能是被并购的对象。”原中国机械制造工艺协会副会长刘仪舜认为,“国家是禁止可能涉及到国家安全的领域并购。” “快速切入销售市场或生产基地,取得现成的销售、生产网络,节约时间。取得现成的品牌。通过收购消除竞争对手。对于收购方而言,并购不知名企业的好处是容易通过反垄断审查,不那么容易激起东道国社会的排斥心理。如果收购方有能力,收购之后可以做大。”商务部国际贸易经济合作研究院副研究员梅新育如是告诉记者。 隋永滨则认为,“实际上,跨国公司已经放缓了中国并购的步伐。特别是经历了徐工案和沈机案之后。” 沸沸扬扬的凯雷基金入主徐工集团、JANA基金并购沈阳机床事件均以失败告终。 “西门子收购武汉汽轮机厂也是因为可能涉及到国家安全而被否决。虽然武汽并不在行业前列,但是最后因为西门子掌握核心技术,一旦它继续追加投资,就可能形成行业垄断。”隋永滨介绍说。 其实,西门子在中国早有制作平台,西门子工业透平机械(葫芦岛)有限公司(SITHCO)是由西门子发电集团(控股70%)和锦西化工机械集团有限公司(JCMG)(控股30%)共同出资组建的合资企业,总投资2.4亿。坐落于渤海之滨,辽宁省葫芦岛市,现有员工300人。公司于2005年10月1日开始运营,主要从事于透平机械的生产制造以及维修服务。服务项目包括备件、安装以及为本企业和非本企业生产的汽轮机、压缩机试车和维护。 https://www.360docs.net/doc/a25085246.html,/jobads/siemens/organization.asp?org_id=222001007307100103

汽轮机辅助蒸汽系统培训教材

汽轮机辅助蒸汽系统培训教材 8.1概述 辅助蒸汽系统的功能是向有关的辅助设备和系统提供蒸汽,以满足机组在启动、正常运行、低负荷、甩负荷和停机等工况下的用汽需求。 8.2系统流程 辅助蒸汽系统按母管制设计,每台机组设一辅助蒸汽联箱。从所有汽源点来的辅助蒸汽汇入辅助蒸汽联箱,并从联箱引出到各用汽点。两相邻机组的联箱之间均有联络管,互为备用汽源或启动汽源,#3号机的辅汽联箱上有与一期#2机高 压辅汽联箱联络管。为了防止调节阀失控时辅助蒸汽系统超压,在辅助蒸汽联箱上装有2个安全阀,其排放能力按可能的最大来汽量计算。 二期工程仅设一种蒸汽参数的辅助蒸汽系统,不单独设低压力的辅汽联箱,对个别要求温度、压力较低的用户,设置减温减压装置,设置减温减压器的用户主要有磨煤机消防用汽,送风机、一次风机暖风器等。 系统设有两只喷水减温器,辅汽联箱至汽机轴封、汽机预暖用汽的管道上设一只,辅汽联箱至磨煤机蒸汽消防用汽管道上设一只,用于控制辅汽温度满足各用户要求,减温水来.

源均为凝结水。 辅汽系统减温器参数

温装2/280- 4.0/1002.0-12.50.6-1.23800.6-1.22804.5 159 232200 #3机组投入运行时,机组的启动用汽,低负荷时辅助蒸汽系统用汽、机组跳闸时备用汽及停机时保养用汽都来一期高压辅汽联箱。当机组负荷升高,四级抽汽的参数达到辅助用汽的参数时,就可切换到四级抽汽供汽。 #4机组投运时,冷态或热态启动用汽可由#3机组的辅助蒸汽系统供给。

辅助蒸汽系统的工作压力1.223MPa,工作温度为367℃。 辅助蒸汽系统的设计压力1.35MPa,设计温度为385℃。 辅助蒸汽系统的汽源有本机四段抽汽、一期高辅和邻机来辅汽。 每台机组设一卧式辅汽联箱,辅汽联箱参数为:o C/1.35Mpa。385辅汽联箱参数可满足各用汽点的需要,辅助蒸汽系统按母管制设计,两相邻机组的联箱之间均有联络管,互为备用。辅助蒸汽系统设有疏水母管,疏水接至B列疏水母管。. 辅汽联箱用户:两台磨煤机等离子暖风器、低负荷轴封用汽、机组启动高压缸倒暖、6台磨煤机消防用汽;寒冷工况2台送风机、一次风机暖风器、机组启动除氧器加热。 辅汽联箱汽源:本机四抽、临机辅汽联箱、一期高压辅汽联箱。 送风机、一次风机暖风器汽源:本机五抽、本机辅汽联箱。 8.3辅汽系统的投停 辅汽系统暖管投运 1.待投辅汽联箱汽源疏水、辅汽联箱疏水门均开启,如机组未启动则至排汽装置(或凝汽器)疏水禁止开启。如机组运行中开启至排汽装置(或凝汽器)疏水则应注意机组真空。 2.微开待投辅汽联箱汽源供辅汽联箱隔离门进行暖管。 3.确认各疏水器动作正常,各疏水点疏水畅通。

相关文档
最新文档