平行四边形的存在性问题解题策略
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
04平行四边形的存在性问题解题策略
1.(2010陕西西安)如图,在平面直角坐标系中,抛物线经过A (—1,0),B (3,0),C (0,—1)三点。
(1)求该抛物线的表达式;
(2)点Q 在y 轴上,点P 在抛物线上,要使以点Q 、P 、A 、B 为顶点的四边形是平行
四边形,求所有满足条件的点P 的坐标。
【答案】解:(1)设该抛物线的表达式为c bx ax y =+=2。
根据题意,得、
⎪⎩⎪⎨⎧-==++=+-.1,039,0c c b a c b a 解之,得⎪⎪⎪
⎩
⎪
⎪
⎪⎨⎧
-=-==.
1,32,31c b a
∴所求抛物线的表达式为.13
2
312--=
x x y (2)①当AB 为边时,只要PQ//AB ,且PQ=AB=4即可,
又知点Q 在y 轴上,∴点P 的横坐标为4或-4,这时,将 合条件的点P 有两个,分别记为P 1,P 2。
而当x=4时,.7,4,3
5
=-==
y x y 时当 此时).7,4(),3
5
,4(21-P P
②当AB 为对角线时,只要线段PQ 与线段AB 互相平分即可,
又知点Q 在y 轴上,且线段AB 中点的横坐标为1,
∴点P 的横坐标为2,这时,符合条件的点P 只有一个,记为P 3, 而当x=2时,y=-1,此时P 3(2,-1) 综上,满足条件的点)1,2(),7,4(),3
5
,4(321--P P P P 为
1. (2011山东威海,25,12分)如图,抛物线2
y ax bx c =++交x 轴于点(3,0)A -,点
(1,0)B ,交y 轴于点(0,3)E -.点C 是点A 关于点B 的对称点,点F 是线段BC 的中点,直
线l 过点F 且与y 轴平行.直线y x m =-+过点C ,交y 轴于点D . (1)求抛物线的函数表达式;
(2)点K 为线段AB 上一动点,过点K 作x 轴的垂线与直线CD 交于点H ,与抛物线交于点G ,求线段HG 长度的最大值;
(3)在直线l 上取点M ,在抛物线上取点N ,使以点A ,C ,M ,N 为顶点的四边是平行四边形,求点N 的坐标.
图① 备用图
【答案】 解:(1)设抛物线的函数表达式(1)(3)y a x x =-+ ∵抛物线与y 轴交于点(0,3)E -,将该点坐标代入上式,得1a =. ∴所求函数表达式(1)(3)y x x =-+,即2
23y x x =+-.
(2)∵点C 是点A 关于点B 的对称点,点(3,0)A -,点(1,0)B , ∴点C 的坐标是(5,0)C .
将点C 的坐标是(5,0)C 代入y x m =-+,得5m =. ∴直线CD 的函数表达式为5y x =-+.
设K 点的坐标为(,0)t ,则H 点的坐标为(,5)t t -+,G 点的坐标为2
(,23)t t t +-.
∵点K 为线段AB 上一动点, ∴31t -≤≤.
∴2
2
2
341(5)(23)38()2
4
HG t t t t t t =-+-+-=--+=-++
. ∵3
312-≤-
≤, ∴当32t =-时,线段HG 长度有最大值41
4
.
(3)∵点F 是线段BC 的中点,点(1,0)B ,点 (5,0)C , ∴点F 的坐标为(3,0)F . ∵直线l 过点F 且与y 轴平行, ∴直线l 的函数表达式为3x =. ∵点M 在直线l 上,点N 在抛物线上 ,
∴设点M 的坐标为(3,)M m ,点N 的坐标为2
(,23)N n n n +-.
∵点(3,0)A -,点 (5,0)C ,∴8AC =. 分情况讨论:
① 若线段AC 是以点A ,C ,M ,N 为顶点的四边是平行四边形的边,则须MN ∥AC ,且
MN =AC =8.
当点N 在点M 的左侧时,3MN n =-. ∴38n -=,解得5n =-. ∴N 点的坐标为(5,12)N -.
当点N 在点M 的右侧时,3MN n =-.
∴38n -=,解得11n =. ∴N 点的坐标为(11,40)N .
②若线段AC 是以点A ,C ,M ,N 为顶点的平行四边形的对角线,由“点C 与点A 关于点
B 中心对称”知:点M 与点N 关于点B 中心对称.取点F 关于点B 对称点P ,则点P 的坐
标为(1,0)P -.过点P 作NP ⊥x 轴,交抛物线于点N . 将1x =-代入2
23y x x =+-,得4y =-.
过点N ,B 作直线NB 交直线l 于点M . 在△BPN 和△BFM 中,
∵90NPB MBF BF BP BPN BFM ∠=∠⎧⎪
=⎨⎪∠=∠=︒⎩
∴△BPN ≌△BFM . ∴NB =MB .
∴四边形点ANCM 为平行四边形. ∴坐标为(1,4)--的点N 符合条件.
∴当点N 的坐标为(5,12)-,(11,40),(1,4)--时,以点A ,C ,M ,N 为顶点的四边是平行四边形.
2、(2009重庆綦江)如图,已知抛物线(1)233(0)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点
C ,B 在x 轴正半轴上,连结BC .
(1)求该抛物线的解析式;
(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?
(3)若O C O B =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?
并求出最小值及此时PQ 的长.
*26.解:(1)
抛物线2
(1)33(0)y a x a =-+≠经过点(20)A -,,
3
09333
a a ∴=+∴=-
··········································································································· 1分 ∴二次函数的解析式为:232383333
y x x =-
++ ··························································· 3分 (2)
D 为抛物线的顶点(133)D ∴,
过D 作DN OB ⊥于N ,则33DN =, 2233(33)660AN AD DAO =∴=+=∴∠=,°
····························································· 4分 OM AD ∥
①当AD OP =时,四边形DAOP 是平行四边形
66(s)OP t ∴=∴= ························································· 5分 ②当DP OM ⊥时,四边形DAOP 是直角梯形
过O 作OH AD ⊥于H ,2AO =,则1AH =
(如果没求出60DAO ∠=°可由Rt Rt OHA DNA △∽△求1AH =)
55(s)OP DH t ∴=== ·············································································································· 6分
x
y
M C
D
P
Q
O A
B N E H
x
y
M C D
P
Q
O
A
B
③当PD OA =时,四边形DAOP 是等腰梯形
26244(s)OP AD AH t ∴=-=-=∴=
综上所述:当6t =、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形. 7分 (3)由(2)及已知,60COB OC OB OCB ∠==°,,△是等边三角形 则6262(03)OB OC AD OP t BQ t OQ t t =====∴=-<<,,, 过P 作PE OQ ⊥于E ,则3
2
PE t =
······················································································· 8分 113
633(62)222
BCPQ S t t ∴=⨯⨯-⨯-⨯
=2
3363
3228
t ⎛⎫-+ ⎪⎝⎭ ··················································································································· 9分 当32t =
时,BCPQ S 的面积最小值为63
38
··············································································· 10分
∴此时33
39
33
3324
44
4
OQ OP OE QE PE ==
∴=-
==
,=, 2
2
2233933442PQ PE QE ⎛⎫⎛⎫
∴=+=+= ⎪ ⎪ ⎪⎝⎭
⎝⎭ ································································ 11分 3.(2009年内蒙古包头)已知二次函数2
y ax bx c =++(0a ≠)的图象经过点(10)A ,,(20)B ,,(02)C -,,直线x m =(2m >)与x 轴交于点D .
(1)求二次函数的解析式;
(2)在直线x m =(2m >)上有一点E (点E 在第四象限),使得E D B 、、为顶点的三角形与以A O C 、、为顶点的三角形相似,求E 点坐标(用含m 的代数式表示); (3)在(2)成立的条件下,抛物线上是否存在一点F ,使得四边形ABEF 为平行四边形?若存在,请求出m 的值及四边形ABEF 的面积;若不存在,请说明理由. y
x
O
B
A
D
C
(F 2)F 1 E 1 (E 2)
y
x
O
26.(12分)
解:(1)根据题意,得04202.a b c a b c c ++=⎧⎪
++=⎨⎪=-⎩
,
,
解得132a b c =-==-,,.
232y x x ∴=-+-. ···································· (2分)
(2)当EDB AOC △∽△时, 得
AO CO ED BD =或AO CO
BD ED
=
, ∵122AO CO BD m ===-,,,
当
AO CO ED BD =时,得12
2
ED m =
-, ∴2
2
m ED -=,
∵点E 在第四象限,∴122m E m -⎛⎫
⎪⎝⎭
,. ··············································································· (4分) 当
AO CO BD ED =时,得12
2m ED
=-,∴24ED m =-, ∵点E 在第四象限,∴2(42)E m m -,
. ··············································································· (6分) (3)假设抛物线上存在一点F ,使得四边形ABEF 为平行四边形,则
1EF AB ==,点F 的横坐标为1m -,
当点1E 的坐标为22m m -⎛⎫ ⎪⎝⎭,
时,点1F 的坐标为212m m -⎛
⎫- ⎪⎝
⎭,,
∵点1F 在抛物线的图象上, ∴
22(1)3(1)22
m
m m -=--+--, ∴2
211140m m -+=, ∴(27)(2)0m m --=, ∴7
22
m m =
=,(舍去)
, ∴1532
4F ⎛⎫- ⎪⎝⎭
,
, ∴33
144
ABEF
S
=⨯
=. ··········································································································· (9分) 当点2E 的坐标为(42)m m -,时,点2F 的坐标为(142)m m --,, ∵点2F 在抛物线的图象上,
∴2
42(1)3(1)2m m m -=--+--, ∴2
7100m m -+=,
∴(2)(5)0m m --=,∴2m =(舍去),5m =,
∴2(46)F -,
, ∴166ABEF
S
=⨯=. ·········································································································· (12分)
注:各题的其它解法或证法可参照该评分标准给分.
4、(2009柳州)如图11,已知抛物线b ax ax y --=22
(0>a )与x 轴的一个交点为
(10)B -,,与y 轴的负半轴交于点C ,顶点为D .
(1)直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点A 的坐标; (2)以AD 为直径的圆经过点C .
①求抛物线的解析式;
O x
y
A B
C
D
图11
②点E 在抛物线的对称轴上,点F 在抛物线上,
且以E F A B ,,,四点为顶点的四边形为平行四边形,求点F 的坐标. 解:(1)对称轴是直线:1=x ,
点A 的坐标是(3,0). ····································································· 2分 (说明:每写对1个给1分,“直线”两字没写不扣分) (2)如图11,连接AC 、AD ,过D 作轴 y DM ⊥于点M , 解法一:利用AOC CMD △∽△
∵点A 、D 、C 的坐标分别是A (3,0),D (1,b a --)、
C (0,b -),
∴AO =3,MD =1. 由
MD OC CM AO =
得1
3b
a = ∴03=-a
b ············································································································ 3分 又∵b a a --⋅--⋅=)1(2)1(02
··········································································· 4分
∴由⎩
⎨⎧=-=-0303b a ab 得⎩⎨⎧==31b a ············································································· 5分
∴函数解析式为:322
--=x x y ································································ 6分
解法二:利用以AD 为直径的圆经过点C
∵点A 、D 的坐标分别是A (3,0) 、D (1,b a --)、C (0,b -), ∴29b AC +=,21a CD +=,2)(4b a AD --+=
∵2
22AD CD AC =+
∴03=-ab …① ······························································································· 3分 又∵b a a --⋅--⋅=)1(2)1(02
…② ······························································· 4分
由①、②得13a b ==,
·············································································· 5分
∴函数解析式为:322
--=x x y ······································································· 6分
(3)如图所示,当BAFE 为平行四边形时 则BA ∥EF ,并且BA =EF .
∵BA =4,∴EF =4
由于对称为1=x ,
∴点F 的横坐标为5. ······················································· 7分 将5=x 代入322
--=x x y 得12=y ,
∴F (5,12). ·································································· 8分 根据抛物线的对称性可知,在对称轴的左侧抛物线上也存在点
F ,使得四边形BAEF 是平行四边形,此时点F 坐标为(3-,12). 9分
当四边形BEAF 是平行四边形时,点F 即为点D ,
此时点F 的坐标为(1,4-). ······································· 10分 综上所述,点F 的坐标为(5,12), (3-,12)或(1,4-). (其它解法参照给分)
5、(2009烟台市) 如图,抛物线2
3y ax bx =+-与x 轴交于A
B ,两点,与y 轴交于
C 点,且经过点(23)a -,,对称轴是直线1x =,顶点是M .
(1) 求抛物线对应的函数表达式;
(2) 经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使
以点P A C N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;
若不存在,请说明理由;
(3) 设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D ,重
y
x
O A B C
D
图11
E F
合),经过A B E ,,三点的圆交直线BC 于点F ,试判断AEF △的形状,并说明理由;
(4) 当E 是直线3y x =-+上任意一点时,(3)中的结论是否成立?(请直接写出
结论). O B x
y
A M
C 1
3-。