工程光学习题参考答案第七章典型光学系统
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 典型光学系统
1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离;
(3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。 解: ① 21
-==
r
l R )/1(m ∴ m l r 5.0-=
②
P R A -= D A 8= D R 2-= ∴
D A R P 1082-=--=-=
m P l p 1.010
1
1-=-== ③f D '
=
1
∴m f 1-=' ④D D R R 1-=-='
m l R
1-=' ⑤P R A '-'= D A 8= D R 1-='
D A R P 9-=-'='
m l P
11.09
1
-=-=' 2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。
eye
已知:放大镜 mm f 25=' mm D 18=放 mm P 50=' mm l P 250='-'
%50=K
求:① Γ ② 2y ③l 解:
①
f
D
P '-'-
=Γ1 25
501252501250-+=''-+'=
f P f 92110=-+=
②由%50=K 可得: 18.050
*218
2=='=
'P D tg 放ω ωωtg tg '=Γ ∴02.09
18
.0==ωtg
D
y
tg =
ω ∴mm Dtg y 502.0*250===ω ∴mm y 102= 方法二:
18.0='ωtg Θ mm tg y 45*250='='ω mm l 200-=' mm f
e 250='
mm l 2.22-= y
y l l X '==='=
92.22200βΘ mm y 102=
③ l P D '-'= mm D P l 20025050-=-=-'='
f l l '=-'111
25
1
12001
=
--l
mm l 22.22-
=
3.一显微镜物镜的垂轴放大率为x
3-=β,数值孔径1.0=NA ,共扼距mm L 180=,物镜框是孔径光阑,目镜焦距mm f e 25='。 (1)求显微镜的视觉放大率。 (2)求出射光瞳直径。
(3)求出射光瞳距离(镜目距)。
(4)斜入射照明时,m μλ55.0=,求显微镜的分辨率。 (5)求物镜的通光孔径。
(6)射物高mm y 62=,渐晕系数%50=k ,求目镜的通光孔径。
已知:显微物镜 X 3-=β 1.0=NA 共轭距mm L 180=物镜框为孔径光阑
mm f e 25='
① X e
e f 1025250
250=='=
Γ X e 30*-=Γ=Γβ ② mm NA D 67.130
1
.0*500500==Γ=' ③
由物镜成象关系:
⎪⎩⎪
⎨
⎧='+--='=180
)(3l l l l β
⎩⎨⎧='-=mm l mm l 13545
mm f l l e Z 160)(-='
+'-=
e Z Z
f l l '
=
-'1
11 160
1
2511-
='Z l mm l Z 62.29=' ④道威判断 m m
NA μμλσ75.21
.055.0*5.05.0===
⑤目镜的 185.0160
62
.29-=-='
=Z Z l l 目β
mm D 02.9185
.067
.1==
⑥mm y 62= 322='
=
y
y β mm y 182=' %50=K 时
36.025
9
*218=='=
'e f tg ω ω''=tg l D Z *2目 36.0*62.29*2= mm 33.21=
4.欲分辨mm 000725.0的微小物体,使用波长mm 00055.0=λ,斜入射照明,问: (1) 显微镜的视觉放大率最小应多大 (2) 数值孔径应取多少适合
视场光阑决定了物面大小,而物面又决定了照明 的大小
5.有一生物显微镜,物镜数值孔径5.0=NA ,物体大小mm y 4.02=,照明灯丝面积×2mm ,灯丝到物面的距离100mm ,采用临界照明,求聚光镜焦距和通光孔径。 已知 5.0=NA 4.02=y 灯丝面积 ×2mm
灯丝到物面的距离100mm 临界照明
求: 聚
f ' 和通光孔径. :⎪⎩⎪⎨⎧
='+-'=-=-=100)(312.14.0l l l l β A
B
l -l ' u
u 聚 物
⎩
⎨
⎧
='
-
=
mm
l
mm
l
25
75
f
l
l'
=
-
'
1
1
1
∴mm
f75
.
18
=
'
聚
u
n
NA sin
=
∴5.0
sin=
u︒
=30
u
mm
tg
tg
l
D86
.
28
30
*
25
*
2
30
*
*
2=
=
'
=︒
︒
6.为看清4km处相隔150mm的两个点(设rad
0003
.0
1=
'),若用开普勒望远镜观察,则:(1)求开普勒望远镜的工作放大倍率;
(2)若筒长mm
L100
=,求物镜和目镜的焦距;
(3)物镜框是孔径光阑,求出射光瞳距离;
(4)为满足工作放大率的要求,求物镜的通光孔径;
(5)视度调节在D
5
±(屈光度),求目镜的移动量;
(6)若物方视场角︒
=8
2ω求象方视场角;
(7)渐晕系数%
50
=
K,求目镜的通光孔径。
已知:m
l4000
-
=mm
150
=
σ
解:①5
10
*
75
.3
1000
*
1000
*
4
150-
=
=
mm
mm
ϕ(rad)
有效放大率8
10
*
75
.3
0003
.0
06
5
=
=
''
=
Γ
-
ϕ
工作放大率X
24
~
16
=
Γ
②
⎪
⎩
⎪
⎨
⎧
=
'
'
=
Γ
=
=
-
+
'
8
100
)
(
e
o
e
o
f
f
mm
L
f
f
⎪⎩
⎪
⎨
⎧
=
'
=
'
mm
f
mm
f
e
o
11
.
11
89
.
88