纳米测量技术与表征

合集下载

纳米材料制备的实验步骤与测量技术

纳米材料制备的实验步骤与测量技术

纳米材料制备的实验步骤与测量技术概述纳米材料是具有特殊尺寸和结构的材料,其独特的物理、化学和生物学特性使其在各个领域具有广泛的应用潜力。

为了制备各种纳米材料,科学家们不断开发和改进制备方法,并结合精确的测量技术来研究和表征这些材料。

本文将介绍纳米材料制备的常见实验步骤和测量技术。

纳米材料制备实验步骤1. 原料选择和预处理:在制备纳米材料之前,首先需要选择合适的原料。

这些原料可能是化学品、金属、半导体或碳纳米管等。

然后需要进行预处理步骤,例如清洗、研磨或筛选等,以确保原料的纯度和均匀性。

2. 制备纳米材料的方法选择:纳米材料的制备方法多种多样,常用的包括溶剂和热处理、气相沉积、物理气相沉积和化学气相沉积、溶胶-凝胶法、电化学沉积等。

根据所需的特定纳米材料和应用,选择合适的制备方法非常重要。

3. 材料制备实验:根据所选的制备方法,进行实际的纳米材料制备。

例如,溶液法制备纳米颗粒,可以通过溶剂热法、溶液凝胶法、溶胶-凝胶法等方法;气相沉积法制备纳米薄膜,可以通过热蒸发、物理气相沉积和化学气相沉积等方法进行。

4. 后处理与纯化:在制备完纳米材料后,通常需要进行后处理步骤来改善其性能。

这可以包括热处理、化学处理、表面修饰等,以获得所需的结构、形貌和性能。

之后,对纳米材料进行纯化,以去除其他杂质和未反应的原料。

纳米材料测量技术1. 原位测量技术:纳米材料制备过程中,原位测量技术可以提供对材料在不同条件下的动态性能变化的实时监测。

例如,原位透射电子显微镜(TEM)可以观察纳米颗粒的形态和尺寸变化;原位X射线衍射(XRD)可用于跟踪纳米材料的相变过程。

2. 扫描电子显微镜(SEM):SEM是一种常用的表征纳米材料形貌和表面形貌的技术。

通过扫描电子束和样品表面的相互作用,可以获得高分辨率的二维和三维形貌图像。

3. 透射电子显微镜(TEM):TEM是观察纳米材料最常用的方法之一。

透射电子束通过纳米材料的薄片,形成投射到荧光屏上的高分辨率图像。

纳米材料的表征技术

纳米材料的表征技术

纳米材料的表征技术纳米材料是指尺寸在1-100纳米范围内的物质,具有独特的物理、化学和生物学特性。

由于其特殊的性质,纳米材料在许多领域得到了广泛应用,如电子、医药、环保等。

然而,纳米材料的表征技术也成为了研究和应用中的重要问题。

本文将介绍几种常用的纳米材料表征技术。

1. 扫描电子显微镜(SEM)SEM是一种基于电子束与样品相互作用原理的表征技术。

SEM能够通过高能电子束扫描样品表面,得到高清晰度的表面形貌和微观结构信息。

这种技术在纳米材料表征中应用广泛,可以用于纳米材料形貌的观察和尺寸的测量等。

2. 透射电子显微镜(TEM)TEM是另一种基于电子束与样品相互作用原理的表征技术。

TEM能够通过高能电子束透射样品,得到高分辨率的内部结构信息。

在纳米材料表征中,TEM可以用于纳米结构和晶体结构的观察和分析等。

3. X射线衍射(XRD)XRD是一种基于X射线与样品相互作用原理的表征技术。

XRD可以通过对样品中晶体结构的衍射图案进行分析,得到样品的晶体结构信息。

在纳米材料表征中,XRD可以用于纳米晶体的尺寸、晶体结构和晶体缺陷等性质的研究。

4. 热重分析(TGA)TGA是一种基于样品质量随温度变化的表征技术。

通过对样品在不同温度下的质量变化情况进行分析,可以得到样品的热稳定性等信息。

在纳米材料表征中,TGA可以用于纳米材料的热稳定性和热分解过程等性质的研究。

综上所述,纳米材料的表征技术是纳米材料研究和应用中的重要问题。

扫描电子显微镜、透射电子显微镜、X射线衍射和热重分析是常用的纳米材料表征技术,可以用于纳米材料形貌、结构、尺寸、晶体结构、热稳定性等性质的研究。

纳米材料的表征方法

纳米材料的表征方法

纳米材料的表征方法随着科技的快速发展,纳米材料逐渐成为各个领域的研究热点。

纳米材料的特殊性质和应用潜力使得其表征方法变得至关重要。

纳米材料的表征涉及到其形貌、尺寸、结构、成分以及物理和化学特性等方面的分析。

本文将介绍几种常用的纳米材料表征方法。

1. 扫描电子显微镜(SEM)SEM是一种基于电子束与材料相互作用的表征技术。

通过SEM可以获得纳米材料的形貌和表面特征。

它可以提供高分辨率的图像,从而使我们能够观察到纳米级别的细节。

同时,SEM还可以通过能谱分析技术(EDX)获得纳米材料的元素成分信息。

2. 透射电子显微镜(TEM)TEM是一种利用电子束通过纳米材料薄片进行投射和散射的方法来观察样品的结构和形貌的技术。

相比于SEM,TEM能够提供更高的分辨率,能够观察到更细微的细节。

利用TEM还可以确定纳米材料的晶体结构、晶格参数和晶面取向等信息。

3. X射线衍射(XRD)XRD是一种利用X射线与晶体相互作用的分析技术,对于纳米材料的晶体结构和成分分析十分重要。

通过测量样品散射的X射线的特征衍射图案,可以推断出纳米材料的晶体结构、晶格常数和相对晶体的定向度。

4. 傅里叶变换红外光谱(FTIR)FTIR是一种用来分析纳米材料的化学组成和结构的技术。

它基于红外辐射与材料吸收光谱的原理,通过测量纳米材料吸收不同波长的红外光线的强度变化,从而得到样品的化学信息。

利用FTIR还可以检测纳米材料中的官能团和键的类型。

5. 激光粒度仪激光粒度仪是一种常用的用于测量纳米材料粒径分布的仪器。

它通过测量光散射的强度来确定样品中颗粒的尺寸分布。

激光粒度仪不仅可以提供纳米材料的平均粒径,还可以分析其尺寸分布的均匀性,从而对纳米材料的制备工艺进行优化。

除了以上介绍的几种常用的纳米材料表征方法,还有许多其他的技术可供选择,如原子力显微镜(AFM)、拉曼光谱、热重分析(TGA)等。

选择适合的表征方法需要根据具体的研究目的和所要分析的属性来确定。

物理实验技术中的纳米科学测量方法与技巧

物理实验技术中的纳米科学测量方法与技巧

物理实验技术中的纳米科学测量方法与技巧随着纳米科学的快速发展,人们对于纳米尺度下物质特性的研究需求不断增加。

纳米材料在各个领域都有着广泛的应用,例如磁性材料、光电材料以及生物医学领域等。

然而,由于纳米材料的特殊性质和尺寸效应,传统的物理实验技术已经无法满足对纳米尺度下精确测量的要求。

因此,研究人员迫切需要发展出一些适用于纳米科学的测量方法与技巧。

首先,对于纳米尺度的结构表征,扫描探针显微镜技术是一种常用的工具。

其中,原子力显微镜(AFM)和扫描电子显微镜(SEM)是两种主流的纳米尺度测量方法。

AFM通过探测器探测样品表面的微小力变化来测量样品的表面形貌,具有高分辨率、高灵敏度和无需特殊处理样品的优点。

而SEM则通过电子束扫描样品表面并测量散射电子的能量和角度分布来获取表面形貌信息。

这两种技术的结合可以提供更为全面的纳米尺度下材料表面形貌的测量结果。

其次,对于纳米颗粒的尺寸测量,动态光散射技术是一种常用的方法。

该技术基于光在颗粒表面散射的原理,通过测量散射光的强度和角度分布来获得颗粒的尺寸信息。

此外,透射电子显微镜(TEM)也是一种常用的纳米尺度下颗粒尺寸测量方法。

TEM利用电子束的穿透性质,通过测量经过样品的电子的衍射或吸收情况,可以得到纳米颗粒的形状和尺寸信息。

这些测量方法对于研究纳米颗粒的生长机制、分布规律以及应用性能具有重要意义。

此外,对于纳米材料的物理性质测量,磁性测量和电学测量技术应用广泛。

例如,超导量子干涉仪(SQUID)是一种常用的磁性测量技术,可以测量纳米尺度下材料的磁性性质,如磁化曲线和磁滞回线。

电学测量技术则包括电阻测量、电容测量和电导测量等。

这些技术可以用来研究纳米材料的电子输运性质、能带结构以及载流子的动力学行为。

除了上述主要的纳米科学测量方法与技巧,还有一些其他辅助手段可以提高测量的精确性和可靠性。

例如,温度控制和湿度控制能够减小环境因素对测量结果的影响。

同时,细致的样品制备和处理也是获得准确测量结果的关键。

物理实验技术中的纳米材料制备与表征方法

物理实验技术中的纳米材料制备与表征方法

物理实验技术中的纳米材料制备与表征方法纳米材料,作为当今科技领域的热门研究方向之一,具有独特的物理、化学和生物学特性,广泛应用于材料科学、能源领域、生物医学以及纳米电子等领域。

而在纳米材料的研究中,制备与表征方法则是关键的环节之一。

一、纳米材料制备方法1. 气相沉积法:气相沉积法是制备纳米材料中最常用的方法之一。

通过热蒸发、热分解、化学反应等手段,在高温高压下使原料气体发生气相反应,从而得到所需的纳米材料。

例如,热蒸发法可以用于制备纳米金属颗粒,而化学气相沉积法则适用于制备碳纳米管等。

2. 溶剂热法:溶剂热法是常用的制备纳米材料的方法之一。

该方法使用有机溶剂作为反应介质,通过溶解、加热、反应等步骤来实现纳米材料的制备。

例如,溶剂热法可以用于制备金属氧化物纳米颗粒、纳米线等。

3. 溶胶凝胶法:溶胶凝胶法是一种简单且常用的纳米材料制备方法。

该方法通过将溶胶液快速凝胶,然后通过热处理使其形成纳米颗粒或均一的纳米结构。

溶胶凝胶法可用于制备纳米氧化物、纳米薄膜等。

二、纳米材料表征方法1. 扫描电子显微镜(SEM):SEM是一种常用的表征纳米材料形貌的方法。

通过扫描电子束在样品表面的反射或透射,可以获得高分辨率的表面形貌图像。

同时,SEM还可以进行化学成分分析,以及获取纳米颗粒的尺寸、形貌等信息。

2. 透射电子显微镜(TEM):TEM是一种高分辨率成像技术,常用于研究纳米材料的晶体结构和晶格缺陷等性质。

通过透射电子束与样品的相互作用,可以获得纳米材料的高分辨率成像图像,以及晶格的衍射图样。

3. 原子力显微镜(AFM):AFM是一种能够在原子尺度下进行表征的技术。

通过扫描探针在样品表面的相互作用力,可以获取纳米材料的表面形貌和力学性质等信息。

AFM广泛用于研究纳米颗粒、纳米膜、纳米生物材料等。

4. X射线衍射(XRD):XRD是一种分析材料晶体结构和晶体缺陷的方法。

通过射入样品的X射线,利用样品晶体的衍射现象,可以获得材料的晶体结构信息、晶粒大小、晶格常数等。

纳米材料的测试与表征--ppt课件【可修改文字】

纳米材料的测试与表征--ppt课件【可修改文字】
纳米材料的测试与表征
ppt课件
1
前言
• 纳米材料分析的特点
• 纳米材料的成份分析
• 纳米材料的结构分析
• 纳米材料的粒度分析
• 纳米材料的形貌分析
• 纳米材料的界面分析
ppt课件
2
纳米材料分析的特点
• 纳米材料具有许多优良的特性诸如高比表面、高 电导、高硬度、高磁化率等;
• 纳米科学和技术是在纳米尺度上(0.1nm~100nm 之间)研究物质(包括原子、分子)的特性和相互 作用,并且利用这些特性的多学科的高科技。
分析效果好;线性范围可达4~6个数量级 • 对非金属元素的检测灵敏度低;
ppt课件
12
电感耦合等离子体质谱法
• ICP-MS 是利用电感耦合等离子体作为离子源的 一种元素质谱分析方法;该离子源产生的样品离 子经质谱的质量分析器和检测器后得到质谱;
• 检出限低(多数元素检出限为ppb-ppt级) • 线性范围宽(可达7个数量级) • 分析速度快(1分钟可获得70种元素的结果) • 谱图干扰少(原子量相差1可以分离),能进行
• 光子相关光谱(PCS)技术能够测量粒度度为纳米量级的 悬浮物粒子,它在纳米材料,生物工程、药物学以及微生 物领域有广泛的应用前景。
ppt课件
25
电镜法粒度分析
• 优点是可以提供颗粒大小,分布以及形状的数据, 此外,一般测量颗粒的大小可以从1纳米到几个微米 数量级。
• 并且给的是颗粒图像的直观数据,容易理解。
ppt课件
31
X射线衍射结构分析
• XRD 物相分析是基于多晶样品对X射线的衍射 效应,对样品中各组分的存在形态进行分析。 测定结晶情况,晶相,晶体结构及成键状态等 等。 可以确定各种晶态组分的结构和含量。

纳米粒子的表征和测试方法简介

纳米粒子的表征和测试方法简介

纳米粒子的表征和测试方法简介纳米科技已经成为当今科学和技术领域中最为热门的研究方向之一。

纳米粒子作为纳米材料的基本单位,具有许多特殊的性质和应用潜力,包括在医药领域的药物传输、生物传感器、催化剂等。

为了实现这些应用,对纳米粒子进行准确的表征和测试至关重要。

本文将介绍纳米粒子的表征方法和测试技术,帮助读者更好地了解和应用这些技术。

纳米粒子的表征涉及到对其形貌、尺寸、形态、化学组成、表面结构以及表面电荷等方面的研究。

以下是几种常见的纳米粒子表征方法:1. 透射电子显微镜(TEM):TEM是一种能够观察纳米尺度物体的重要工具。

使用TEM可以直接观察到纳米粒子的形貌和结构,例如颗粒的形状、分散性和聚集度等信息。

此外,TEM还可以通过选区电子衍射技术来研究纳米粒子的晶体结构。

2. 扫描电子显微镜(SEM):SEM是一种通过扫描样品表面的电子束来获取样品形貌和结构信息的技术。

相比于TEM,SEM可以提供更高的表面分辨率,并且适用于大尺寸样品。

使用SEM观察纳米粒子可以提供有关纳米粒子的尺寸、形貌和分布的信息。

3. 粒径分析仪:粒径分析仪是一种常用于纳米粒子的尺寸测量的仪器。

常见的粒径分析方法包括动态光散射(DLS)和激光粒度仪。

DLS适用于测量纳米颗粒的动态尺寸分布,而激光粒度仪则可用于测量纳米颗粒的静态尺寸和形状。

4. 纳米粒子表面分析:纳米粒子的表面特性对其性能和应用具有重要影响。

常见的纳米粒子表面分析方法包括傅里叶变换红外光谱(FTIR)、拉曼光谱和X射线光电子能谱(XPS)。

这些方法可以提供有关纳米粒子表面化学组成、官能团和表面电荷的信息。

在纳米粒子的测试中,除了表征方法外,还需要进行性能测试以评估其在特定应用中的可行性和效果。

以下是几种常见的纳米粒子测试方法:1. 生物相容性测试:对于医药领域中的纳米粒子应用,生物相容性是一个重要的考虑因素。

生物相容性测试包括对纳米粒子的细胞毒性、溶解性、抗原性等方面进行评估。

第六章 纳米材料检测及表征技术

第六章 纳米材料检测及表征技术

2. 透射电子显微镜 (Transmission electron
microscory, TEM)
透射电子显微镜的分辨率大约为o.1nm 左右,可用于研究纳米材料的结晶情况, 观察纳米粒子的形貌、分散情况及测量和 评估纳米粒子的粒径。许多有关纳米材料 的研究,都采用TEM作为表征手段之一。 用TEM可以得到原子级的形貌图像。
1.2. 粒度分析的种类和适用范围
• 筛分法、显微镜法、沉降法 • 激光衍射法、激光散射法、光子相干光谱
法、电子显微镜图像分析法、基于布朗运 动的粒度测量法和质谱法
其中激光散射法和光子相干光谱法由于具有速度快、测量范 围广、数据可靠、重复性好、自动化程度高、便于在线测量 等测量而被广泛应用。
其测量颗粒最小粒径可以达到20nm和1nm。
5.纳米材料表面与界面分析
5.1 纳米材料表面与界面分析方法
分析对象: • 纳米薄膜材料 • 特别是固体材料
(元素化学态分析、元素三维分布分析以 及微区分析)
• 常用分析方法: X射线光电子能谱(XPS) 俄歇电子能谱(AES) 静态二次离子质谱(SIMS) 离子散射谱(ISS)
50% 40% 8%
纳米材料有以下性质。 4.1.1. 小尺寸效应 当纳米微粒尺寸与光波的波长、传导电子的德布罗意
波长以及超导态的相干长度或穿透深度等物理特征尺寸相当时,晶体周期性 的边界条件将被破坏,声、光、力、电、热、磁、内压、化学活性等与普通 粒子相比均有很大变化,这就是纳米粒子的小尺寸效应(也称体积效应)。
4.1.2. 表面与界面效应 纳米粒子由于尺寸小、表面积大、表面能高、位 于表面的原子处于严重的缺位状态,因此其活性极高,很不稳定,遇到其它 原子时很快结合,这种活性就是表面效应。

纳米材料的测量技术

纳米材料的测量技术

纳米材料的测量技术引言:纳米材料是一种具有特殊性质和应用潜力的材料,其尺寸在纳米尺度范围内。

纳米材料的测量技术是研究和应用纳米材料的基础,对于了解纳米材料的结构、性质和行为具有重要意义。

本文将介绍一些常用的纳米材料测量技术及其应用。

一、透射电子显微镜(TEM)透射电子显微镜是一种利用电子束通过样品的原理来观察纳米材料的结构和形貌的仪器。

通过TEM可以获得纳米材料的高分辨率图像,可以观察到纳米粒子的尺寸、形状和分布情况。

此外,TEM还可以进行能谱分析,得到纳米材料的元素成分信息。

二、扫描电子显微镜(SEM)扫描电子显微镜是一种利用电子束扫描样品表面并获得二维图像的仪器。

与TEM不同,SEM可以观察到纳米材料的表面形貌和粒子的分布情况。

通过SEM可以获得更大范围的图像,对于纳米材料的形貌和粒子分布的研究具有重要意义。

三、原子力显微镜(AFM)原子力显微镜是一种基于原子力相互作用的测量技术,可以对纳米尺度的表面进行高分辨率的三维成像。

AFM可以测量纳米材料的表面形貌、粒子尺寸和表面粗糙度等参数,对于纳米材料的表面性质研究具有重要意义。

四、动态光散射(DLS)动态光散射是一种利用光散射现象测量纳米材料的大小和分布的技术。

通过测量纳米材料在溶液中的光散射强度随时间的变化,可以得到纳米材料的粒子大小分布和聚集情况。

DLS广泛应用于纳米材料的尺寸和稳定性的研究。

五、拉曼光谱拉曼光谱是一种通过测量光散射现象来研究物质的结构和成分的技术。

纳米材料的拉曼光谱可以提供关于纳米材料的结构、晶格振动和化学组成等信息。

拉曼光谱可以用来研究纳米材料的晶格结构、表面增强拉曼散射现象以及纳米材料的表面修饰等。

六、X射线衍射(XRD)X射线衍射是一种通过测量物质对X射线的衍射现象来研究物质的结构的技术。

纳米材料的X射线衍射可以提供关于纳米材料的晶体结构和晶格参数的信息。

X射线衍射可以用来研究纳米材料的晶体结构、晶格畸变以及纳米材料的相变等。

纳米材料物理实验技术的纳米材料制备与表征技巧

纳米材料物理实验技术的纳米材料制备与表征技巧

纳米材料物理实验技术的纳米材料制备与表征技巧纳米材料是当今科学研究中备受关注的重要领域,因为其具备优异的特性和广泛的应用潜力。

为了深入了解纳米材料的性质和行为,人们不断提出新的纳米材料制备和表征技巧。

本文将探讨一些纳米材料物理实验技术中的制备和表征技巧,旨在提供一些有关纳米材料研究的实用指导。

一、纳米材料制备技巧1. 化学气相沉积技术(CVD)化学气相沉积技术是制备纳米材料的一种常用方法。

其基本原理是,在高温下,将气体或液体的前驱物质引入反应室中,通过化学反应生成纳米材料。

其中,CVD技术利用了化学反应的选择性和速度,可以实现对纳米材料的精确控制。

2. 溶胶-凝胶技术(Sol-Gel)溶胶-凝胶技术是一种常用的纳米材料制备方法。

这种方法利用溶胶与凝胶之间的疏水性-亲水性转变来控制纳米粒子的生成和形貌。

它可以通过调节沉积温度、反应时间和添加剂等因素来精确控制纳米材料的尺寸和形状。

3. 机械合金化技术机械合金化技术是一种利用机械力对固态材料进行粉末状形变的方法。

在高能球磨过程中,球磨罐内的粉末受到多次的碰撞和撞击,从而导致原位金属元素的溶解和相互扩散,形成纳米晶体。

这种方法制备的纳米材料具有纯度高、晶粒尺寸小的特点。

二、纳米材料表征技巧1. 透射电子显微镜(TEM)透射电子显微镜是一种常用的纳米材料表征工具。

它通过透射电子束对样品进行照射,并通过电子衍射和透射图像来表征纳米材料的晶格结构和尺寸。

通过TEM技术,可以观察到纳米材料中的晶界、缺陷和界面等微观结构。

2. 扫描电子显微镜(SEM)扫描电子显微镜是一种常见的表征纳米材料形貌的技术。

它通过扫描电子束对样品表面进行照射,然后通过检测和记录样品表面的二次电子、背散射电子等信号来生成图像。

通过SEM技术,可以观察到纳米材料的形态、大小和形貌等方面的特征。

3. X射线衍射(XRD)X射线衍射是一种常用的表征纳米材料结构的技术。

它通过照射样品表面的X 射线束,然后测量和分析样品对X射线的散射模式,从而确定样品的晶体结构和晶格常数。

纳米材料的测试与表征

纳米材料的测试与表征
如样品制备的分散性,直接会影响电镜观察质量 和分析结果 • 电镜取样量少,会产生取样过程的非代表性
高分子纳米微球研究
沉降法粒度分析
沉降法的原理是基于颗粒在悬浮体系时,颗粒本 身重力(或所受离心力)、所受浮力和黏滞阻力三 者平衡,并且黏滞力服从斯托克斯定律
(F=6πrηv)来实施测定的,此时颗粒在悬浮体
• STM通常被认为是测量表面原子结构的工具,具 有直接测量原子间距的分辨率。 STM还可以操纵 单个原子和分子
STM像
原子操纵
原子力显微镜AFM
• 原子力显微镜(AFM), 或者扫描力显微镜 (SFM)
• 跟所有的扫描探针显 微镜一样,AFM使用 一个极细的探针在样 品表面进行光栅扫描, 探针是位于一悬臂的 末端顶部,该悬臂可 对针尖和样品间的作 用力作出反应
原子吸收光谱法(AAS)
• 根据蒸气相中被测元素的基态原子对其原子共振 辐射的吸收强度来测定试样中被测元素的含量;
• 适合对纳米材料中痕量金属杂质离子进行定量测 定,检测限低 ,10-10-10-14 g/cm3
• 测量准确度很高 ,1%(3-5%) • 选择性好 ,不需要进行分离检测 • 分析元素范围广 ,70多种 • 不能同时进行多元素分析
• 其特点是样品使用量少,不仅可以获得样品的形 貌,颗粒大小,分布以还可以获得特定区域的元 素组成及物相结构信息
高分辨TEM
• HRTEM是观察材料微观结构的方法。不仅 可以获得晶包排列的信息,还可以确定晶 胞中原子的位置。
• 200KV的TEM点分辨率为0.2nm,1000KV 的TEM点分辨率为0.1nm。
电感耦合等离子体发射光谱法(ICP)
• ICP是利用电感耦合等离子体作为激发源,根据处于激发 态的待测元素原子回到基态时发射的特征谱线对待测元素 进行分析的方法

纳米材料的制备与表征

纳米材料的制备与表征

纳米材料的制备与表征纳米材料是指具有纳米尺度(即1-100纳米)的物质,在这一尺度下,材料的特性和性能会发生明显的变化。

纳米材料具有广泛的应用前景,如电子器件、催化剂、能量存储等领域。

本文将介绍纳米材料的制备方法和表征技术。

一、纳米材料的制备方法1. 溶剂热法溶剂热法是一种常用的制备纳米材料的方法。

它利用溶剂在高温高压条件下的溶解和溶质的极化作用,使得溶质逐渐析出形成纳米颗粒。

这种方法制备的纳米材料尺寸均匀,形状可控,适用于金属、氧化物等材料的制备。

2. 水热法水热法是一种利用高温高压水介质来合成纳米材料的方法。

在水热条件下,溶质分子会与水分子相互作用,产生溶胶,然后通过溶胶中的聚集和转化,形成纳米颗粒。

这种方法制备的纳米材料具有较好的结晶性和分散性,适用于金属、氧化物等材料的制备。

3. 气相沉积法气相沉积法是一种通过气体相反应合成纳米材料的方法。

在高温下,将气体中的原子或分子在表面上反应和聚集形成纳米颗粒。

这种方法制备的纳米材料纯度高,晶格结构完整,适用于金属、合金等材料的制备。

二、纳米材料的表征技术1. 扫描电子显微镜(SEM)扫描电子显微镜是一种常用的表征纳米材料形貌和表面形貌的技术。

它通过扫描样品表面,利用来自样品表面的次级电子、逆散射电子等信号来形成图像。

通过SEM可以观察纳米材料的形态、尺寸和分布情况。

2. 透射电子显微镜(TEM)透射电子显微镜可以观察样品的原子尺度结构和晶体缺陷等细微特征。

通过透射电子显微镜,可以获取纳米材料的晶格结构、晶体形貌和晶界等信息。

3. X射线衍射(XRD)X射线衍射是一种常用的表征纳米材料晶体结构的技术。

通过照射样品,并测量样品对入射X射线的散射情况,可以得到样品的衍射图谱。

通过分析衍射图谱,可以确定纳米材料的晶格参数和晶体结构。

4. 红外光谱(IR)红外光谱可以表征纳米材料的化学成分和化学键的信息。

纳米材料在红外光的激发下,会吸收特定频率的红外光,从而产生红外吸收谱。

纳米测量技术及应用

纳米测量技术及应用

纳米测量技术及应用纳米测量技术是基于纳米尺度物质特性的测量技术,具有高精度、高灵敏度、高分辨率和非接触性等特点。

它广泛应用于纳米科学、纳米技术、生物医学、材料科学等领域。

本文将围绕纳米测量技术的原理和应用展开,同时介绍国内外相关研究进展。

首先,我们来了解纳米测量技术的原理。

纳米尺度下物质的特性与宏观尺度具有显著差异,例如表面效应、量子效应和尺寸效应等。

传统的测量方法往往无法满足对这些特性的精确测量需求,因此,纳米测量技术应运而生。

它通过使用纳米探针和纳米力学系统,利用原子力显微镜、扫描电子显微镜和纳米机器人等设备,对纳米尺度下物质的性能、形态和结构等进行测量和分析。

纳米测量技术的应用非常广泛。

在纳米科学与技术领域,纳米测量技术可以用于表征纳米级材料的物理、电学、化学和力学等性质,帮助科学家了解纳米尺度下物质的行为规律和性能变化。

在纳米材料制备领域,纳米测量技术可以使用原子力显微镜等设备对纳米颗粒的尺寸、形状和分布等进行测量,从而控制和优化材料的性能。

在纳米装置制造领域,纳米测量技术可以用于检测和修复纳米级器件和电路的结构和性能,保证其正常运行和可靠性。

在纳米生物医学领域,纳米测量技术可以用于分子、细胞和组织的成像和分析,提供基于纳米尺度的生物信息和医学诊断手段。

除此之外,纳米测量技术还可以应用于纳米流体力学、纳米能源和纳米环境等领域。

国内外在纳米测量技术方面的研究也取得了诸多进展。

例如,美国国家标准与技术研究院(NIST)开展了针对纳米颗粒尺寸测量的研究,提出了一种纳米颗粒尺寸测量的新方法,通过使用非球形标准样品和高分辨率显微镜对纳米颗粒进行测量。

中国科学院纳米技术与纳米生物医学重点实验室也开展了一系列关于纳米力学测试和纳米流体力学测试的研究,提出了一种基于AFM原子力显微镜的纳米材料力学性能的测试方法。

纳米测量技术的发展还面临一些挑战。

首先,纳米尺度下物质的测量往往受限于分辨率和灵敏度等因素。

纳米尺度测量技术

纳米尺度测量技术

纳米尺度测量技术随着科学技术的迅猛发展,人们对微观世界的认识不断加深。

纳米尺度已经成为许多领域的重要研究方向。

然而,要准确测量纳米尺度的物体和现象并非易事,这就需要可靠且精密的纳米尺度测量技术。

一、纳米尺度测量技术的意义纳米尺度测量技术在现代科学研究和工程应用中起着举足轻重的作用。

首先,纳米尺度测量技术有助于科学家们更深入地了解和研究纳米级别的物质特性。

纳米粒子、纳米结构的电子、光学以及磁性等性质,对于开发新型纳米材料和纳米器件具有重要的意义。

其次,纳米尺度测量技术还可应用于纳米制造与纳米加工领域。

纳米尺度测量技术为纳米级别的制造过程提供了质量控制与检测手段,确保了纳米器件的准确性和可靠性。

此外,纳米尺度测量技术也可以应用于生物医学领域。

纳米级别的生物分子或细胞的观测和测量对于疾病的诊断和治疗具有重要意义,同时也为生物医学研究提供了新的手段和方法。

二、纳米尺度测量技术的发展与进展随着科技的不断创新和发展,纳米尺度测量技术的发展取得了巨大的突破。

目前,常用的纳米尺度测量技术包括扫描探针显微术、原子力显微镜、电子束刻线测量技术以及拉曼光谱等。

扫描探针显微术作为一种高分辨率的表面成像技术,广泛应用于材料学、纳米科学和生物技术领域。

它通过传感器上的分子尺度探针,对样品表面的形态、成分、电学和磁学等特性进行测量与分析。

这项技术具有高分辨率、高精度和非破坏性的特点,为研究和应用纳米特性提供了可靠的工具。

原子力显微镜是一种能够在原子尺度下测量材料表面的仪器。

其工作原理是利用探针尖端的力与样品表面之间的相互作用力来测量样品表面的形貌和性质。

原子力显微镜具有高分辨率、大范围性和环境适应性等优点,已经成为纳米科学研究中最重要的工具之一。

电子束刻线测量技术是一种可以精确测量材料表面和薄膜的纳米尺度形貌的方法。

它通过使用电子束照射样品,并利用电子的散射和衍射原理进行测量。

该技术可以同时提供表面形貌和成分信息,并对纳米材料的性质进行研究。

纳米材料的表征和分析方法分享

纳米材料的表征和分析方法分享

纳米材料的表征和分析方法分享纳米材料是指尺寸在纳米级别的材料,其具有独特的物理、化学以及生物学性质,广泛应用于能源、材料、生物医药等领域。

为了深入了解纳米材料的性质和优良特性,科学家们开发了多种表征和分析方法。

在本文中,我们将分享一些常用的纳米材料表征和分析方法。

一、纳米材料的表征方法1. 扫描电子显微镜(SEM):SEM可以获得材料表面形貌和微观结构的高分辨率图像。

通过SEM可以观察纳米颗粒的大小、形状以及表面形貌的变化,进而得出材料的结构特征和表面形貌。

2. 透射电子显微镜(TEM):TEM是一种高分辨率的表征技术,可用于观察纳米材料的晶体结构和颗粒形态。

通过TEM,可以实时观察纳米材料的形貌、尺寸和晶体结构,并进一步了解纳米材料的导电性、光学性质等。

3. 原子力显微镜(AFM):AFM可以直接观察纳米尺度下的表面形貌和表面力学性质。

通过扫描探针与样品表面的相互作用,AFM可以获得纳米尺度下的三维表面拓扑图像,同时还可以测量纳米材料的力学性能。

4. 粒度分析:粒度分析是用于确定纳米颗粒的尺寸分布和平均粒径的方法。

常见的粒度分析技术包括激光粒度仪、动态光散射仪等。

这些仪器可以通过散射光的特性来推断颗粒的大小,并计算出粒径分布图和平均粒径。

二、纳米材料的分析方法1. X射线衍射(XRD):XRD是一种常用的纳米材料分析方法,可以用于确定纳米材料的晶体结构、晶格参数和晶体缺陷。

通过分析材料对入射X射线的散射模式,可以得出材料的晶体结构和晶格常数,从而获得材料的结晶性质。

2. 红外光谱(IR):红外光谱是一种用于检测材料分子结构和化学键情况的分析方法。

通过测量材料在红外波段的吸收谱线,可以得知材料的化学成分、功能基团和化学键的状态,帮助研究人员了解纳米材料的化学性质和功能。

3. 核磁共振(NMR):核磁共振技术可以用于分析纳米材料的结构、组成和动力学性质。

通过测量材料中原子核的共振信号,NMR可以得到关于材料分子的信息,包括分子结构、化学位移等,从而为纳米材料的研究提供有价值的数据。

纳米材料实验中的表征方法

纳米材料实验中的表征方法

纳米材料实验中的表征方法近年来,由于纳米材料在各个领域的应用越来越广泛,对其性质和结构的研究也变得日益重要。

纳米材料的尺寸小于100纳米,具有独特的物理、化学和机械性质,但其特殊性也给人们在实验中的表征带来了许多挑战。

为了获得关于纳米材料的详细信息,科学家们开发了一系列高级表征方法,从而进一步了解纳米材料的结构和性能。

本文将探讨几种常见的纳米材料表征方法。

一、透射电子显微镜(TEM)透射电子显微镜是一种广泛应用于纳米材料研究的高分辨率显微镜。

通过将电子束传输到纳米材料上,并以高分辨率对透射电子图像进行记录,TEM可以提供有关纳米材料的形貌和晶体结构的详细信息。

此外,通过选择不同的探测器,可以获得纳米材料的成分和化学结构。

二、扫描电子显微镜(SEM)与TEM不同,扫描电子显微镜主要用于获得纳米材料的表面形貌信息。

电子束会扫描纳米材料的表面,并通过检测出射的次级电子或后向散射电子来创建图像。

SEM可以提供高分辨率的表面形貌图像,从而使科学家们能够观察纳米材料的起伏、孔洞和晶粒的分布。

三、原子力显微镜(AFM)原子力显微镜是一种基于力学测量的表面分析技术。

它利用纳米尺度的探针,在纳米材料表面扫描并对表面的力进行测量。

AFM可以提供纳米材料的三维形貌和材料性质的信息,如硬度、摩擦力和粘附力。

由于其高分辨率和多功能性,AFM被广泛应用于纳米材料的研究和开发。

四、拉曼光谱拉曼光谱是一种利用激光照射纳米材料并测量其散射光谱的无损分析技术。

通过观察分子或晶体的特征散射光,拉曼光谱提供了关于纳米材料的结构、组成和化学键的信息。

此外,拉曼光谱还可以用于研究纳米材料表面的分子吸附、相变和化学反应。

五、X射线衍射(XRD)X射线衍射是一种常用的结晶学技术,可用于研究纳米材料的晶体结构和晶格参数。

通过照射纳米材料样品,并测量散射X射线的角度和强度,科学家们可以推断出纳米材料的晶体结构、晶格常数和晶体粒径等信息。

XRD广泛用于纳米材料的质量控制、相变研究和纳米晶体生长等方面。

纳米颗粒表征实验方法与技巧

纳米颗粒表征实验方法与技巧

纳米颗粒表征实验方法与技巧随着纳米科技的快速发展,纳米颗粒表征成为了研究和应用领域中一项重要的任务。

纳米颗粒表征是指对纳米颗粒的大小、形状、结构、表面性质以及其他相关属性进行精确测量和评估的过程。

有效的纳米颗粒表征实验方法与技巧对于研究和应用纳米材料具有重要意义。

本文将介绍几种常见的纳米颗粒表征实验方法与技巧。

一、粒径分析纳米颗粒的粒径分析是纳米颗粒表征中最基本的一项工作。

粒径分布对于纳米颗粒的物理性质和应用可能起到决定性作用。

目前常用的纳米颗粒粒径分析方法包括动态光散射(DLS)、静态光散射(SLS)、透射电镜(TEM)以及场发射扫描电子显微镜(FESEM)等。

动态光散射(DLS)是一种非侵入性、实时测量纳米颗粒粒径的技术。

它通过测量纳米颗粒在溶液中受到的热运动引起的散射光强变化来确定颗粒的粒径大小。

静态光散射(SLS)则是在透射光或反射光下,测量散射光强与颗粒直径的关系,并借助距离和散射角度关系的模型计算颗粒的粒径。

透射电镜(TEM)和场发射扫描电子显微镜(FESEM)则通过电子束的照射,利用电子的衍射现象和投影成像原理来观察纳米颗粒的结构和形貌,并进行粒径测量。

这些方法的优点在于能够获得高分辨率的显微图像和准确的纳米颗粒粒径。

二、表面性质分析纳米颗粒表面性质对其在多种领域的应用起着重要作用。

纳米颗粒的表面性质可以通过高分辨电子能谱(HREELS)、X射线光电子能谱(XPS)以及红外光谱等方法进行分析。

高分辨电子能谱(HREELS)是一种通过测量电子在表面与振动分子之间的能量损失来分析表面结构和反应的技术。

它被广泛应用于研究纳米颗粒的表面化学反应和表面态的变化。

X射线光电子能谱(XPS)则通过测量材料的光电子发射谱来分析样本的表面成分。

这种分析方法对于研究纳米颗粒的表面元素和元素化合物的组成非常有用。

红外光谱则通过测量样品在红外波段的吸收和散射来分析纳米颗粒的表面化学键和官能团。

红外光谱可以提供有关纳米颗粒表面上化学键和官能团类型的信息。

纳米材料的制备与表征技术

纳米材料的制备与表征技术

纳米材料的制备与表征技术纳米材料是一种具有纳米尺度(10^-9米)的特征尺寸的材料,具有独特的物理、化学和生物学性质。

其制备和表征技术是纳米科学和纳米技术的基础,对于开展纳米材料研究及其应用具有重要的意义。

本文将介绍纳米材料的制备与表征技术的基本原理和方法。

一、纳米材料的制备技术制备纳米材料的方法多种多样,常用的制备技术包括物理法、化学法和生物法。

物理法主要包括磁控溅射、激光烧结、气相沉积等技术。

化学法主要包括溶胶凝胶法、溶液法、气凝胶法等技术。

生物法则是利用生物体内特定的生物合成机制来制备纳米材料。

这些方法各有优劣,需要根据纳米材料的特性和应用需求进行选择。

1. 物理法物理法是利用物理性质来制备纳米材料,其中磁控溅射是一种常见的物理法制备技术。

磁控溅射通常通过将目标材料置于真空室中,通过施加高能离子束使得目标材料表面的原子或分子从表面脱离并沉积在衬底上,形成纳米颗粒。

激光烧结则是利用激光束瞬间加热物质,使其熔化并迅速冷却,生成纳米结构。

气相沉积则是通过在真空或惰性气体环境下将气态前驱体沉积在衬底上生成纳米薄膜或纳米颗粒。

2. 化学法化学法是利用化学反应来制备纳米材料,其中溶胶凝胶法是一种常用的化学法制备技术。

溶胶凝胶法通过在溶胶(溶解的物质)中逐渐加入凝胶剂,使得溶胶逐渐转化为凝胶,然后通过热处理使凝胶退火,生成具有纳米结构的材料。

溶液法利用溶液中的化学反应生成纳米材料,例如还原法、沉淀法等。

气凝胶法是一种利用超临界流体来制备纳米材料的技术,通过使溶剂超过其临界温度和压力,将材料溶液变为气体,然后通过加压或降压使气体迅速凝结为凝胶。

3. 生物法生物法是利用生物体的特定机制来制备纳米材料,其中生物合成法是一种常见的生物法制备技术。

生物合成法利用微生物、植物或其他生物体合成纳米颗粒,通过控制反应条件或添加适当的前驱物质,使纳米颗粒在生物体内部形成。

二、纳米材料的表征技术纳米材料的表征是指对其尺寸、形态、结构和性质等进行分析和评价。

纳米材料的表征与测试技术

纳米材料的表征与测试技术

纳米材料的表征与测试技术1纳米材料的表征方法纳米材料的表征主要包括: 1化学成分; 2纳米粒子的粒径、形貌、分散状况以及物相和晶体结构; 3纳米粒子的表面分析。

1.1化学成分表征化学成分是决定纳米粒子及其制品性能的最基本因素。

常用的仪器分析法主要是利用各种化学成分的特征谱线,如采用X射线荧光分析和电子探针微区分析法可对纳米材料的整体及微区的化学组成进行测定。

而且还可以与扫描电子显微镜SEM配合,使之既能利用探测从样品上发出的特征X射线来进行元素分析,又可以利用二次电子、背散射电子、吸收电子信号等观察样品的形貌图像。

即可以根据扫描图像边观察边分析成分,把样品的形貌和所对应微区的成分有机的联系起来,进一步揭示图像的本质。

此外,还可以采用原子l发射光谱AES、原子吸收光谱AAS对纳米材料的化学成分进行定性、定量分析;采用X射线光电子能谱法XPS可分析纳米材料的表一面化学组成、原子价态、表面形貌、表面微细结构状态及表面能态分布等。

1.2纳米徽粒的衰面分析(1)扫描探针显徽技术SPM扫描探针显徽技术SPM以扫描隧道电子显微镜STM ,原子力显徽镜AFM、扫描力显微镜SFM 、弹道电子发射显徽镜BEEM、扫描近场光学显微镜SNOM等新型系列扫描探针显徽镜为主要实验技术,利用探针与样品的不同相互作用,在纳米级乃至原子级的水平上研究物质表面的原子和分子的几何结构及与电子行为有关的物理、化学性质,在纳米尺度上研究物质的特性。

(2)谱分析法①紫外一可见光谱由于(金属粒子内部)电子气(等离子体)共振激发或由于带间吸收,它们在紫外——可见光区具有吸收谱带。

不同的元素离子具有其特征吸收谱。

因此,通过紫外一可见光光谱,特别是与Mie理论的计算结果相配合时,能够获得关于粒子颗粒度、结构等方面的许多重要信息。

此技术简单方便,是表征液相金属纳米粒子最常用的技术。

另外,紫外一可见光谱可观察能级结构的变化,通过吸收峰位置变化可以考察能级的变化。

纳米材料的测量技术

纳米材料的测量技术

纳米材料的测量技术介绍纳米材料是一种维度在纳米尺度的材料,具有独特的物理、化学和生物学特性。

由于其特殊性质,纳米材料的测量技术需要针对其尺寸、形状、结构和性质进行精确的表征和定量分析。

本文将深入探讨纳米材料测量技术的相关内容。

原子力显微镜(AFM)作用原理•AFM是一种基于探针与样品之间的相互作用进行测量的技术。

探针在样品表面扫描并测量其拓扑结构。

•AFM的探针通常是尖端末端有导电体的微型悬臂,通过感应作用和力的测量来确定样品表面的形貌。

应用•AFM可以用于测量纳米材料的形貌和表面结构,可以获取纳米颗粒的尺寸和形状信息。

•AFM还可以用于研究纳米材料的表面力学性能、表面电荷分布等。

透射电子显微镜(TEM)作用原理•TEM是一种通过透射电子形成图像的测量技术。

电子束穿过样品后通过一系列透镜,然后通过对电子的衍射图样进行分析,得到样品的结构信息。

•TEM可以提供纳米材料的高分辨率成像,通常可以达到0.1纳米的分辨率。

应用•TEM主要用于观察纳米材料的晶体结构和晶格缺陷。

它可以揭示纳米材料中晶体的生长机制和缺陷的形成。

•TEM还可以用于观察纳米材料的界面结构和纳米材料的纯度。

扫描电子显微镜(SEM)作用原理•SEM是一种通过扫描样品表面的电子束并检测出射电子来获取图像的测量技术。

•SEM可以提供较大区域的高分辨率图像,可以获得纳米材料的形貌信息,并可进行定量分析。

应用•SEM可用于观察纳米材料的形貌和内部结构,可以揭示纳米材料的深层结构信息。

•SEM还可用于研究纳米材料的表面态,如化学组成、表面形貌和结构。

X射线衍射(XRD)作用原理•XRD是一种通过将X射线照射到样品上并分析衍射图样来测量样品的结构和成分的技术。

•X射线与物质相互作用时,其会发生衍射现象,而衍射图样则可以提供样品的晶体结构信息。

应用•XRD可以用于确定纳米材料的晶体结构、晶格参数和晶体相位。

•XRD还可以用于评估纳米材料的纯度、晶体质量以及结构的改变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
眼睛的延续……………
看得更远、更细!
1、显微镜发展基本概况
• 光学显微镜 • 电子显微镜 • 扫描探针显微镜
光学显微镜
• 光学显微镜是一种利用透镜产生光学放大 效应的显微镜
• 在接下来的两个世纪中,复合式显微镜得 到了充分的完善,例如人们发明了能够消除 色差(当不同波长的光线通过透镜的时候, 它们折射的方向略有不同,这导致了成像质 量的下降)和其他光学误差的透镜组。与19 世纪的显微镜相比,现在我们使用的普通光 学显微镜基本上没有什么改进。原因很简单: 光学显微镜已经达到了分辨率的极限。
然后由这些照片来测量粒径。
5.1.1透射卟电啉铁镜核观壳察催化法剂
电镜照片 仪器照片
透射电镜的结构
• 透射电镜的外观照片。 • 通常透射电镜由电子光学
系统、电源系统、真空系 统、循环冷却系统和控制 系统组成,其中电子光学 系统是电镜的主要组成部 分。
高分辨透射电子显微镜
• 透射电子显微镜发展的另一个表现是分辨率的不断提高。 目前200KV透射电子显微镜的分辨率好于0.2nm,1000KV透 射电子显微镜的分辨率达到0.1nm。
几个基本概念
(2)颗粒尺寸的定义 对球形颗粒来说,颗粒尺寸(粒径)即指其直径. 对不规则颗粒,尺寸的定义为等当直径,如体积等当直
径,投影面积直径等等.
第一节 纳米测量技术
• 一、电子显微镜技术 • STM技术 • AFM技术 • 二、衍射技术 • 三、谱学技术 • 四、热分析技术
自有人类文明以来,人们就一直为探索微观 世界的奥秘而不懈的努力。

• 如果仅仅在纸上画图,你自然能够“制造”出任意放 大倍数的显微镜。但是光的波动性将毁掉你完美的 发明。即使消除掉透镜形状的缺陷,任何光学仪器 仍然无法完美的成像。
• 光在通过显微镜的时候要发生衍射——简单的说, 物体上的一个点在成像的时候不会是一个点,而是 一个衍射光斑。如果两个衍射光斑靠得太近,你就 没法把它们分辨开来。显微镜的放大倍数再高也无 济于事了。对于使用可见光作为光源的显微镜,它 的分辨率极限是0.2微米。任何小于0.2微米的结构 都没法识别出来。
粒.团聚体内含有相互连接的气孔网络.团聚体可分为硬团聚体和软团 聚体两种.团聚体的形成过程使体系能量下降. ④ 二次颗粒:是指人为制造的粉料团聚粒子;例如制备陶瓷的工艺过程中 所指的“造粒”就是制造二次颗粒.
纳米粒子一般指一次颗粒. 结构可以是晶态、非晶态和准晶.可以是单相、多相结构,或多晶结
构. 只有一次颗粒为单晶时,微粒的粒径才与晶粒尺寸(晶粒度)相同.
透射电镜观察法注意的问题
测得的颗粒粒径是团聚体的粒径。
在制备超微粒子的电镜观察样品时,首先需用超声 波分散法,使超微粉分散在载液中,有时候很难使它 们全部分散成一次颗粒,特别是纳米粒子很难分散, 结果在样品 Cu网上往往存在一些团聚体,在观察时容 易把团聚体误认为是一次颗粒。
测量结果缺乏统计性
透射电镜能精确 读出0.1nm的原 子,因而能判别 出纳米材料
用透射电镜可观察纳米粒子平均直径或粒径的分布. 是一种颗粒度观察测定的绝对方法,因而具有可
靠性和直观性.
实验过程: ➢ 首先将纳米粉制成的悬浮液滴在带有碳膜的电镜用
Cu网上,待悬浮液中的载液(例如乙醇)挥发后。 ➢ 放入电镜样品台,尽量多拍摄有代表性的电镜像,
• 透射电子显微镜分辨率的提高取决于电磁透镜的制造水平 不断提高,球差系数逐渐下降;透射电子显微镜的加速电 压不断提高,从80KV、100KV、120KV、200KV、300KV直到 1000KV以上;为了获得高亮度且相干性好的照明源,电子 枪由早期的发夹式钨灯丝,发展到LaB6单晶灯丝,现在又 开发出场发射电子枪。
• 1983年,IBM公司苏黎世实验室的两位科 学家Gerd Binnig和HeinrichRohrer发明了 所谓的扫描隧道显微镜(STM)。这种显 微镜比电子显微镜更激进,它完全失去了 传统显微镜的概念。
很显然,你不能直接“看到”原子。因为原子与宏观 物质不同,它不是光滑的、滴溜乱转的削球,更 不是达·芬奇绘画时候所用的模型。扫描隧道显微 镜依靠所谓的“隧道效应”工作。如果舍弃复杂的公 式和术语,这个工作原理其实很容易理解。 隧道扫描显微镜没有镜头,它使用一根探针。探针 和物体之间加上电压。如果探针距离物体表面很 近——大约在纳米级的距离上——隧道效应就会 起作用。电子会穿过物体与探针之间的空隙,形 成一股微弱的电流。如果探针与物体的距离发生 变化,这股电流也会相应的改变。这样,通过测 量电流我们就能知道物体表面的形状,分辨率可 以达到单个原子的级别。
纳米测量技术和表征
纳米测量技术和表征
第一节 纳米测量技术 第二节 纳米材料的表征 第三节纳米测量技术的展望
纳米材料的粒度分析:几个基本概念
(1)关于颗粒及颗粒度的概念 ① 晶粒:是指单晶颗粒,即颗粒内为单相,无晶界. ② 一次颗粒:是指含有低气孔率的一种独立的粒子,颗粒内部可以有界面,
例如相界、晶界等. ③ 团聚体:是由一次颗粒通过表面力或固体桥键作用形成的更大的颗
这是因为电镜观察用的粉体是极少的,这就有ቤተ መጻሕፍቲ ባይዱ能 导致观察到的粉体的粒子分布范围并不代表整体粉体 的粒径范围。
电镜观察法测量得到的是颗粒度而不是晶粒度.
电子显微镜下的蚊子
3、扫描探针显微镜(SPM)
扫描隧道显微镜(STM); 原子力显微镜 AFM)
• 用电子代替光,这或许是一个反常规的主 意。但是还有更令人吃惊的。
1、电子显微镜

提高显微镜分辨率的途径之一就是设法减小光的波长,
或者,用电子束来代替光。根据德布罗意的物质波理论,
运动的电子具有波动性,而且速度越快,它的“波长”就越
短。如果能把电子的速度加到足够高,并且汇聚它,就有
可能用来放大物体。
• 1931年,德国工程师Max Knoll和Ernst Ruska制造 出了世界上第一台透射电子显微镜(TEM)。1952年, 英国工程师Charles Oatley制造出了第一台扫描电子显微 镜(SEM)。电子显微镜是20世纪最重要的发明之一。 由于电子的速度可以加到很高,电子显微镜的分辨率可以 达到纳米级(10-9m)。很多在可见光下看不见的物体— —例如病毒——在电子显微镜下现出了原形。
相关文档
最新文档