辽宁大连市第二十四中学高考数学等差数列习题及答案百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题

1.已知数列{}n a 满足25111,,25

a a a ==且

*121210,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19

B .20

C .21

D .22

2.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S =( ) A .7 B .12 C .14 D .21 3.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8

B .10

C .12

D .14

4.设等差数列{}n a 的前n 项和为n S ,公差1d =,且62

10S S ,则34a a +=( )

A .2

B .3

C .4

D .5

5.在等差数列{a n }中,a 3+a 7=4,则必有( )

A .a 5=4

B .a 6=4

C .a 5=2

D .a 6=2

6.已知数列{}n a ,{}n b 都是等差数列,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,且

713n n S n T n -=,则5

5

a b =( ) A .

34

15

B .

2310

C .

317

D .

62

27

7.已知数列{}n a 是公差不为零的等差数列,且1109a a a +=,则

129

10

a a a a ++⋅⋅⋅+=( ) A .

278

B .

52

C .3

D .4

8.已知数列{}n a 的前n 项和为n S ,11

2

a =,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ⎧⎫

⎬⎩⎭

的前n 项和为n T ,则下列说法中错误的是( ) A .21

4

a =-

B .

648

211S S S =+ C .数列{}12n n n S S S +++-的最大项为

712

D .1121

n n n n n

T T T n n +-=

++ 9.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大21

2

,则该数列的项数是( ) A .8

B .4

C .12

D .16

10.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12

B .20

C .40

D .100

11.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( ) A .450a a +=

B .560a a +=

C .670a a +=

D .890a a +=

12.已知递减的等差数列{}n a 满足22

19a a =,则数列{}n a 的前n 项和取最大值时n =( )

A .4或5

B .5或6

C .4

D .5

13.在数列{}n a 中,11a =,且11n

n n

a a na +=+,则其通项公式为n a =( ) A .

21

1n n -+

B .2

1

2n n -+

C .22

1

n n -+

D .2

2

2

n n -+

14.设等差数列{}n a 的前n 项和为n S ,若718a a a -<<-,则必定有( ) A .70S >,且80S < B .70S <,且80S > C .70S >,且80S >

D .70S <,且80S <

15.已知数列{}n a 中,12(2)n n a a n --=≥,且11a =,则这个数列的第10项为( ) A .18

B .19

C .20

D .21

16.在1与25之间插入五个数,使其组成等差数列,则这五个数为( )

A .3、8、13、18、23

B .4、8、12、16、20

C .5、9、13、17、21

D .6、10、14、18、22

17.已知数列{}n a 的前n 项和为n S ,且()1

1213n n n n S S a n +++=+-+,现有如下说法:

①541a a =;②222121n n a a n ++=-;③401220S =. 则正确的个数为( ) A .0

B .1

C .2

D .3

18.在等差数列{}n a 中,520164a a +=,S ,是数列{}n a 的前n 项和,则S 2020=( ) A .2019

B .4040

C .2020

D .4038

19.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项

B .133项

C .134项

D .135项

20.《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺”,则从第2天起每天比前一天多织( )

相关文档
最新文档