辽宁大连市第二十四中学高考数学等差数列习题及答案百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等差数列选择题
1.已知数列{}n a 满足25111,,25
a a a ==且
*121210,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19
B .20
C .21
D .22
2.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S =( ) A .7 B .12 C .14 D .21 3.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8
B .10
C .12
D .14
4.设等差数列{}n a 的前n 项和为n S ,公差1d =,且62
10S S ,则34a a +=( )
A .2
B .3
C .4
D .5
5.在等差数列{a n }中,a 3+a 7=4,则必有( )
A .a 5=4
B .a 6=4
C .a 5=2
D .a 6=2
6.已知数列{}n a ,{}n b 都是等差数列,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,且
713n n S n T n -=,则5
5
a b =( ) A .
34
15
B .
2310
C .
317
D .
62
27
7.已知数列{}n a 是公差不为零的等差数列,且1109a a a +=,则
129
10
a a a a ++⋅⋅⋅+=( ) A .
278
B .
52
C .3
D .4
8.已知数列{}n a 的前n 项和为n S ,11
2
a =,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ⎧⎫
⎨
⎬⎩⎭
的前n 项和为n T ,则下列说法中错误的是( ) A .21
4
a =-
B .
648
211S S S =+ C .数列{}12n n n S S S +++-的最大项为
712
D .1121
n n n n n
T T T n n +-=
++ 9.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大21
2
,则该数列的项数是( ) A .8
B .4
C .12
D .16
10.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12
B .20
C .40
D .100
11.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( ) A .450a a +=
B .560a a +=
C .670a a +=
D .890a a +=
12.已知递减的等差数列{}n a 满足22
19a a =,则数列{}n a 的前n 项和取最大值时n =( )
A .4或5
B .5或6
C .4
D .5
13.在数列{}n a 中,11a =,且11n
n n
a a na +=+,则其通项公式为n a =( ) A .
21
1n n -+
B .2
1
2n n -+
C .22
1
n n -+
D .2
2
2
n n -+
14.设等差数列{}n a 的前n 项和为n S ,若718a a a -<<-,则必定有( ) A .70S >,且80S < B .70S <,且80S > C .70S >,且80S >
D .70S <,且80S <
15.已知数列{}n a 中,12(2)n n a a n --=≥,且11a =,则这个数列的第10项为( ) A .18
B .19
C .20
D .21
16.在1与25之间插入五个数,使其组成等差数列,则这五个数为( )
A .3、8、13、18、23
B .4、8、12、16、20
C .5、9、13、17、21
D .6、10、14、18、22
17.已知数列{}n a 的前n 项和为n S ,且()1
1213n n n n S S a n +++=+-+,现有如下说法:
①541a a =;②222121n n a a n ++=-;③401220S =. 则正确的个数为( ) A .0
B .1
C .2
D .3
18.在等差数列{}n a 中,520164a a +=,S ,是数列{}n a 的前n 项和,则S 2020=( ) A .2019
B .4040
C .2020
D .4038
19.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项
B .133项
C .134项
D .135项
20.《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺”,则从第2天起每天比前一天多织( )