基于FPGA的高精度频率计设计

合集下载

计算机毕业论文_基于FPGA的等精度频率计的设计与实现

计算机毕业论文_基于FPGA的等精度频率计的设计与实现

目录前言...............................................................1 第一章 FPGA及Verilog HDL..........................................2 1.1 FPGA简介.....................................................2 1.2 Verilog HDL 概述.............................................2 第二章数字频率计的设计原理........................................3 2.1 设计要求.....................................................3 2.2 频率测量.....................................................3 2.3.系统的硬件框架设计..............................................4 2.4系统设计与方案论证............................................5 第三章数字频率计的设计............................................8 3.1系统设计顶层电路原理图........................................8 3.2频率计的VHDL设计.............................................9 第四章软件的测试...............................................15 4.1测试的环境——MAX+plusII.....................................15 4.2调试和器件编程...............................................15 4.3频率测试.....................................................16基于FPGA的等精度频率计的设计与实现摘要:本文详细介绍了一种基于FPGA的高精度频率计。

基于FPGA的数字频率计实验报告(能测占空比)

基于FPGA的数字频率计实验报告(能测占空比)

基于FPGA的数字频率计设计学院:专业:班级:姓名:学号:审阅老师:评分:目录一、课程设计目的 (3)二、设计任务 (3)三、功能要求与技术指标 (3)四、数字频率计工作原理概述 (3)五.数字频率计实现方法 (4)六.结论与误差分析 (11)七.VHDL程序: (12)一、课程设计目的熟悉EDA工具,掌握用VHDL语言进行数字系统设计的基本方法和流程,提高工程实践能力。

二、设计任务设计一数字频率计,用VHDL语言描述,用QuartusII工具编译和综合,并在实验板上实现。

三、功能要求与技术指标1.基本功能要求(1)能够测量出方波的频率,其范围50Hz~50KHz。

(2)要求测量的频率绝对误差±5Hz。

(3)将测量出的频率以十进制格式在实验板上的4个数码管上显示。

(4)测量响应时间小于等于10秒。

以上(1)~(4)基本功能要求均需实现。

2.发挥部分(1)提高测量频率范围,如10Hz~100KHz或更高、更低频率,提高频率的测量绝对值误差,如达到±1Hz。

(2)可以设置量程分档显示,如X1档(显示范围1Hz~9999Hz),X10档(显示范围0.001KHz~9.999KHz),X100档(显示范围0.100KHz~999.9KHz)...可以自定义各档位的范围。

量程选择可以通过按键选择,也可以通过程序自动选择量程。

(3)若是方波能够测量方波的占空比,并通过数码管显示。

以上(1)~(3)发挥功能可选择实现其中的若干项。

四、数字频率计工作原理概述1.数字频率计简介在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。

而数字频率计是采用数字电路制成的实现对周期性变化信号的频率的测量。

2.常用频率测量方法:方案一采用周期法。

通过测量待测信号的周期并求其倒数,需要有标准倍的频率,在待测信号的一个周期内,记录标准频率的周期数,这种方法的计数值会产生最大为±1个脉冲误差,并且测试精度与计数器中记录的数值有关,为了保证测试精度,测周期法仅适用于低频信号的测量。

毕业设计 基于fpga的等精度数字频率计的设计

毕业设计 基于fpga的等精度数字频率计的设计

本科生毕业论文题目:基于fpga的等精度数字频率计的设计摘要在电子工程,资源勘探,仪器仪表等相关应用中,频率计是工程技术人员必不可少的测量工具。

频率测量也是电子测量技术中最基本最常见的测量之一。

不少物理量的测量,如转速、振动频率等的测量都涉及到或可以转化为频率的测量。

基于传统测频原理的频率计的测量精度会随被测信号频率的下降而降低。

本文介绍了一种基于FPGA的等精度数字频率计,它不但具有较高的测量精度,而且在整个测量区域能保持恒定的测量精度。

文章首先介绍了硬件描述语言(HDL)的发展,以VHDL为核心,说明了利用VHDL语言进行设计的步骤。

然后介绍FPGA器件的基本结构和开发流程,接着阐述等精度数字频率计的工作原理以及利用VHDL语言实现数字频率计的具体做法,重点是利用BCD码减法实现的BCD码除法器的设计,最后还利用modelsim软件对其进行了仿真,具体分析验证了此设计的正确性。

关键词:FPGA VHDL 等精度BCD码除法AbstractCymometer is a necessary measure tool for technical engineers in electronic engineering , resource exploration and apparatus using . frequency mesure is one of the most essential and the most common mesure of electronic mesure technology . many physical quantities’ mesure , such as rotate speed , vibration frequency’s mesure , is related with or can be transformed into frequency mesure.The precision of cymometer based on traditional frequency-testing theory will decrese when the measured frequency becomes lower. this article introduces a cymometer of same-precision based on FPGA. The cymometer not only has high precision, but also its precision doesn’t decrese when the measured frequency becomes lower.This article first introduces the development of HDL , focusing on VHDL , present the step of design of VHDL . then it introduces the basic structure and the develop flow of FPGA device . in the end , it introduces the theory of cymometer and the specific implement of cymometer based on VHDL , emphasizing the theory of implementing BCD division. the function simulation and logic synthesis also come out, showing the correction of the design .Keywords: FPGA VHDL same-precision BCD division目录第一章前言............................................................................................................... 错误!未定义书签。

基于FPGA和单片机的高精度数字频率计的设计与实现

基于FPGA和单片机的高精度数字频率计的设计与实现

基于FPGA和单片机的高精度数字频率计的设计与实现【摘要】本文介绍了基于FPGA和单片机的高精度数字频率计的设计与实现。

在文章阐述了研究背景、研究意义和研究内容。

在首先介绍了数字频率计的工作原理,然后分别讨论了基于FPGA和单片机的数字频率计的设计方案。

接着详细描述了硬件系统设计和软件系统设计。

在通过实验结果分析展示了设计的可靠性和高精度性能,并总结了设计的优缺点。

展望未来发展方向,提出了进一步优化和改进的建议。

通过本文的研究与实现,可为数字频率计的设计提供一种更高精度和更有效的解决方案,具有较好的应用前景和推广价值。

【关键词】FPGA、单片机、高精度数字频率计、硬件系统设计、软件系统设计、实验结果分析、设计优缺点总结、未来展望、数字频率计的原理、基于FPGA的设计、基于单片机的设计、研究背景、研究意义、研究内容。

1. 引言1.1 研究背景数字频率计是一种广泛应用于电子领域的重要仪器,用于准确测量信号的频率。

随着现代电子设备对频率精度的要求日益提高,高精度数字频率计的研究与应用变得越来越重要。

目前市面上的数字频率计大多基于FPGA或单片机进行设计,这两种方案各有优劣。

基于FPGA的数字频率计可以实现高速、高精度的频率测量,适用于需要处理大量数据的场景。

而基于单片机的数字频率计则更便于实现低功耗、低成本的设计,适用于对精度要求不是特别高的场合。

目前关于基于FPGA和单片机的高精度数字频率计设计的研究还比较有限,对于如何结合FPGA和单片机的特点,设计出既具有高精度又具有低成本的数字频率计仍有待探讨。

本文将重点研究基于FPGA和单片机的高精度数字频率计的设计与实现,旨在探讨如何充分发挥两者的优势,实现高精度、低成本的频率测量系统。

通过本研究,有望为数字频率计的设计与应用提供新的思路和方法。

1.2 研究意义数字频率计是现代电子技术中常用的一种测量设备,可以用于测量各种信号的频率。

随着科学技术的不断发展,对数字频率计的精度和性能要求越来越高。

基于FPGA的高精度频率计的设计与实现

基于FPGA的高精度频率计的设计与实现

Ab s t r a c t :I n o r d e r t o me a s u r e t h e f r e q u e n c y o f a s i n u s o i d a l s i g n a l i n h i g h p r e c i s i o n,t h e a r t i c l e d e s i g n s a d i g i t f r e q u e n c y me t e r b a s e d o n F P GA ( f i e l d p r o g r a mma b l e g a t e a r r a y ) .Be s i d e s me a s u r i n g f r e q u e n c y,t h e d e v i c e c a n a l s o me a s u r e t h e t i me i n t e r v a l o f t wo s q u a r e s i g n a l s a n d t h e d u t y r a t i o o f a p u l s e s i g n a 1 . Wi t h F P GA a n d M CU ( mi c r o c o n t r o l u n i t )a s t h e k e r n e l 。t h e me t e r a d o p t s t h e me t h o d c a l l e d‘ Pa r a l l e l Mu l t i — Wa y s Co u n t i n g Me t h o d’t o r e a l i z e t h e h i g h p r e c i s e me a s u r e me n t .S p e c i f i c a l l y ,s i g n a l s wo u l d i n p u t FP GA a f t e r h i g h f r e q u e n c y a mp l i f i c a t i o n mo d u l e a n d h i g h f r e q u e n c y c o mp a r i n g mo d u l e .An d t h e n s i g n a l s wo u l d b e d i v i d e d i n t o mu l t i - wa y s t o d e c r e a s e f r e q u e n c y b y d i f f e r e n t t i me s a n d b e c o u n t e d s y n c h r o n o u s l y .Fi n a l l y,M CU wo u l d s e l e c t t h e mo s t a c c u r a t e r e s u l t a n d g e t t h e f i n a l r e s u l t a f t e r c o mp u t i n g . Af t e r t h e t e s t ,t h e me t e r c a n me a s u r e t h e f r e q u e n c y o f a s i n u s o i d a l s i g n a l f r o m 1 Hz t o 1 9 9 M Hz a n d f r o m 1 0 mVr ms t o l Vr ms wi t h t h e r e l a t i v e e r r o r n o t a b o v e 0 . 0 0 0 1 ;t h e me t e r c a n me a s u r e t h e t i me i n t e r v a l o f t wo s q u a r e s i g n a l s f r o m 5 0 m V t o 1 V a n d f r o m 1 0 0 Hz t o 1 M Hz wi t h t h e r e l a t i v e e r r o r n o t a b o v e 1 ;t h e me t e r c a n me a s u r e t h e d u t y

基于FPGA和单片机的高精度数字频率计的设计与实现

基于FPGA和单片机的高精度数字频率计的设计与实现

基于FPGA和单片机的高精度数字频率计的设计与实现1. 引言1.1 背景介绍数字计数器是一种广泛应用于科学研究、工程技术和日常生活中的仪器设备,用于测量信号的频率、周期和脉冲数量等。

随着科技的不断发展,对于数字频率计的精度和性能要求也越来越高。

传统的数字频率计主要基于单片机或专用芯片的设计,存在精度受限、功能单一等问题。

而基于FPGA和单片机的高精度数字频率计能够充分发挥FPGA在并行计算和高速数据处理方面的优势,结合单片机的灵活性和易编程性,实现更高精度、更丰富功能的数字频率测量。

本文基于FPGA和单片机,设计并实现了一种高精度数字频率计,具有高度精准、快速响应的特点。

通过软硬件结合的设计思路,实现了数字信号频率的精确测量,同时在硬件设计和软件设计上都进行了详细优化和实现。

系统测试结果表明,该数字频率计具有较高的测量精度和稳定性,在实验中取得了良好的效果和准确的测量数据。

此设计不仅具有实用价值,还对数字频率计的进一步研究和应用具有一定的参考意义。

1.2 研究意义随着科技的发展,对于频率计的要求也越来越高,需要具备更高的精度、更快的响应速度和更广泛的适用范围。

设计和实现基于FPGA 和单片机的高精度数字频率计具有重要的研究意义。

通过本文的研究,可以深入了解数字频率计的工作原理和设计方法,为高精度频率计的研究和应用提供参考和借鉴。

本文的研究成果还可以为提高电子测量仪器的性能,推动数字频率计技术的发展做出重要的贡献。

本文的研究具有重要的理论和实践意义。

1.3 研究现状当前,数字频率计在电子测量领域具有重要的应用价值,其精度和稳定性对于提高测量精度和准确性至关重要。

目前,数字频率计的研究主要集中在硬件设计和软件算法的优化上。

在硬件设计方面,传统的数字频率计主要采用FPGA(现场可编程门阵列)作为核心控制器,实现高速、高精度的频率测量。

通过合理的电路设计和时序控制,可以实现更稳定和准确的频率计算。

在软件设计方面,研究者们致力于优化频率计算算法,提高频率计算的速度和精度。

基于FPGA的高精度频率计设计

基于FPGA的高精度频率计设计

基于FPGA的高精度频率计设计随着现代通信技术的发展,对于高精度频率计的需求越来越大。

传统的频率计主要基于微处理器实现,但在高频率和高精度要求下,性能和灵活性受到了限制。

为了满足这种需求,基于可编程逻辑器件(FPGA)的高精度频率计应运而生。

FPGA是一种可编程逻辑设备,可以重新配置电路结构以实现不同的功能。

具有并行处理、高速度和灵活性等特点,非常适合于高精度频率计的设计。

基于FPGA的高精度频率计可以实时测量和显示输入信号的频率,并具有较高的精度和稳定性。

设计一个基于FPGA的高精度频率计,首先需要确定设计的规格和目标。

一般来说,设计应具有以下要求:1.高频率计数:能够支持较高的输入频率范围,例如数百兆赫兹(MHz)。

2.高精度计数:能够实现较高的计数精度,通常为小数点后几位。

3.快速响应:能够实现实时计数和显示,以满足高速输入信号的需求。

4.稳定性和可靠性:稳定的输入信号计数和显示,在长时间运行中保持精度和稳定性。

根据以上要求,可以使用以下步骤设计一个基于FPGA的高精度频率计:1.输入接口:设计输入接口来接收频率信号。

可以使用差分输入接口或单端输入接口,根据需要选择合适的接口方式。

需要考虑抗干扰能力和信号质量等因素。

2.时钟同步:使用FPGA内部或外部的时钟信号来同步输入信号。

通过与时钟信号同步,可以实现准确稳定的计数和显示。

3.计数逻辑:设计计数逻辑电路来对输入信号进行计数。

可以使用计数器模块实现计数功能。

FPGA内部计数器可以满足较低频率要求,但对于较高频率,可能需要使用外部计数器模块。

4.频率计算:根据计数结果和计数时间,计算输入信号的频率。

可以使用FPGA内部的时钟模块来计算时间间隔,然后使用计数结果和时间间隔来计算频率。

高精度频率计可以通过多次计数和平均来提高计算精度。

5.显示和输出:设计输出接口来显示和输出测量结果。

可以使用FPGA内部的显示模块来显示频率值,也可以通过外部接口输出频率值。

基于 fpga 的数字频率计的设计与实现

基于 fpga 的数字频率计的设计与实现

基于 FPGA 的数字频率计的设计与实现随着现代科技的不断发展,我们对数字信号处理的需求也越来越高。

数字频率计作为一种用来测量信号频率的仪器,在许多领域有着广泛的应用,包括无线通信、雷达系统、声音处理等。

在这些应用中,精确、高速的频率测量常常是至关重要的。

而基于 FPGA 的数字频率计正是利用了 FPGA 高速并行处理的特点,能够实现高速、精确的频率计算,因此受到了广泛关注。

本文将从设计思路、硬件实现和软件调试三个方面,对基于 FPGA 的数字频率计的设计与实现进行详细讲解。

一、设计思路1.1 频率计原理数字频率计的基本原理是通过对信号进行数字化,然后用计数器来记录单位时间内信号的周期数,最后根据计数器的数值和单位时间来计算信号的频率。

在 FPGA 中,可以通过硬件逻辑来实现这一过程,从而实现高速的频率计算。

1.2 FPGA 的优势FPGA 作为一种可编程逻辑器件,具有并行处理能力强、时钟频率高、资源丰富等优点。

这些特点使得 FPGA 在数字频率计的实现中具有天然的优势,能够实现高速、精确的频率测量。

1.3 设计方案在设计数字频率计时,可以采用过采样的方法,即对输入信号进行过取样,得到更高精度的测量结果。

还可以结合 PLL 锁相环等技术,对输入信号进行同步、滤波处理,提高频率测量的准确性和稳定性。

二、硬件实现2.1 信号采集在 FPGA 中,通常采用外部 ADC 转换芯片来对输入信号进行模数转换。

通过合理的采样率和分辨率设置,可以保证对输入信号进行精确的数字化处理。

2.2 计数器设计频率计最关键的部分就是计数器的设计。

在 FPGA 中,可以利用计数器模块对输入信号进行计数,并将计数结果送入逻辑单元进行进一步的处理。

2.3 频率计算通过对计数结果进行适当的处理和归一化,可以得到最终的信号频率。

在这一过程中,需要注意处理溢出、误差校正等问题,以保证频率测量的准确性和稳定性。

三、软件调试3.1 FPGA 开发环境在进行基于 FPGA 的数字频率计设计时,可以选择常见的开发工具,例如 Xilinx Vivado 或 Quartus II 等。

(完整版)基于FPGA的等精度频率计的设计与实现毕业论文

(完整版)基于FPGA的等精度频率计的设计与实现毕业论文

第一章课题研究概述1.1课题研究的目的和意义在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此,频率的测量就显得更为重要。

测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。

目前常用的测频方案有三种:方案一:完全按定义式F=N/T进行测量。

被测信号Fx经放大整形形成时标ГX,晶振经分频形成时基TR。

用时基TR开闸门,累计时标ГX的个数,则有公式可得Fx=1/ГX=N/TR。

此方案为传统的测频方案,其测量精度将随被测信号频率的下降而降低。

方案二:对被信号的周期进行测量,再利用F=1/T(频率=1/周期)可得频率。

测周期时,晶振FR经分频形成时标ГX,被测信号经放在整形形成时基TX控制闸门。

闸门输出的计数脉冲N=ГX/TR,则TX=NГX。

但当被测信号的周期较短时,会使精度大大下降。

方案三:等精度测频,按定义式F=N/T进行测量,但闸门时间随被测信号的频率变化而变化。

如图1所示,被测信号Fx经放大整形形成时标ГX,将时标ГX经编程处理后形成时基TR。

用时基TR开闸门,累计时标ГX的个数,则有公式可得Fx=1/ГX=N/TR。

此方案闸门时间随被测信号的频率变化而变化,其测量精度将不会随着被测信号频率的下降而降。

本次实验设计中采用的是第三种测频方案。

等精度频率计是数字电路中的一个典型应用,其总体设计方案有两种:方案一:采用数字逻辑电路制作,用IC拼凑焊接实现。

其特点是直接用现成的IC组合而成,简单方便,但由于使用的器件较多,连线复杂,体积大,功耗大,焊点和线路较多将使成品稳定度与精确度大打折扣,而且会产生比较大的延时,造成测量误差、可靠性差。

方案二:采用可编程逻辑器件(CPLD)制作。

随着现场可编程门阵列FPGA的广泛应用,以EDA工具作为开发手段,运用VHDL等硬件描述语言语言,将使整个系统大大简化,提高了系统的整体性能和可靠性。

基于FPGA和单片机的高精度数字频率计的设计与实现

基于FPGA和单片机的高精度数字频率计的设计与实现

基于FPGA和单片机的高精度数字频率计的设计与实现一、引言数字频率计是一种用来测量信号频率的仪器,通常用于检测和控制电子电路、通讯系统、工业自动化装置等领域。

在实际应用中,频率计对于频率的测量精度要求很高,同时还需要具备快速响应、稳定性好和抗干扰能力强等特点。

本文将介绍一种基于FPGA和单片机的高精度数字频率计的设计与实现。

二、设计原理1. 信号输入高精度数字频率计的设计首先需要对信号进行采集和处理。

通常采集的信号是来自于传感器、射频发射机、计时器等设备输出的波形信号。

这些信号可能是方波、正弦波等各种周期信号,需要进行适当的信号调理才能进行后续的数字处理。

2. FPGA实时处理FPGA(Field Programmable Gate Array,现场可编程门阵列)是一种集成了大量可编程逻辑和存储器的可重构数字电路芯片。

它的设计灵活、速度快、功耗低等特点,非常适合于数字信号处理任务。

在本设计中,FPGA用于对输入信号进行数字化、滤波、计数等处理,以提高频率计的测量精度和稳定性。

3. 单片机控制和显示单片机通常用于系统的控制和显示。

它可以对FPGA进行配置和控制,同时还可以将测量结果显示在液晶屏或者其他显示设备上,方便用户进行实时监测和操作。

三、设计流程1. 信号采集和调理首先需要对采集的信号进行滤波和数字化处理,使其能够被FPGA所识别。

这一步通常需要采用运算放大器进行信号放大、滤波等处理,使得信号的波形清晰、稳定,以便后续的数字处理。

2. FPGA处理在FPGA中,需要设计一个数字频率计的计数器,用于对输入信号的周期进行计数,从而得到它的频率。

还需要设计一个时钟模块,用于控制计数器的计数频率和精度。

五、性能测试1. 测试平台搭建搭建一个测试平台,将设计的高精度数字频率计与标准信号源相连,以验证其测量精度和稳定性。

需要设计合适的测试程序,对频率计进行全面的性能测试。

2. 测试结果分析通过对测试结果进行分析,得到设计的数字频率计的测量精度、抗干扰能力、快速响应性等性能参数。

基于FPGA的高精度频率计设计实验报告.doc

基于FPGA的高精度频率计设计实验报告.doc

基于FPGA的高精度频率计设计实验一.实验目的1.熟悉数字存储示波器基本工作原理。

2.掌握硬件测频和测周的基本原理。

3.掌握在现有综合实践平台上开发DSO硬件频率U•模块的方案及流程。

二.实验内容1.结合数据采集、存储和触发模块的FPGA代码,理解DSO的基本工作原理。

2.编写FPGA代码完善DSO的频率计模块,实现高精度测频和测周功能。

三.预备知识1.了解综合实践平台硬件结构。

2.熟悉Xilinx ISE Design Suite 13.2开发环境使用方法。

3.熟悉Verilog HDL硬件描述语言的语法及运用。

四.实验设备与工具硬件:测试技术与嵌入式系统综合实践平台,PC机Pentium 100以上,XILINX USB调试下载器。

软件:PC机Win XP操作系统,Xilinx ISE Design Suite 13.2 开发环境五.实验步骤1.打开工程文件SYPT_FPGA.xise2.打开freq_measure.v和period_measure.v文件,先根据定义好的模块端口输入输山信号,结合测频和测周的原理,在提示添加代码处补充代码:a.测频模块(freq_measure.v)测频模块的基本功能是测量闸门吋间内被测信号的脉冲个数。

实现过程如下:(1)由标准时钟计数产生一个预设闸门信号,然后用被测信号同步预设闸门信号产生实际闸门信号;要求:预设闸门时间可根据用户选择信号(select_parameter)在50ms、100ms、Is、10s屮切换。

具体代码如下阁//select gate value: CNT_GATA_VALUEalways @(posedge clkin)begincase (select_parauceter [1:0])2*b00: CNT_GATA_VALUE = 500000; //gate 50ms2*b01: CNT:GATA:VALUE = 1000000; //gate 100ms2*bl0: CNT:GATA:VALUE = 10000000; //gate Is2^11: CNT:GATA:VALUE = 100000000; //gate 10sendcaseend(2)标准时钟和被测信号在实际闸门内计数。

一种基于FPGA的高精度频率测量电路设计

一种基于FPGA的高精度频率测量电路设计

一种基于FPGA的高精度频率测量电路设计摘要:介绍了一种基于FPGA的采用等精度测量方法的频率测量电路设计。

阐述了等精度频率测量的原理与方法,介绍了射频信号调理方法、分频电路设计、高稳晶振的选择与射频信号放大电路设计。

经实际应用证明,该频率测量电路在0.5MHz到1.2GHz频率范围内,频率测量精度可达到5×10-8,符合实际应用的要求。

关键词:FPGA;等精度测量;高稳晶振;信号放大中文引用格式:0 引言频率测量电路广泛应用于通信系统收信机、发信机性能指标测试。

频率是指在单位时间内周期信号变化的次数。

频率通常用符号f来表示,其基本单位为Hz,在无线电技术中,经常使用kHz、MHz以及GHz来作为频率单位[1]。

常用的频率测量方法有直接计数法、模拟内插法与等精度测量法。

等精度测量法首先给出宽度一定的预置闸门脉冲,利用D触发器实现预置闸门时间与被测信号同步从而使闸门时间是被测信号整数倍,同时统计闸门时间内标准信号脉冲个数,从而得到被测信号频率,等精度频率测量存在标准信号±1Hz误差,通过提高标准信号频率可以减小测量误差。

等精度频率测量可以实现整个测试频段等精度测量。

1 等精度测频原理采用等精度测频法实现频率测量,利用两个计数器分别对被测信号和标准时钟进行计数,而且这两个计数器的使能信号是将预制闸门信号经由被测信号同步而产生,保证闸门时间是被测信号周期的整数倍。

因此消除了对被测信号计数所产生的±1Hz误差。

测量原理框图如图1所示。

图1 频率测量原理框图预置闸门时间为T,经过D触发器处理后变为与被测信号同步的实际闸门T1。

标准时钟频率为f0,计数值为N0,被测信号计数值为Nx,被测信号频率为f0×Nx / N0。

被测信号的相对测量误差与闸门时间和标准时钟频率有关,频率测量精度≤1/(T1×f0)。

2 系统软硬件设计系统由硬件与软件两部分组成。

硬件包括FPGA信号处理电路、射频信号输入衰减电路、分频电路、信号调理电路、高稳晶振电路与显示电路。

基于fpga的数字频率计设计

基于fpga的数字频率计设计

基于FPGA的数字频率计设计随着科学技术的不断进步,数字电子技术在各个领域都得到了广泛的应用。

其中,FPGA(现场可编程门阵列)作为一种灵活、可编程、可重构的数字电路设备,具有较高的性能和灵活性,被广泛应用于数字信号处理、通信、图像处理等各个领域。

本篇文章将介绍基于FPGA的数字频率计设计。

一、概述数字频率计是一种用于测量信号频率的设备,可以方便快速地获取信号的频率信息。

传统的数字频率计通常采用微处理器或专用集成电路来实现,但是这些方案在某些应用场景下存在着局限性。

使用FPGA来设计数字频率计,既可以充分利用FPGA的灵活性和并行性,又可以实现高性能和低功耗的设计。

二、基于FPGA的数字频率计设计原理基于FPGA的数字频率计主要通过计数器和时钟信号来实现。

其设计原理可以分为以下几个步骤:1. 时钟信号同步:通过FPGA内部的PLL(锁相环)模块,可以实现时钟信号的同步和稳定。

2. 信号输入:将待测信号输入FPGA,可以通过外部接口或模拟输入模块实现。

3. 计数器设计:利用FPGA内部的计数器模块,对输入信号进行计数,从而获取信号的频率信息。

4. 频率计算:根据计数器的计数值和时钟信号的周期,可以计算出输入信号的频率信息。

三、基于FPGA的数字频率计设计实现基于上述原理,可以利用FPGA内部的逻辑资源,设计出一个高性能的数字频率计。

具体实现步骤如下:1. 确定输入信号的接口:选择适合的输入接口,可以是数字信号接口、模拟信号接口或者通用IO口。

2. 设计计数器模块:根据待测信号的频率范围和精度要求,设计合适的计数器模块,可以结合FPGA的时钟管理模块实现高精度计数。

3. 编写频率计算算法:根据计数器得到的计数值和时钟信号的周期,设计频率计算算法,可以采用移位运算、累加运算等实现高效的频率计算。

4. 实现显示与输出:设计合适的显示模块和输出接口,将测得的频率信息在显示屏或者外部设备上进行输出。

四、基于FPGA的数字频率计设计应用基于FPGA的数字频率计设计可以广泛应用于各种领域,如通信、测控、仪器仪表等。

基于FPGA高精数字频率计的设计

基于FPGA高精数字频率计的设计

20世纪末,数字电子技术得到了飞速发展,有力地推动和促进了社会生产力的发展和社会信息化的提高,数字电子技术的应用已经渗透到人类生活的各个方面。

从计算机到手机,从数字电话到数字电视,从家用电器到军用设备,从工业自动化到航天技术,都尽可能采用了数字电子技术。

现代电子设计技术的核心是EDA技术。

EDA技术就是以计算机为工具,在EDA软件平台上,对硬件语言HDL为系统逻辑描述手段完成的设计文件,自动的完成逻辑编译、逻辑化简、逻辑综合及优化、逻辑仿真,直至对特定目标芯片的适配编译、逻辑映射和编程下载等工作(文本选用的开发工具为Altera公司的MAX+PLUSII)。

EDA的仿真测试技术只需要通过计算机就能对所设计的电子系统从各种不同层次的系统性能特点完成一系列准确的测试与仿真操作,大大提高了大规模系统电子设计的自动化程度。

设计者的工作仅限于利用软件方式,即利用硬件描述语言(如VHDL)来完成对系统硬件功能的描述。

EDA技术使实现,极大地提高了设计效率,缩短了设计周期,节省了设计成本。

今天EDA技术已经成为电子设计的重要工具,无论是设计芯片还是设计系统,如果没有EDA工具的支持,都将是难以完成的。

EDA工具已经成为现代电路设计工程师的重要武器,正在发挥越来越重要的作用。

为了提高自身的实践能力与专业知识应用能力,为了更快地与社会实际和社会需要接轨,这次毕业设计我选择了以EDA技术为方向,设计数字频率计,在所参考的文献中,都包含了这一技术。

相信通过此次毕业设计将为我更全面更系统更深入地掌握EDA技术打下良好的基础。

EDA发展历程EDA技术伴随着计算机、集成电路、电子系统设计的发展,经历了三个发展阶段,即:20世纪70年代发展起来的CAD技术;0世纪80年代开始应用的CAE技术;20世纪90年代后期,出现的以硬件描述语言、系统级仿真和综合技术为特征的EDA技术,这时的EDA工具不仅具有电子系统设计的能力,而且能提供独立于工艺和厂家的系统级设计能力,具有高级抽象的设计构思手段。

基于FPGA的数字频率计的设计

基于FPGA的数字频率计的设计

基于FPGA的数字频率计的设计摘要:数字频率计(FREQ)是一种用于计算信号频率的设备。

本文提出了一种基于FPGA的数字频率计的设计方案,使用Verilog HDL实现了数字频率计,可以实现输入信号频率的测量和显示。

该数字频率计的设计具有快速响应、低延迟、高精度的特点,并且适用于各种频率范围的输入信号。

关键词:数字频率计;FPGA;Verilog HDL;测量;显示;精度1. 简介数字频率计是一种用于测量信号频率的设备,广泛应用于电子、通信、计算机等领域。

传统的频率计一般采用模拟电路实现,但其精度和速度有限,且易受到噪声和温度等因素的影响,难以应用于高精度和高速测量。

随着FPGA技术的不断发展,基于FPGA的数字频率计逐渐成为一种新的解决方案。

2. 设计方案本文提出了一种基于FPGA的数字频率计的设计方案,使用Verilog HDL实现了数字频率计,可以实现输入信号频率的测量和显示。

数字频率计的核心是计数器,通过计数器来测量输入信号的周期,并计算出信号的频率。

本设计方案采用了高速计数器的设计思路,具体步骤如下:(1) 输入信号经过芯片引脚电路,进入FPGA芯片。

(2) FPGA内置的输入输出模块将输入信号进行采样和滤波处理,得到纯净的数字信号。

(3) 数字信号经过计数器进行计数,计数值存储在计数器的寄存器中。

(4) 计数值经过时钟分频和计算,得到输入信号的周期和频率。

(5) 输入信号的频率通过显示模块在数码管或LCD显示屏上显示,同时可以通过按键或旋转编码器进行设置和控制。

3. 实验结果本设计方案采用ALTERA CYCLONE III系列FPGA芯片,频率范围从1Hz到50MHz,精度为0.01Hz。

实验结果表明,数字频率计响应速度快,延迟较低(约为100ns),精度高(误差小于0.1%),同时可以适应各种信号频率范围的测量。

4. 总结本文提出了一种基于FPGA的数字频率计的设计方案,采用了高速计数器的设计思路,具有快速响应、低延迟、高精度的特点,并且适用于各种频率范围的输入信号。

基于FPGA的等精度频率计的设计

基于FPGA的等精度频率计的设计

基于FPGA的等精度频率计的设计一、引言频率计是一种广泛应用于电子领域的仪器设备,用于测量信号的频率。

常见的频率计有软件频率计和硬件频率计两种。

软件频率计主要基于计算机软件,通过采集到的信号数据来计算频率。

硬件频率计则是基于专用的硬件电路,直接对信号进行采样和处理,具有实时性强、准确度高的优点。

本文将基于FPGA设计一种等精度频率计,旨在实现高精度、高稳定性的频率测量。

二、设计原理本设计采用基于FPGA的硬件频率计方案,其主要原理是通过对输入信号的时间计数,并结合固定参考值,计算出信号的频率。

具体流程如下:1.信号输入:将待测量的信号输入至FPGA芯片,输入信号的幅度应符合输入电平范围。

2.信号计数:利用FPGA芯片内部的计数器,对输入信号进行计数,并记录计数器的数值。

计数器的值与输入信号的频率成反比,即计数器值越大,信号频率越低。

3.定时器触发:通过定时器产生一个固定的参考信号,用于触发计数器的复位操作。

定时器的频率应足够高,以保证计数器能够实时精确计数。

4.数据处理:计数器值与定时器触发的时间周期共同决定了输入信号的频率。

通过计算参考值与计数器值的比例,可以得到准确的频率值。

5.结果输出:将计算得到的频率值输出至显示屏或其他外部设备,以便用户进行查看。

三、设计方案1.FPGA选型:选择一款适合频率计设计的FPGA芯片,要求其具有较高的计数能力、较大的存储空间和丰富的外设接口。

2.输入电路设计:设计一个合适的输入电路,将待测信号进行电平调整和滤波处理,以确保输入信号的稳定性和合适的幅度范围。

3.计数器设计:利用FPGA内部的计数器模块,进行计数操作。

根据需要选择适当的计数器位宽,以满足待测频率范围的要求。

4.定时器设计:通过FPGA内部的时钟源和计时器模块,设计一个精确的定时器,用于触发计数器的复位操作。

定时器的频率要足够高,以保证计数的准确性。

5.数据处理设计:利用FPGA内部的算数逻辑单元(ALU)对计数器值进行处理,计算得到准确的频率值。

基于FPGA的同步测周期高精度数字频率计的设计

基于FPGA的同步测周期高精度数字频率计的设计

基于FPGA的同步测周期高精度数字频率计的设计在现代数字电路设计中,采用FPGA结合硬件描述语言VHDL可以设计出各种复杂的时序和逻辑电路,具有设计灵活、可编程、高性能等优点。

本文将介绍一种基于FPGA,采用同步测周期的方法来实现宽频段高精度数字频率计的设计。

图1 同步测周期计数器同步测周期频率计的原理在数字频率计中,测周期计数器是主要的电路,其功能是:使用标准时钟以被测频率信号的一个周期为时限进行脉冲计数。

传统的测周期计数器采用门控计数器来实现,即采用一个同被测频率信号周期宽度相同的门控脉冲来控制计数器的计停。

其缺点在于无法实现对被测信号的连续测周期计数。

本文设计的同步测周期计数器如图1所示。

图中计数器的计数时钟为clk0,频率为f0;被测信号为clkx,频率为fx。

采用一个D触发器对输入的被测信号clkx进行同步,同步输出为s0。

在clk0的上升沿到来之前,如果clkx出现了上升跳变,则le信号变为高电平,计数器ct的重载信号和锁存器cout的使能信号有效。

当clk0的上升沿到来时,计数器的计数值锁存,同时计数器重载为1,重新开始计数,le变为低电平。

计数器在其他时间里进行加1计数,锁存器的值则保持不变。

该测周期计数器能在clkx的每个上升沿之后输出计数值,实现了对被测信号进行测周期计数,并始终输出其最新一个周期的计数值,图中cint端输出一个clk0周期宽度的高脉冲,用于指示新的计数值锁存。

图2 同步测周期数字频率计图3 频率计cint的改进电路设该计数器的测周期计数值为M0,由于同步测周期法的分辨率为一个标准时钟周期,因此有: 该同步测周期计数器的测周期计数值最小为2,要求被测信号高低电平的宽度大于一个标准时钟周期。

基于上述同步测周期计数器,本文设计了如图2所示的高精度数字频率计。

freq_div模块是一个分频器,对标准时钟clk0进行系数为C0的分频。

频率计采用了两个同步测周期计数器同时工作,计数值输出端口分别为cout和mout。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于FPGA的高精度频率计设计摘要频率计是一种应用非常广泛的电子仪器,也是电子测量领域中的一项重要内容,而高精度的频率计的应用尤为广泛。

目前宽范围、高精度数字式频率计的设计方法大都采用单片机加高速、专用计数器芯片来实现。

传统的频率测量利用分立器件比较麻烦,精度又比较低,输入信号要求过高,很不利于高性能场合应用。

本论文完成了高精度数字频率计硬件设计和软件设计。

该数字频率计主要包括FPGA和单片机两大部分。

其中FPGA部分又可分为数据测量模块、FPGA和单片机接口模块、FPGA和数码管动态扫描部分。

FPGA部分采用verilog语言编写了电路的各模块电路,选用了当前比较流行的EDA开发软件Quartus II作为开发平台,所有模块程序均通过了编译和功能仿真验证。

对测频系统的设计流程、模型的建立和仿真做出了具体详细的研究,验证了该系统的正确性。

单片机部分采用C51编写了控制软件。

本设计中以FPGA器件作为系统控制的核心,其灵活的现场可更改性,可再配置能力,对系统的各种改进非常方便,在不更改硬件电路的基础上还可以进一步提高系统的性能。

关键词:频率计,单片机,FPGA,电子设计自动化Design of High-accuracy Digital Frequency MeterBased on FPGAABSTRACTFrequency meter is a kind of electronic instrument applied widely. A kind of high-accuracy digital frequency meter is designed based on FPGA in this paper.At present extends the scope,the high accuracy digital frequency meter's design method to use the monolithic integrated circuit to add, the special-purpose counter chip mostly to realize high speed.The design of system hardware and system software is accomplished in the paper. System consists of FGPA and MCU. The circuit based on FPGA includes following some parts: data acquisition module, interface between FPGA and MCU, module scanning number tube. Every circuit module is realized by verilog.The platform of development is Quartus II and all modules procedure is demonstrated by compiling and simulation. Detailed research of design flow, model establishment and system simulation is done. The correctness of the system is demonstrated. The software based on MCU is programmed by C51.In this design takes the systems control by the FPGA component the core, its nimble scene alterability, may dispose ability again, is convenient to system's each kind of improvement, in does not change in hardware circuit's foundation also to be possible to further enhance system's performance.The system has the advantage of high-accuracy and convenience. It’s practicability of frequency meter is well.KEY WORDS: Frequency meter, MCU, FPGA, electronic design automation目录摘要........................................................................................................................................ I ABSTRACT .............................................................................................................................. I I 第1章绪论 (1)1.1研究背景及意义 (1)1.2国内外研究现状 (1)1.2.1 频率计的测量方法 (1)1.3EDA技术简介 (3)1.4本论文内容及安排 (4)第2章频率测量方法与原理 (6)2.1直接测频法 (6)2.2利用电路的频率特性进行测量 (7)2.2.1 电桥法测频 (8)2.2.2 谐振法测频 (8)2.2.3 频率—电压转换法测频 (8)2.3等精度测量法 (8)2.4本章小结 (10)第3章系统总体设计方案 (11)3.1频率计系统设计任务与分析 (11)3.1.1 频率计系统设计任务要求 (11)3.1.2 频率计系统设计任务分析 (11)3.2系统总体设计方案 (11)3.3FPGA内部功能模块设计 (12)3.4本章小结 (14)第4章系统的硬件电路设计 (15)4.1FPGA部分的硬件设计 (15)4.1.1 FPGA简介 (15)4.1.2 FPGA芯片的选型 (15)4.2单片机部分的硬件电路设计 (17)4.2.1 单片机的选型原则 (17)4.2.2 单片机控制电路的设计 (18)4.3外围电路设计 (19)4.3.1 键盘接口电路 (19)4.3.2 显示电路 (19)4.3.3 电源电路 (20)4.3.4 信号放大整形电路 (20)4.3.4 其它电路 (21)4.4本章小结 (22)第5章系统的软件设计 (23)5.1VERILOG HDL语言简介 (23)5.2QUARTUS II软件简介 (24)5.3基于EDA技术的设计方法 (25)5.3.1 自底向上的设计方法 (25)5.3.2 自顶向下的设计方法 (26)5.4FPGA内部功能模块设计 (26)5.4.1 D触发器模块 (27)5.4.2 32位高速计数器模块 (28)5.4.3 二选一选择器模块 (29)5.4.4 并—串转换接口模块 (31)5.4.5 串—并转换接口模块 (31)5.4.6 二进制数到8421BCD码转换模块 (32)5.4.7 LED动态扫描显示控制模块 (33)5.5单片机部分的软件设计 (35)5.6本章小结 (36)第6章结论 (37)致谢 (39)参考文献 (40)附录I 顶层原理图 (42)附录II VERILOG程序源代码 (43)基于FPGA的高精度频率计设计 1第1章绪论1.1 研究背景及意义在电子测量技术领域内,频率是一个最基本的参数。

它不仅是各种强弱电信号的物质本质参数之一,还因为频率信号的抗干扰性强、易于传输、可以获得较高的测量精度等特点使各种非电信号,诸如速度、力、图像、音讯等物理量都可以转换为电频率信号。

因此工程中很多测量,如用振弦式方法进行力的测量、时间测量、速度测量、速度控制等都涉及到频率测量[1]。

因此,研究频率计具有一定的实用价值[2]。

数字频率计是一种用十进制数字显示被测信号频率的数字测量仪器,它的基本功能是测量正弦信号、方波信号、尖脉冲信号以及其它各种单位时间内变化的物理量[3]。

在测控系统中,测频方法的研究越来越受到大家的重视,多种非频率量的传感信号都要转化为频率量来进行测量,而频率计作为测量频率的仪器被广泛应用于工业生产、实验室、国防等领域。

1.2 国内外研究现状由以上所述可见,研究设计一种测量精度高、测频范围广、在更小的空间内实现更多的功能、有灵活的现场可更改性的高精度数字频率计显得越来越重要。

本课题正是针对于此,研究、设计一种频率计,旨在提高频率测量的高精度、及时性等性能指标。

下面就简单的介绍下国内外关于数字频率计的研究现状。

1.2.1 频率计的测量方法目前频率测量的方法有很多,在进行频率测量时,往往关心的是频率所测量的范围、精度要求以及被测对象的特点。

而测量所能达到的精度,不仅取决于所测的频率源的精度,而且取决于所使用的测量设备和测量方法。

目前测量频率的方法有多种,频率计的种类也各种各样。

频率计的基本原理是用一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。

典型的传统的方法是计算每秒内待测信号的脉冲个数,此时闸门时间为1秒。

闸门时间也可以大于或小于1秒。

闸门时间越长,得到的频率值就越准确,但闸门时间越长则每测一次频率的间隔就越长;闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响[4]。

1)常用的数字频率的测量方法可以分为:陕西科技大学毕业设计说明书 2(a) 直接测量法(以下称M法)M法是在给定的闸门时间内测量被测信号的脉冲个数进行换算得出被测信号的频率。

这种测量方法的测量精度取决于闸门时间和被测信号频率。

当被测信号频率较低时将产生较大误差,除非闸门时间取得很大。

所以这种方法比较适合测量高频信号的频率。

(b) 周期测量法(以下称T法)T法是通过测量被测信号的周期然后换算出被测信号的频率。

这种测量方法的测量精度取决于被测信号的周期和计时精度,当被测信号频率较高时,对计时精度的要求就很高。

这种方法比较适合测量频率较低的信号。

(c) 综合测量法(以下称M /T法)M /T法具有以上两种方法的优点,它通过测量被测信号数个周期的时间然后换算得出被测信号的频率,可兼顾低频与高频信号,提高了测量精度。

相关文档
最新文档