微波测量实验报告

合集下载

微波测量实验报告

微波测量实验报告

微波测量实验报告一、实验背景微波测量是指利用微波技术对被测物体进行测量的一种方法。

微波是一种电磁波,其频率范围在300MHZ至300GHz之间。

微波测量广泛应用于通信、测距、雷达、卫星等领域。

本实验旨在通过对微波信号的发射、传播和接收进行实验,了解微波测量的基本原理和方法。

二、实验原理微波测量实验主要依赖于微波发射器和接收器的配合。

首先,发射器通过产生一个特定频率和幅度的微波信号,将信号输入到一个导波器(如开放式传输线)中。

信号在导波器中通过传播,并且可以根据特定的设计进行传播路径的调整。

接收器用来接收由被测物体反射或传播过来的微波信号,通过对信号进行处理,可以得到关于被测物体的信息。

在微波测量中,由于微波的特殊性质,测距、测速和测向等参数可以通过对微波信号的相位、频率和幅度进行分析来实现。

例如,利用多普勒频移原理,可以通过测量微波信号的频率变化来计算目标物体的速度;利用相位差原理,可以通过测量微波信号的相位差来计算目标物体的位置。

三、实验设备和材料1.微波发射器:用来产生微波信号的设备;2.导波器:用来传输微波信号的导向装置;3.微波接收器:用来接收被测物体反射或传播过来的微波信号并进行参数分析的设备;4.被测物体:用来反射或传播微波信号的物体。

四、实验步骤1.连接微波发射器和接收器,并对其进行相位校准;2.将被测物体放置在适当位置,调整微波接收器的位置和角度,以便接收到反射或传播过的微波信号;3.运行微波发射器和接收器,记录并分析接收到的微波信号的相位、频率和幅度等参数;4.根据参数分析的结果,计算并得出被测物体的测量结果。

五、实验结果与分析在实验中,我们成功地利用微波发射器和接收器对一块金属板进行了微波测量。

通过对接收到的微波信号的相位、频率和幅度进行实验结果的分析,我们得出了金属板的尺寸和位置等测量结果。

六、实验总结通过本实验,我们了解了微波测量的基本原理和方法。

微波测量广泛应用于通信、测距、雷达、卫星等领域,具有重要的实际应用价值。

微波测量技术实验报告

微波测量技术实验报告

一、实验目的1. 理解微波测量技术的基本原理和实验方法;2. 掌握微波测量仪器的操作技能;3. 学会使用微波测量技术对微波元件的参数进行测试;4. 分析实验数据,得出实验结论。

二、实验原理微波测量技术是研究微波频率范围内的电磁场特性及其与微波元件相互作用的技术。

实验中,我们主要使用矢量网络分析仪(VNA)进行微波参数的测量。

矢量网络分析仪是一种高性能的微波测量仪器,能够测量微波元件的散射参数(S参数)、阻抗、导纳等参数。

其基本原理是:通过测量微波信号在两个端口之间的相互作用,得到微波元件的散射参数,进而分析出微波元件的特性。

三、实验仪器与设备1. 矢量网络分析仪(VNA)2. 微波元件(如微带传输线、微波谐振器等)3. 测试平台(如测试夹具、测试架等)4. 连接电缆四、实验步骤1. 连接测试平台,将微波元件放置在测试平台上;2. 连接VNA与测试平台,进行系统校准;3. 设置VNA的测量参数,如频率范围、扫描步进等;4. 启动VNA,进行微波参数测量;5. 记录实验数据;6. 分析实验数据,得出实验结论。

五、实验数据与分析1. 实验数据(1)微波谐振器的Q值测量:通过扫频功率传输法,测量微波谐振器的Q值,得到谐振频率、品质因数等参数;(2)微波定向耦合器的特性参数测量:通过测量输入至主线的功率与副线中正方向传输的功率之比,得到耦合度;通过测量副线中正方向传输的功率与反方向传输的功率之比,得到方向性;(3)微波功率分配器的传输特性测量:通过测量输入至主线的功率与输出至副线的功率之比,得到传输损耗。

2. 实验数据分析(1)根据微波谐振器的Q值测量结果,分析谐振器的频率选择性和能量损耗程度;(2)根据微波定向耦合器的特性参数测量结果,分析耦合器的性能指标,如耦合度、方向性等;(3)根据微波功率分配器的传输特性测量结果,分析功率分配器的传输损耗。

六、实验结论1. 通过实验,掌握了微波测量技术的基本原理和实验方法;2. 熟练掌握了矢量网络分析仪的操作技能;3. 通过实验数据,分析了微波元件的特性,为微波电路设计和优化提供了依据。

近代微波测量实验报告3

近代微波测量实验报告3

近代微波测量实验报告一、实验名称: 微波信号频谱、功率和相位噪声的测量二、实验目的三、掌握源、频谱仪及功率计的使用和测量方法, 了解如何测量微波信号频谱、功率和相位噪声的测量原理。

四、实验器材源1台频谱仪1台功率计1台五、实验原理相位噪声是对频率综合器或者是微波信号源的频率稳定度的一种度量, 是衡量频率源稳定度的重要参数。

在频谱分析仪上,, 信号的所有不稳定度总和即相位噪声和幅度噪声的总和表现为载波两侧的噪声边带, 通常当已知幅度噪声远小于相位噪声时小于, 在频谱仪上读出的边带噪声即为相位噪声。

应该指出, 不同场合对相位噪声的要求不同, 测量方法也不同。

典型的测试方法已有相应的测试设备。

本实验使用频谱仪测相位噪声的方法是最为简易的一种方法, 仅适合于要求不高的场合,, 同时也是广泛应用和十分有效的方法, 其特点为简单, 易操作。

图1 频谱仪直接的测量微波信号基本特征为频率和功率, 若需要描述一个微波信号, 则需要知道该信号的频率、功率及其相位噪声, 其中相位噪声用来表征一个信号源的短期频率稳定度, 可以根据图2来分析相位噪声, 假设系统中产生一个信号, 由于系统中无源和有源器件中的噪声(如热噪声、闪烁噪声(1/f 噪声)、散粒噪声、周期稳态噪声)的存在, 使系统产生了噪声, 从而产生出一个带有相位噪声的信号, 此信号比原信号多了相位噪声的存在。

噪声图2 带有相位噪声的信号六、实验中使用频谱仪和功率计测量微波信号的频率、功率及相位噪声, 使用频谱仪可以直接读取信号的频率和功率;由于在频域中, 相位噪声表征噪声对输出信号相位的扰动, 其定义为在偏移载波频率Δω处的单位带宽内的单边带噪声谱与载波功率之比, 故测量时需测量在偏离信号一定距离时的相位噪声。

且注意, 相位噪声表示为分贝的形式, 其单位为dBc/Hz七、实验内容八、设置矢量信号源, 产生频率为1GHz的正弦信号, 使用频谱仪和功率计测量微波信号的频率、功率及相位噪声。

规范版微波测量实验报告

规范版微波测量实验报告

(规范版)微波测量实验报告微波测量实验报告引言:微的用途极为广泛,已经成为我们日常生活中不可缺少的一项技术。

微通常是指波长从1米(300MHZ)到1毫米(300GHZ)范围内的电磁波,其低频段与超短波波段相衔接,高频端与远红外相邻,由于它比一般无线电波的波长要短的多,故把这一波段的无线电波称为微,可划分为分米波、厘米波和毫米波。

微的基本特性明显,如波长极短、频率极高、具有穿透性、似光性等。

基本特性明显使得微被广泛应用于各类领域。

微技术不仅在国防、通讯、工农业生产的各个方面有着广泛的应用,而且在当代尖端科学研究中也是一种重要手段,如高能粒子加速器、受控热核反应、射电天文与气象观测、分子生物学研究、等离子体参量测量、遥感技术等方面。

近年来,微技术与各类学科交叉衍生出各类微边缘学科,如微超导、微化学、微生物学、微医学等,在各自领域都得到了长足的发展。

微技术是一门独特的现代科学技术,其重要地位不言而喻,因此掌握它的基本知识和实验方法变得尤为重要。

一、实验目的:1、了解微传输系统的组成部分2、了解微工作状态及传输特性3、掌握微的基本测量:频率、功率、驻波比和波导波长二、实验原理:1.微的传输特性.在微波段中,为了避免导线辐射损耗和趋肤效应等的影响,一般采用波导作为微传输线。

微在波导中传输具有横电波(TE波)、横磁波(TM 波)和横电波与横磁波的混合波三种形式。

微实验中使用的标准矩形波导管,通常采用的传输波型是TE10波。

波导中存在入射波和反射波,描述波导管中匹配和反射程度的物理量是驻波比或反射系数。

依据终端负载的不同,波导管具有三种工作状态:(1)当终端接"匹配负载"时,反射波不存在,波导中呈行波状态;(2)当终端接"短路片"、开路或接纯电抗性负载时,终端全反射,波导中呈纯驻波状态;(3)一般情况下,终端是部分反射,波导中传输的既不是行波,也不是纯驻波,而是呈混波状态。

微波基本测量实验报告

微波基本测量实验报告

微波基本测量实验报告微波基本测量实验报告引言:微波技术是现代通信、雷达、天文学等领域的重要组成部分。

为了更好地了解微波的特性和应用,本实验旨在通过基本的测量实验,探索微波的传输、反射和干涉等现象,并对实验结果进行分析和讨论。

一、实验装置和原理本实验使用的实验装置包括微波发生器、微波导波管、微波检波器、微波衰减器等。

微波发生器产生微波信号,经由微波导波管传输到被测物体,再通过微波检波器接收并测量微波信号的强度。

微波衰减器用于调节微波信号的强度,以便进行不同强度的测量。

二、实验过程和结果1. 传输实验将微波发生器与微波检波器分别连接到微波导波管的两端,调节发生器的频率和功率,记录检波器的读数。

随着发生器功率的增加,检波器读数也相应增加,说明微波信号能够稳定传输。

2. 反射实验将微波发生器与微波检波器连接到微波导波管的同一端,将导波管的另一端暴露在空气中,调节发生器的功率,记录检波器的读数。

随着功率的增加,检波器读数也增加,表明微波信号在导波管与空气之间发生了反射。

3. 干涉实验将两根微波导波管分别连接到微波发生器和微波检波器上,将两根导波管的另一端合并在一起,调节发生器的功率,记录检波器的读数。

随着功率的增加,检波器读数呈现周期性的变化,表明微波信号在导波管之间发生了干涉。

三、实验结果分析1. 传输实验结果表明,微波信号能够稳定传输,说明微波导波管具有良好的传输特性。

传输实验中,微波信号的强度与发生器功率呈正相关关系,这与微波信号的传输损耗有关。

2. 反射实验结果表明,微波信号在导波管与空气之间发生了反射。

反射实验中,微波信号的强度与发生器功率呈正相关关系,说明反射信号的强度与输入信号的强度相关。

3. 干涉实验结果表明,微波信号在导波管之间发生了干涉。

干涉实验中,微波信号的强度呈现周期性的变化,这与导波管的长度和微波信号的频率有关。

当导波管的长度等于微波信号的波长的整数倍时,干涉现象最为明显。

四、实验总结通过本次微波基本测量实验,我们对微波的传输、反射和干涉等现象有了更深入的了解。

微波测量实验报告

微波测量实验报告

《微波测量实验报告》指导老师:**专业:班级:学号:姓名:实验一微波测试系统的认识与调试一、实验目的1. 了解微波测试系统。

2. 三厘米波导系统的安装与调试。

二、实验原理1. 微波测试系统微波测试系统常用的有同轴和波导两种系统。

同轴系统频带宽,一般用在较低的微波频段(二厘米波段以下);波导系统(常用矩形波导)损耗低、功率容量大,一般用在较高频段(厘米波段直至毫米波段)。

微波测试系统通常由三部分组成,如图 1 - 1 ( a )所示。

图 1 - 1 微波测试系统(1)等效电源部分(即发送端)这部分包括微波信号源,隔离器,功率、频率监视单元。

信号源是微波测试系统的心脏。

测量技术要求具有足够功率电平和一定频率的微波信号,同时要求一定的功率和频率稳定度。

功率和频率监视单元是由定向耦合器取出一小部分微波能量,经过检测指示来观察源的稳定情况,以便及时调整。

为了减小负载对信号源的影响,电路中采用了隔离器。

( 2 )测量装置部分(即测量电路)包括测量线、调配元件、待测元件、辅助器件(如短路器、匹配负载等),以及电磁能量检测器(如晶体检波架、功率计探头等)。

( 3 )指示器部分(即测量接收器)指示器是显示测量信号特性的仪表,如直流电流表、测量放大器、功率计、示波器、数字频率计等。

当对微波信号的功率和频率稳定度要求不太高时,测量系统可简化如图 1 - 1 ( b )所示,微波信号源直接与测量装置连接,其工作频率可由波长计测得。

2. 微波信号源通常,微波信号源有电真空和固态的两种。

3. 测量指示器常用指示器有指示等幅波的直流微安表、光点检流计、微瓦功率计,有指示调制波的测量放大器、选频放大器。

此外,还可用示波器、数字电压表等作指示器。

实验室常用测量放大器和选频放大器作指示器,因为这类仪表灵敏度高,能对微弱信号进行宽带或选频放大,接在测量线、晶体检波器、热敏电阻架及其它测试设备的输出端可进行各类测量。

三、实验内容和步骤了解微波测试系统:1. 观看按图 1 - 1 ( a )装置的微波测试系统。

完整微波基本参数测量实验报告

完整微波基本参数测量实验报告

(完整)微波基本参数测量实验报告微波基本参数测量实验报告【引言】微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,微波的基本性质通常呈现为穿透、反射、吸收三个特性。

微波成为一门技术科学,开始于20世纪30年代。

微波技术的形成以波导管的实际应用为其标志,若干形式的微波电子管(速调管、磁控管、行波管等)的发明,是另一标志。

在第二次世界大战中,微波技术得到飞跃发展。

因战争需要,微波研究的焦点集中在雷达方面,由此而带动了微波元件和器件、高功率微波管、微波电路和微波测量等技术的研究和发展。

至今,微波技术已成为一门无论在理论和技术上都相当成熟的学科,又是不断向纵深发展的学科。

【实验设计】一、实验原理1、微波微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。

微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。

微波作为一种电磁波也具有波粒二象性。

微波的基本性质通常呈现为穿透、反射、吸收三个特性。

对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。

对于水和食物等就会吸收微波而使自身发热,微波炉就是利用这一特点制成的,而对金属类东西,则会反射微波。

2、微波的似声似光性微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多。

使得微波的特点与几何光学相似,即所谓的似光性。

因此使用微波工作,能使电路元件尺寸减小,使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。

由于微波波长与物体(实验室中无线设备)的尺寸有相同的量级,使得微波的特点又与声波相似,即所谓的似声性。

3、波导管波导管是一种空心的、内壁十分光洁的金属导管或内敷金属的管子。

微波测量实验报告

微波测量实验报告

北京邮电大学微波测量实验学院:电子工程学院班号:学号:姓名:班内序号:时间:2015年1月实验一 熟悉微波同轴测量系统一、实验目的1、了解常用微波同轴测量系统的组成,熟悉其操作和特性。

2、熟悉矢量网络分析仪的操作以及测量方法。

二、实验内容1、常用微波同轴测量系统的认识,简要了解其工作原理。

矢量网络分析仪的面板组成以及各部分功能:微波同轴测量系统包括三个主要部分:矢量网络分析仪、同轴线和校准元件或测量元件。

各部分功能如下:1)矢量网络分析仪:对RF 领域的放大器、衰减器、天线、同轴电缆、滤波器、分支分配器、功分器、耦合器、隔离器、环形器等RF 器件进行幅频特性、反射特性和相频特性测量。

2)同轴线:连接矢量网络分析仪和校准元件或测量元件。

3)校准元件:对微波同轴侧量系统进行使用前校准,以尽量减小系统误差。

测量元件:待测量的原件(如天线、滤波器等),可方便地通过同轴线和矢量网络分析仪连起来。

面板组成图如下所示:各部分功能如下: (1)CRT 显示器 显示仪器当前工作状态和测试结果。

(2)BEGIN (开始) 在测量放大器、滤波器、宽带无源器件、电缆等被测时能快速、简便的配置仪器,可引导用户完成初始步骤,根据用户的选择自动配置仪器。

(3)ENTRY (数据输入)数字键、旋轮和上下键,用于数据输入。

(4)SYSTEM SAVERECALL :存储或调用数据。

1 2 3 546 7 9 8 10111213 14(系统功能)HARD COPY:打印或者存储测量曲线、数据。

SYSTEM OPTIONS:系统选项。

(5)PRESET(复位)复位仪器。

(6)CONFIGURE(配置)SCALE:设置垂直方向的分辨率和参考位置等。

DISPLAY:显示设置。

CAL:校准菜单。

MARKER:频标功能键。

FORMAT:数据显示格式。

AVG:平均功能设置和中频带宽设置。

(7)SOURSE(源)FREQ:频率设置。

SWEEP:设置扫描方式、扫描时间。

微波测量技术实训报告

微波测量技术实训报告

一、实训目的本次实训旨在让学生了解微波测量技术的基本原理、测量方法及设备,掌握微波测量技术的实际操作技能,提高学生对微波测量技术的认识和应用能力。

二、实训内容1. 微波测量技术基本原理(1)微波定义:微波是指频率在300MHz至300GHz之间的电磁波。

(2)微波传播特性:微波具有直线传播、反射、折射、散射等特性。

(3)微波测量方法:微波测量方法主要有反射法、传输法、干涉法等。

2. 微波测量设备(1)网络分析仪:用于测量微波网络的S参数、反射系数、驻波比等。

(2)频谱分析仪:用于测量微波信号的频率、功率、调制方式等。

(3)功率计:用于测量微波功率。

(4)示波器:用于观察微波信号的波形、频率、幅度等。

3. 实训项目(1)微波反射系数测量①连接网络分析仪和待测微波网络;②设置网络分析仪的测量频率和带宽;③启动测量,记录反射系数S11;④分析测量结果,判断微波网络的性能。

(2)微波驻波比测量①连接网络分析仪和待测微波网络;②设置网络分析仪的测量频率和带宽;③启动测量,记录驻波比S11;④分析测量结果,判断微波网络的性能。

(3)微波功率测量①连接功率计和待测微波网络;②设置功率计的测量频率和带宽;③启动测量,记录微波功率;④分析测量结果,判断微波网络的性能。

(4)微波信号频谱分析①连接频谱分析仪和待测微波网络;②设置频谱分析仪的测量频率和带宽;③启动测量,观察微波信号的频谱;④分析测量结果,判断微波信号的调制方式、频率成分等。

三、实训结果与分析1. 微波反射系数测量通过测量待测微波网络的反射系数S11,分析微波网络的性能。

根据测量结果,判断微波网络是否存在故障或性能下降。

2. 微波驻波比测量通过测量待测微波网络的驻波比S11,分析微波网络的性能。

根据测量结果,判断微波网络是否存在故障或性能下降。

3. 微波功率测量通过测量待测微波网络的功率,分析微波网络的性能。

根据测量结果,判断微波网络是否存在故障或性能下降。

微波测量实验报告

微波测量实验报告

微波工程基础实验报告实验一微波同轴测量系统的熟悉一、实验目的1、了解常用微波同轴测量系统的组成,熟悉各部分构件的工作原理,熟悉其操作和特性。

2、熟悉矢量网络分析仪的操作以及测量方法。

二、实验内容1、常用微波同轴测量系统的认识,简要了解其工作原理。

微波测量系统常用的有同轴和波导两种系统。

同轴系统频带宽,一般用在较低的微波频段。

波导系统损耗低,功率大,一般用在较高频段。

一个完整的微波测量系统通常有信号源,测量装置和指示器三部分组成。

(1)微波信号源部份:它包括微波信号发生器,隔离器和功率、频率监视单元,信号发生器提供测量所需的微波信号,它具有一定频率和足够功率。

功率、频率监视单元是由定向耦合器取出一部分微波能量,经过检测指示来观察信号的稳定情况,以便及时调整,为了减少负载对信号源的影响,电路中采用了隔离器。

(2)测量装置(即测量电路):包括测量线,调配元件,待测元件和辅助元件(如短路器,匹配负载),以及电磁能量检测器(如晶体检波器,功率计探头等)。

(3)指示部分(即测量接收器):指示器是显示测量信号与特性的仪表,如直流电流表,测量放大器,功率计,示波器,数字功率计等。

在本学期的实验中我们使用的是AV36580A矢量网络分析仪(Vector Network Analyzer)作为测量仪器。

2、掌握矢量网络分析仪的操作以及测量方法。

a)矢量网络分析仪的面板组成以及各部分功能①提供入射信号的信号源:信号源为激励被测器件,信号源必须在整个感兴趣的频率范围内提供入射波。

被测器件通过传输和反射对激励波做出响应。

被测器件的频率响应通过信号源扫频确定。

测量结果受到多种信号源参数的影响,包括频率范围、功率范围、频率稳定度和信号纯度等。

在矢量网络分析仪中广泛采用合成扫频信号源。

②信号分离器分离入射、反射和传输:信号分离网络分析仪的下一项任务是分离入射、反射和传输信号,从而测量它们各自的幅度和相位。

矢量网络分析仪均采用定向耦合器方法分离信号。

微波测量实验报告

微波测量实验报告

微波测量实验报告姓名:学号:老师:专业:中国民航大学电子信息工程学院实验二 测量线调整与晶体检波器校准一、实验原理1.根据波导波长和工作波长之间的关系式:21p c λλλλ=⎛⎫- ⎪⎝⎭可以推导出工作波长21pp c λλλλ=⎛⎫+ ⎪⎝⎭。

式中2c a λ=,a —波导宽边尺寸,本系统矩形波导型号为BJ-100 (16.1086.22⨯=⨯b a mm2),。

2.指示电表读数所谓交叉读数法是指在波节点附近两旁找出电表指示数相等的两个对应位置d 11,d 12 ,d 21 ,d 22 ,然后分别取其平均值作为波节点置0111121()2d d d =+ 0221221()2d d d =+02012d d p -=λ交叉读数法测量驻波节点位置二、实验数据1.测量线终端换接短路板的输出端的测量数据,计算工作波长,将数据填入表中。

单位:mm11d12dd 01 21d 22dd 02 p λ工作波长2.将精密可调短路器接在测量线的输出端时的测量数据,计算工作波长 ,将数据填入表。

单位:mm11d12dd 01 21d 22dd 02 p λ工作波长实验三 电压驻波比的测量一、实验原理1.直接法电压驻波比(简称驻波比)是传输线中电场最大值与最小值之比,表示为::min max E E=ρ。

如果驻波腹点和节点处指示电表读数分别为I max和I min ,晶体二极管为平方律检波,则:min max /I I =ρ。

为了提高测量精度,可移动探针测出几个波腹和波节点的数据,然后取其平均值,则1.2 等指示度法min minI kI k 最小点读数测量点读数=当探头为晶体平方律检波,即当k=2时,这种方法也称为“二倍最小值法”或“三分贝法”。

⎪⎪⎭⎫ ⎝⎛+=g W λπρ2sin11当ρ较大时(ρ≥10),由于W 很小,可简化为Wgπλρ≈二、实验数据2.1分别测定驻波腹点和节点的幅值I max 和I min 记录数据并计算ρ.指示计读数1 234ρI max I min2.2等指示度法测驻波比。

微波基本参数测量实验报告

微波基本参数测量实验报告

(实验报告)微波基本参量测量【摘要】微波技术是一门独特的现代科学技术,我们应掌握它的基本知识和测量的方法。

对微波测试系统的工作原理的分析研究与基本参量的测量,能使我们掌握微波的基本知识,了解其传播的特点,并且我们还能学会对功率、驻波比和频率等量的测量方法。

另外,在实验过程中我们还能熟悉功率计等实验器材的工作原理和物理学中对有关物理量的测量的思想方法。

【关键词】微波、功率、驻波比、频率、测量【引言】微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波和亚毫米波的统称。

微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。

微波作为一种电磁波也具有波粒二象性。

微波的基本性质通常呈现为穿透、反射、吸收三个特性。

对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。

对于水和食物等就会吸收微波而使自身发热。

而对金属类东西,则会反射微波。

微波的特点有以下几点:第一.微波波长很短。

具有直线传播的性质,能在微波波段制成方向性极强的无线系统,也可以接收到地面和宇宙空间各种物体发射回来的微弱回波,从而确定物体的方向和距离。

这使微波技术广泛的应用于雷达中。

第二.微波的频率很高 ,电磁振荡周期很短。

比电子管中电子在电极经历的时间还要小。

普通电子管不能用作微波振荡器、放大器和检波器,而必须用原理上完全不同的微波电子管来代替。

第三.许多原子和分子发射和吸收的电磁波的波长正好处在微波波内。

用这特点研究分子和原子的结构,发展了微波波谱学和量子无线电物理学等尖端学科, 还研制了低噪音的量子放大器和极为准确的分子钟与原子钟。

第四.微波可以畅通无阻的穿过地球上空的电离层。

微波波段为宇宙通讯、导航、定位及射电天文学的研究和发展提供了广阔的前景。

【正文】本实验中,我们首先要引入两个基本概念:反射系数与驻波比。

反射系数的定义:波导出某横截面出的电场反射波与入射波的复数比。

微波实验报告频率测量

微波实验报告频率测量

一、实验目的1. 理解微波的基本特性及其在实验中的应用。

2. 掌握微波频率测量的原理和方法。

3. 通过实验,验证微波频率测量方法的有效性。

4. 提高对微波测量仪器的操作能力。

二、实验原理微波是一种高频电磁波,其频率范围在300MHz到300GHz之间。

微波的频率测量对于雷达、通信、电子对抗等领域至关重要。

微波频率的测量通常采用以下几种方法:1. 波长-频率关系法:根据微波的波长和光速,通过公式 \( f =\frac{c}{\lambda} \) 计算频率,其中 \( f \) 为频率,\( c \) 为光速,\( \lambda \) 为波长。

2. 示波器测量法:利用示波器观察微波信号的周期,通过公式 \( f =\frac{1}{T} \) 计算频率,其中 \( T \) 为周期。

3. 频谱分析仪测量法:利用频谱分析仪直接测量微波信号的频率。

三、实验仪器与设备1. 微波信号发生器2. 波导3. 检波器4. 示波器5. 频谱分析仪6. 波长计7. 量角器8. 计时器四、实验步骤1. 波长-频率关系法:- 将微波信号发生器输出信号通过波导传输。

- 利用波长计测量微波信号在波导中的波长。

- 根据公式 \( f = \frac{c}{\lambda} \) 计算微波频率。

2. 示波器测量法:- 将微波信号发生器输出信号通过波导传输。

- 将微波信号连接到示波器上。

- 观察示波器上的波形,测量信号周期。

- 根据公式 \( f = \frac{1}{T} \) 计算微波频率。

3. 频谱分析仪测量法:- 将微波信号发生器输出信号通过波导传输。

- 将微波信号连接到频谱分析仪上。

- 观察频谱分析仪上的频谱图,找到微波信号的频率峰。

- 读取频率值。

五、实验结果与分析1. 波长-频率关系法:测量得到微波信号的波长为 \( \lambda = 10 \) cm,根据公式 \( f = \frac{c}{\lambda} \),计算得到微波频率为 \( f = 3 \times10^8 \) Hz。

微波测量专题实验报告

微波测量专题实验报告

一、实验目的1. 理解微波测量的基本原理和方法。

2. 掌握微波测量仪器的基本操作。

3. 学习微波传输线、微波元件和微波系统的测量技术。

4. 分析实验数据,验证微波测量理论。

二、实验原理微波测量是指对微波频率、功率、相位、阻抗等参数的测量。

微波测量通常采用矢量网络分析仪(VNA)进行,VNA可以测量微波系统的S参数,通过S参数可以计算出微波系统的各种参数。

三、实验设备1. 矢量网络分析仪(VNA)2. 微波信号源3. 微波功率计4. 微波传输线5. 微波元件(如衰减器、定向耦合器、滤波器等)6. 微波测试平台四、实验内容1. 微波传输线测量- 测量目标:测量微波传输线的特性阻抗、衰减和反射系数。

- 实验步骤:1. 将微波传输线连接到VNA。

2. 调整信号源频率,使用VNA测量传输线的S11和S21参数。

3. 根据S参数计算传输线的特性阻抗、衰减和反射系数。

4. 分析实验数据,验证微波传输线理论。

2. 微波元件测量- 测量目标:测量微波元件的插入损耗、隔离度和方向性。

- 实验步骤:1. 将微波元件连接到VNA。

2. 调整信号源频率,使用VNA测量元件的S21、S12、S31和S41参数。

3. 根据S参数计算元件的插入损耗、隔离度和方向性。

4. 分析实验数据,验证微波元件理论。

3. 微波系统测量- 测量目标:测量微波系统的增益、带宽和线性度。

- 实验步骤:1. 将微波系统连接到VNA。

2. 调整信号源频率,使用VNA测量系统的S21参数。

3. 根据S参数计算系统的增益、带宽和线性度。

4. 分析实验数据,验证微波系统理论。

五、实验结果与分析1. 微波传输线测量结果- 实验测得微波传输线的特性阻抗为50Ω,与理论值相符。

- 实验测得微波传输线的衰减为0.1dB/m,与理论值相符。

- 实验测得微波传输线的反射系数为0.02,与理论值相符。

2. 微波元件测量结果- 实验测得微波衰减器的插入损耗为1dB,与理论值相符。

微波的测量实验报告

微波的测量实验报告

微波的测量实验报告微波的测量实验报告引言:微波技术是一门应用广泛的电磁波技术,它在通信、雷达、医疗等领域发挥着重要作用。

本实验旨在通过测量微波信号的传输特性和功率传输特性,探索微波的性质和应用。

实验一:微波信号的传输特性在实验一中,我们使用了一台微波信号发生器、一根微波传输线和一台微波功率计。

首先,我们将微波信号发生器的输出端连接到微波传输线的输入端,然后将微波传输线的输出端连接到微波功率计。

接下来,我们调节微波信号发生器的频率,并通过微波功率计测量微波信号的功率。

实验结果表明,微波信号的传输特性与频率密切相关。

当微波信号的频率增加时,传输线上的功率损耗也会增加。

这是因为微波信号在传输过程中会受到传输线的阻抗匹配、衰减和反射等因素的影响。

因此,在实际应用中,我们需要根据传输线的特性和工作频率来选择合适的传输线,以确保信号传输的稳定和可靠。

实验二:微波功率传输特性在实验二中,我们使用了一台微波信号发生器、一根微波传输线、一台微波功率计和一个负载。

首先,我们将微波信号发生器的输出端连接到微波传输线的输入端,然后将微波传输线的输出端连接到负载。

接下来,我们调节微波信号发生器的功率,并通过微波功率计测量微波信号在传输线和负载上的功率。

实验结果表明,微波功率的传输特性与功率和负载的阻抗匹配程度密切相关。

当功率和负载的阻抗匹配较好时,微波功率能够有效地传输到负载上,并且功率损耗较小。

然而,当功率和负载的阻抗不匹配时,微波功率会发生反射和衰减,导致功率损耗增加。

因此,在微波电路设计中,我们需要注意功率和负载的阻抗匹配问题,以提高功率传输效率。

实验三:微波的应用微波技术在通信、雷达、医疗等领域有着广泛的应用。

在通信领域,微波信号可以传输大量的数据,并且具有较高的传输速率和稳定性。

在雷达领域,微波信号可以用于探测和测量目标物体的距离、速度和方位。

在医疗领域,微波信号可以用于医学成像和治疗,如MRI和微波消融术等。

微波的测量 实验报告

微波的测量 实验报告

微波的测量实验报告微波的测量实验报告引言:微波技术在现代通信、雷达、无线电频谱分析等领域中起着重要的作用。

测量微波信号的参数是了解和分析微波系统性能的基础。

本实验旨在通过一系列测量,探究微波的特性和性能,并分析测量结果的准确性和可靠性。

实验一:微波信号的频率测量在本实验中,我们使用频率计来测量微波信号的频率。

首先,将微波信号源与频率计连接,并设置频率计的测量范围。

然后,调节微波信号源的频率,记录频率计的测量结果。

通过多次测量,我们可以得到微波信号的频率范围和频率分布情况。

实验结果显示,微波信号的频率在特定范围内波动较小,表明微波信号源的频率稳定性较好。

同时,我们还发现微波信号的频率分布呈正态分布,符合统计规律。

这些结果对于微波系统的设计和优化具有重要的参考价值。

实验二:微波信号的功率测量微波信号的功率是衡量其强度和传输性能的重要指标。

在本实验中,我们使用功率计来测量微波信号的功率。

首先,将微波信号源与功率计连接,并设置功率计的测量范围。

然后,调节微波信号源的输出功率,记录功率计的测量结果。

通过多次测量,我们可以得到微波信号的功率范围和功率分布情况。

实验结果显示,微波信号的功率与微波信号源的输出功率呈线性关系,即功率随输出功率的增加而增加。

同时,我们还发现微波信号的功率分布呈正态分布,表明微波信号的功率稳定性较好。

这些结果对于微波系统的功率控制和传输性能的优化具有重要的参考价值。

实验三:微波信号的衰减测量在微波传输过程中,由于信号传播介质和传输线的损耗,信号的强度会逐渐减弱。

在本实验中,我们使用衰减器来模拟微波信号的衰减情况,并使用功率计测量衰减后的微波信号的功率。

通过调节衰减器的衰减量,我们可以探究微波信号的衰减规律和衰减程度。

实验结果显示,微波信号的衰减与衰减器的衰减量呈线性关系,即衰减随衰减量的增加而增加。

同时,我们还发现微波信号的衰减程度与传输介质和传输线的特性有关,不同介质和线路的衰减程度不同。

微波基本参数的测量实验报告

微波基本参数的测量实验报告

微波基本参数的测量【目的要求】1.学习微波的基本知识,了解波导测量系统,熟悉基本微波元件的作用;2.了解微波在波导中传播的特点,掌握微波基本测量技术;3.掌握驻波测量线的正确使用方法;4.掌握电压驻波系数的测量原理和方法。

【仪器用具】微波参数测试系统,包括:三厘米固态信号源,三厘米驻波测量线,选频放大器,精密衰减器,隔离器,谐振式频率计(波长表),匹配负载,晶体检波器,单螺调配器等。

【原理】微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波的不同。

从图1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者。

与无线电波相比,微波有下述几个主要特点图1 电磁波的分类1.波长短(1m —1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用。

2.频率高:微波的电磁振荡周期(10-9一10-12s)很短,已经和电子管中电子在电极间的飞越时间(约10-9s)可以比拟,甚至还小,因此普通电子管不能再用作微波器件(振荡器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替。

另外,微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级,在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻、电容、电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替。

3.微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量。

实验一微波测量基础知识实验报告

实验一微波测量基础知识实验报告

实验一微波测量基础知识实验报告一、实验目的1.掌握微波测量的基本知识和实验方法;2.学习使用微波测量仪器进行实验测量;3.理解微波信号的传输、衰减和反射特性。

二、实验仪器1.微波发射器2.微波接收器3.微波衰减器4.微波定向耦合器5.微波功率表6.射频信号发生器7.微波频率计三、实验原理1.微波信号的产生:通过射频信号发生器产生微波信号。

2.微波衰减实验:通过微波衰减器来调节微波信号的功率,测量不同衰减设置下微波功率表的读数,从而了解衰减器的功率测量特性。

3.微波定向耦合器实验:通过微波定向耦合器,将微波信号分为一定比例的前向和反射波,测量两者的功率比值,了解其分配特性。

4.微波传输和反射实验:通过改变接收器和发射器之间的距离,测量不同距离下接收信号的功率,了解微波信号的传输和反射特性。

四、实验步骤1.将实验仪器连接好,并进行校准和调试。

2.使用射频信号发生器产生微波信号,设置频率和功率。

3.通过微波衰减器调节微波信号的功率,测量不同衰减设置下微波功率表的读数。

4.使用微波定向耦合器将微波信号分为前向和反射波,并分别测量两者的功率。

5.改变接收器和发射器之间的距离,测量不同距离下接收信号的功率。

五、数据记录与分析1.微波衰减实验结果记录如下表所示:衰减设置(dB),功率表示数(dBm)------------,--------------0,-1010,-2020,-3030,-40通过绘制功率-衰减设置的曲线图,可以得到微波衰减器的功率传输特性。

2.微波定向耦合器实验结果记录如下表所示:前向功率(dBm),反射功率(dBm)-------------,--------------10,-20-5,-25-8,-22-11,-19通过计算前向功率与反射功率的比值,可以得到微波定向耦合器的功率分配特性。

3.微波传输和反射实验结果记录如下表所示:距离(cm) ,接收功率(dBm)---------,-------------10,-2020,-3030,-4040,-50通过绘制功率-距离的曲线图,可以了解微波信号的传输和反射特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选中该功能选项设置当前测量参数为增益。 衰 减菜单
选中该功能选项设置当前测量参数为衰减。 群延时菜单 选中该功能选项设置当前测量参数为群延时。 返 回菜单
返回上一层菜单。 (方向图)菜单和(阻抗测试)菜单均为选件菜单在此不做介绍。 (10)『频标』键 按下该键后在屏幕的菜单区将出现一级选择菜单, 选中其中不同的功能选项, 可以激活、关闭不同的频标,它有如下功能选项,介绍如下: 频标 1 功能选项 该功能选项是一个开关项,每次选中后在“开”和“关”之间切换。当频标 功能的开关状态为“开”时,频标 1 将会出现在测试曲线上面,通过快速旋轮可 以调整频标的频率, 也可以在频标激活的情况下直接键入频率值,设置其到用户
中心频率软键 中心频率键的功能是设置网络仪输出信号在屏幕中心的频率值。 当输入的中 心频率值大于网络仪的最大频率值时, 网络仪自动将中心频率设置为最大频率值。 并同时设置扫频带宽为 0;当输入的中心频率值小于网络仪的最小频率值时,网 络仪自动将中心频率设置为最小频率值,并同时设置扫频带宽为 0。 扫频宽度软键 扫频宽度键的功能是设置网络仪的扫频带宽, 设置范围从 50KHz 到 300MHz。 并可以任意设置, 没有任何限制。需要说明的是当中心频率设置为最大值或最小 值时,扫频带宽自动设置为 0Hz。当扫频带宽的设置值超出网络仪频率范围的下 限时, 仪器将自动将中心频率到最小频率的范围向高端扩大一倍作为当前的扫频 带宽,而不是所输入的扫频带宽值。反之,当扫频带宽的设置值超出网络仪频率 范围的上限时, 仪器将自动将中心频率到最大频率的范围向低端扩大一倍作为当 前的扫频带宽,而不是所输入的扫频带宽值。 点频软键 点频软键用来设置单一输出频率,不进行频率扫描。 输出幅度软键 该软键用来设置源输出信号电平的大小, 单位为 dBm, 范围从-73dBm 到+7dBm。 缺省输出为 0dBm。数字键可用来对输出信号电平进行设定,设定时最后需按下 确认键方可生效。 当所设定的输出信号电平大于仪器的最大输出电平时仪器会自 动将输出信号电平设置为最大输出电平, 而当所设定的输出信号电平小于仪器的 最小输出电平时仪器会自动将输出电平设置为最小输出电平。 (9)『测量』键 按下该键后在屏幕的菜单区将出现一级选择菜单, 根据其中的功能选项可以 设置不同的测试方式。它有五个功能选项,介绍如下: 反射传输(A/B)功能选项 选中该功能选项设置当前逻辑通道为传输测量通道和反射测量通道交互进 行(需要反射电桥进行测量)。 反射测量(A/R)功能选项 选中该功能选项设置当前逻辑通道为反射测量通道。 此时屏幕顶部显示当前 的测量通道为“REFL(A/R)”。 (需要反射电桥进行测量)进入下一级子菜单: 反射系数菜单
微波同轴测量系统包括三个主要部分:矢量网络分析仪、同轴线和校准元件 或测量元件。各部分功能如下: 1)矢量网络分析仪:对 RF 领域的放大器、衰减器、天线、同轴电缆、滤波器、 分支分配器、功分器、耦合器、隔离器、环形器等 RF 器件进行幅频特性、反射 特性和相频特性测量。 2)同轴线:连接矢量网络分析仪和校准元件或测量元件。
选中该功能选项后, 将显示当前频标点的频率值和测量值。 在极坐标格式下, 显示矢量的幅值和幅角; 而在史密斯阻抗圆图格式下,显示归一化的电阻值和电 抗值(以特性阻抗 50Ω 为归一化阻抗值),例如:显示测量值为:0.6 和-2,则 实际阻抗值为:(0.6-2j)*50Ω = 30-100jΩ 。表明实际电阻值为 30Ω ,实际电 抗值为-100Ω 。 返回功能选项:返回上一级菜单。 需要说明的是:在双通道测量时,圆图功能不能使用。 (13)系统菜单 按下系统设置键后在屏幕的菜单区将出现一级选择菜单,分别介绍如下: 复位功能选项 选中该功能选项后,仪器将复位,复位后仪器将恢复到系统预设状态。 校正功能选项 选中该功能选项后,将根据不同的测试方式,产生不同的菜单,进行不同的校正 过程。在传输测试时,选中校正,将出现以下菜单项: 出厂校正:该菜单为仪器检验人员使用,需要密码进入,用户不得进入。 传输直通:选中该功能选项,系统将进行一次传输直通校正。并且当校正完成 后,此时,屏幕左上角的状态将显示“CA”,表明已经完成校正,否则,显示标 记“NC”,表明用户还未作校正。 而在反射测试时,选中校正,则出现如下菜单项:(反射测试需要外加电桥) 出厂校正:该菜单为仪器检验人员使用,需要密码进入,用户不得进入。 自校正:选中该功能选项,进入下一级子菜单,系统将进入反射校正过程,需要 分三步进行: 反射开路:将电桥的 ZX 端开路,选中该功能选项,系统将作一次开路校正; 反射负载:在电桥的 ZX 端接入匹配负载 50Ω ,选中该功能选项,系统将作一次 负载校正; 执 行:在完成了以上校正过程以后,须按下该功能选项,系统才完成全面的反 射校正过程。 并且当校正全部正确完成后, 此时, 屏幕左上角的状态将显示 “CA” , 表明已经完成校正,否则,显示标记“NC”,表明用户还未作校正。 平均功能选项 选中该功能选项后,将出现以下子菜单: 自动平均:选中该功能选项,系统将按照默认方式进行数据平均; 扫描平均:该功能选项是一个开关项,每次选中后在“开”和“关”之间切换。 当功能的开关状态为 “开” 时, 将打开扫描平均功能; 而当功能的开关状态为 “关” 时,为关闭该功能。
图 2-1 前面板
(1)电源开关按钮 ( Power ) 仪器的电源开关,插好后面板电源线,连接到市电电源,按下电源开关,液晶屏 会点亮,表明仪器内部电源已接通。 (2)液晶显示器 显示网络测试特性的波形和参数。 (3)选配的辅助 DC 输出插座(中正外负,选件)。 (4)激励源输出端口 S ( RF Output ) 此端口既可以根据设置的频段输出连续的扫频信号, 也可以输出某一固定频率的 点频信号,输出信号的最大幅度为+7dBm,端口的接头类型为 BNC 型,默认输出 阻抗为 50Ω 。 (5)测试端口 A( Input ) 测试输入端口用作测试的输入端,接头类型为 BNC 型。 (6)测试端口 B(Input)
北京邮电大学 微波测量实验报告
姓名: 学号: 班级: 院系:
《微波射频测量技术基础》课程实验
实验一微波同轴测量系统的熟悉
一、实验目的 1、了解常用微波同轴测量系统的组成,熟悉各部分构件的工作原理,熟悉其操 作和特性。 2、熟悉矢量网络分析仪的操作以及测量方法。 二、实验内容 1、常用微波同轴测量系统的认识,简要了解其工作原理。 微波同轴测量系统实物图如图所示:
பைடு நூலகம்
测试输入端口用作测试的输入端,接头类型为 BNC 型。 前面板按键及功能菜单:
(7)数据操作区 数字输入键: 这些键用于输入相应的数值、数字。在数据输入状态下,按这些键即可顺序 输入数字。 退格键: 在用数字键输入任何数值、 数字时, 如果上一步按键操作输入的数字有误, 按此键后即可将输入光标退回原位置并将上一步输入的数字删除。 确认键: 确认键的作用是对用数字键输入的数字进行最终确认。 按下确认键表示数字 输入完成。 但有些数字输入不能靠确认键确认,需要按下液晶屏显示区域相应的 单位键方为有效,如频率的输入。 旋钮: 用旋钮可以按照一定步距连续改变频标位置等需要改变的测量状态数值。 连 续改变的大小取决于测量范围的大小。旋钮的转动速度不影响量值的改变速率。 (8)『频率』键 起始频率软键 起始频率键的功能是设置网络仪输出信号的起始频率。 当设置的起始频率小 于网络仪最小起始频率值时,网络仪自动设置为最小起始频率值。 终止频率软键 终止频率键的功能是设置网络仪输出信号的终止频率。 当设置的终止频率大 于网络仪最大终止频率值时,网络仪自动设置为最大终止频率值。
选中该功能选项设置当前测量参数为反射系数。 回 损菜单
选中该功能选项设置当前测量参数为回波损耗。 驻 波菜单
选中该功能选项设置当前测量参数为驻波比。 返 回菜单
返回上一层菜单。 传输测量(B/R)功能选项 选中该功能选项设置当前逻辑通道为传输测量通道, 此时屏幕顶部显示当前 的测量通道为“TRAN(B/R)”。 进入下一级子菜单: 传输系数菜单 选中该功能选项设置当前测量参数为传输系数。 增 益菜单
该功能选项用于设置相位曲线的每格值, 下一级子菜单将显示有 90 , 45 , 30 , 5。 参考功能选项 选中该功能选项后,屏幕的菜单区将出现三级子菜单:参考线 1 、参考线 2 、幅 度参考、相位参考、返回,分别介绍如下: 参考线 1 功能选项 选中该功能选项后, 菜单区域显示当前的幅度曲线的参考位置值,并可通过数字 输入修改。 参考线 2 功能选项 选中该功能选项后,菜单区域显示当前的相位曲线(在谐振测试时无效)的参考 位置值,并可通过数字输入修改。本功能选项在相位曲线被关闭时失效。 幅度参考功能选项 选中该功能选项后,菜单区域显示当前的幅度参考值,可通过数字输入修改。 相位参考功能选项 选中该功能选项后,菜单区域显示当前的相位参考值(在谐振测试时无效),并 可通过数字输入修改。本功能选项在相位曲线被关闭时失效。 返回功能选项 选中该功能选项后,将返回到上一级菜单。 值/格功能选项 选中该功能选项后,菜单区域显示当前的幅度值/格,并可通过数字输入来修改 显示区纵向每格所代表的单位数值。 对数功能选项 选中该功能选项后,屏幕的菜单区将出现三级子菜单: 10dB 、 5dB 、 2dB 、 1dB 、 返回,选中对应的软键,将改变显示区幅度曲线纵向每格所代表的 dB 值。需要 说明的是: 本功能选项只有在幅度参数曲线为对数 (dB 为单位) 格式时才有效。 圆图功能选项 选中该功能选项后,显示格式为极坐标图或史密斯圆图,进入下一级子菜单: 在极坐标格式下:有值/格、自动、频标和返回四个功能选项;而在史密斯圆图 格式下:有最大圆值、自动、频标和返回四个功能选项。 其中, 值/格和最大圆值的功能均为调节圆的显示比例, 系统默认值分别为: 0.20 和 1.00,可用数字键设置调节。 自动功能选项 选中该功能选项后,显示比例将回到系统默认值。 频标功能选项
3)校准元件:对微波同轴侧量系统进行使用前校准,以尽量减小系统误差。 测量元件:待测量的原件(如天线、滤波器等),可方便地通过同轴线和矢量网 络分析仪连起来。 2、掌握矢量网络分析仪的操作以及测量方法。 1)矢量网络分析仪的面板组成以及各部分功能 a) 矢量网络分析仪的面板组成以及各部分功能 前面板说明:
相关文档
最新文档