热能与动力工程毕业论文热能与动力工程毕业论文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热能与动力工程毕业论文
目录
1 绪论 (3)
1.1 课题背景及研究意义 (3)
1.1.1 强化传热技术概述 (3)
1.1.2 翅片管换热器强化传热技术 (5)
1.2 翅片管强化传热的数值解法 (7)
1.3 平直翅片管换热器的研究进展及成果 (10)
1.3.1 平直翅片管实验研究进展及成果 (12)
1.3.2 平直翅片管数值研究进展及成果 (14)
1.4 本文的主要研究容 (15)
2 平直翅片管换热流动模型建立与分析 (17)
2.1 平直翅片管换热与流动特性物理过程的描述 (17)
2.2 平直翅片管换热器物理模型的建立 (17)
2.3.1 物理模型的几何尺寸 (17)
2.3.2 计算区域的选取 (18)
2.3 平直翅片管数学模型描述与简化假设 (19)
2.3.3 基本简化假设与定解条件 (19)
2.3.4 基本控制方程 (20)
2.3.5 相关参数的确定 (21)
2.3.6 物理模型的边界条件及初始条件 (22)
3 基于Fluent平直翅片管数值模拟及CFD简介 (24)
3.1 常用数值计算方法简介 (24)
3.2 CFD概述 (26)
3.2.1 计算流体动力学简介 (26)
3.2.2 计算流体动力学的工作步骤 (27)
3.2.3 计算流体动力学的特点 (28)
3.2.4 CFD软件介绍 (28)
3.3 FLUENT软件概述及GAMBIT简介 (29)
3.3.1 FLUENT程序结构 (30)
3.3.2 利用FLUENT的求解步骤 (30)
3.4 平直翅片管基于FLUENT数值模拟 (31)
3.4.1 计算区域网格的划分 (31)
3.4.2 求解器的选择 (33)
3.4.3 控制方程的离散及收敛标准 (33)
4 平直翅片管数值计算结果及数据分析 (34)
4.1 迭代残差图 (34)
4.2 雷诺数对平直翅片管换热与压降特性的影响 (34)
4.2.1 速度场分布 (35)
4.2.2 温度场分布 (36)
4.2.3 压力场分布 (37)
4.2.4 雷诺数Re与Nu关系 (37)
4.2.5 雷诺数Re与阻力系数f关系 (38)
4.2.6 雷诺数Re与综合性能指数j/f的关系 (39)
4.3 翅片间距对平直翅片管换热与压降特性的影响 (39)
4.3.1 翅片间距对换热性能的影响 (40)
4.3.2 翅片间距对压降特性的影响 (41)
4.4 管排数对平直翅片管换热与压降特性的影响 (41)
4.4.1 多排管束的流场分布 (41)
4.4.2 管排数对换热特性的影响 (42)
4.4.3 管排数对压降特性的影响 (43)
4.5 管排横向间距对平直翅片管换热与压降特性的影响 (43)
4.5.1 不同横向间距的管排流场分布 (44)
4.5.2 横向间距对换热性能的影响 (45)
4.5.3 横向间距对压降性能的影响 (45)
4.6 管排纵向间距对平直翅片管换热与压降特性的影响 (46)
4.6.1 不同纵向间距管排流场的分布 (46)
4.6.2 纵向间距对换热性能的影响 (47)
4.6.3 纵向间距对阻力性能的影响 (48)
4.7 管排方式对平直翅片管换热与压降特性的影响 (48)
4.7.1 顺排、叉排的流场分布 (49)
4.7.2 顺排、叉排方式换热性能的差异分析 (50)
4.7.3 顺排、叉排方式压降特性的差异分析 (50)
结论 (52)
致谢 (54)
参考文献 (55)
英文资料 (57)
中文翻译 (63)
1 绪论
1.1课题背景及研究意义
1.1.1强化传热技术概述
强化传热是上世纪六十年代开始蓬勃兴起的一种改善传热性能的先进技术。

它的任务是促进和适应高热流,以达到用最经济的设备来传输特定的热量,用最有效的冷却来保护高温部件的安全运行,以及用最高效率来实现能源的有效利用。

正因为如此传热强化在工业生产中有着十分广泛的应用,无论在动力、冶金、石油、化工、材料制冷等工程领域,还是航空航天、电子、核能等高技术领域,都不可避免的涉及热量的传递及其强化问题。

而换热器作为一种传热设备成为工业生产中不可缺少的设备[1]。

据统计,在现代石油化工企业中,换热器投资占30%~40%;在制冷机组中,蒸发器和凝结器的重量占机组总重量的30%~40%,动力消耗占总值的20%~30%;在热电厂中,如果将锅炉也视作换热设备,则换热器的投资约占整个电厂总投资的70%左右[2]。

因此,换热设备的合理设计、运转和改进对于整个企业投资、金属耗量、空间以及动力消耗有着重要影响。

近十几年来,世界面临着能源短缺的局面,为缓和能源紧的状况,世界各国竞相采取节能措施,大力发展节能技术已成为当前工业生产和人民生活中一个重要课题。

采用先进技术,节能降耗,倡导低碳生活和绿色的生存模式,提高能源有效利用率势在必行,正是出于这种目的,许多学者对强化换热技术进行了大量的研究,提高换热器的换热效率来节约能源。

换热设备的合理设计、运转和改进对节省资金、能源和金属是十分重要的,因而强化换热对国民经济发展具有重大意义。

强化传热是实现换热器高效、紧凑换热的主要途径,其基本元件的开发研究一直备受关注,各种行业对强化传热的具体要求各不相同,但归纳起来,强化传热技术总可以达到下列目的[2]:
(1) 减少初设计的传热面积和重量;
(2) 提高现有换热器的换热能力;
(3) 使换热器在较低的温差下工作;
(4) 减少换热器的阻力,以减少换热器运行时的动力消耗;
(5) 提高换热器的换热器能力,同时使得增加的阻力不至于太大。

其中,方法(5)是一种崭新的强化换热的方法,由于很多传统强化换热的方法会明显带来流动阻力的大幅增加,而很多时候阻力增加的代价是大于换热增加带来的效益的,出现这种情况就会得不偿失了。

方法(5)追求的目的是能够在换热系数和流动阻力这两者之间做一个较好的权衡,起到减阻强化传热的效果[3]。

不同的强化传热技术可满足不同的要求,如减少初次传热面积以减小换热器的体积和重量,或提高换热器的换热能力,或增大换热温差,或减少换热器的动力消耗。

这几个目的不可能同时满足,因为它们是相互制约的,在选择某一种强化技术前,必须先根据其具体任务,对设备体积、重量、投资及操作费用进行综合平衡[4]。

现在,对传统换热器设备强化换热研究主要集中在三大方向上[1]:一是开发新的换热器品种,如板式、螺旋板式、振动盘管式、板翅式等等,这些换热器设计思想都是尽可能地提高换热效率;二是对传统的管壳式换热器采取强化措施。

具体说来,就是用各种异型管取代原来的光管,现在较常用的有螺旋横纹(螺纹管)、横槽纹管、波纹管、翅管及管插入强化物质;三是换热设备的强化与用能系统的优化组合,就是说按照能量
的品味逐级利用,使用能的流程处于最合理的搭配,降低能耗实现全系统的节能。

无论是在壁面增加粗糙表面还是利用插入物来强化传热技术,虽然传热效果有了很大的改进,但这些方法有许多缺点,例如换热管的加工制作工艺过于复杂,增加金属消耗量从而增加换热器重量,又易于造成管子堵塞,换热能力增强的同时,阻力也相对增大许多,从而造成运行成本的提高等。

因此,它们在强化效果、加工造价、流道通畅、使用寿命、流动阻力等方面上都有待改进,尤其在上述诸性能的综合性能上参差不齐,需要探索更合理的方式[5]。

1.1.2翅片管换热器强化传热技术
在强化传热方法研究中,换热器气体侧的传热热阻是提高换热器传热效果的主要障碍。

对流换热强化技术在气体侧的应用要综合考虑许多因素:首先要确定流体的流态,即层流或湍流。

在层流对流换热情况下,流体速度和温度呈抛物线分布,从流体核心到壁面都存在速度和温度的梯度,因此对层流换热所采取的强化措施是使流体产生强烈的径向混合,使核心区流体的速度场、温度场趋于均匀,壁面及壁面附近区域的温度梯度增大,进而强化层流换热。

在湍流对流换热情况下,由于流体核心的速度场和温度场都已经比较均匀,对流换热热阻主要存在于贴壁的流体粘性底层中,因此对湍流换热所采取的主要强化措施是破坏边界层,使传热温差发生在更加贴近壁面的流体层中,增强换热能力[6]。

但由于气体导热系数和比热都比较低,即使是湍流换热也无法实现较高的换热系数。

所以,此时采用增强流体扰动,提高换热系数的方法对空气侧换热效果影响不大,增加换热量更有效的方法应该是扩大换热面积。

采用附加表面来增加换热面积、减小流体通道的水力直径,从而改变通道温度场的分布就是强化空气侧换热最常用的手段之一,翅片管换热器(如图1-1)就是基于上述
原理制造出来的。

图1-1 翅片管式换热器实物模型
翅片的发展主要分为三个阶段:连续型翅片、间断型波纹翅片和带涡流发生器的翅片。

其中,连续型翅片包括平直型、波纹型等翅片;间断型翅片包括百叶窗翅片、错位翅片等;带涡流发生器翅片主要是通过涡流发生器产生横向涡和纵向涡来使换热强化。

虽然翅片类型已由平直翅片向波纹片、百叶窗、冲缝片和穿孔翅片等多种高效形式演变,平直翅片的强化传热效果不如错齿翅片和百叶窗翅片,但由于平翅片换热器在结构和制造上的简单方便、运用上的耐久性及其较好的适用性,到目前为止,平翅片换热器仍是最为常用的一种翅片管式换热器之一。

平直翅片管(图1-4)换热器具有良好的传热性能和低阻力性能,其在制冷、空调、化工、电子微器件散热(如CPU热管式散热器-图1-2和1-3)等多个工业领域都得到广泛的应用[7]。

采用平直翅片加强传热的机理是传热面积的增大和水力直径的减小,使流体在通道中形成强烈的紊动,从而有效地降低了热阻,提高了传热效率。

图1-2 忍者I代塔式穿fin散热器图1-3 10热管穿finCPU散热器
图1-4 平直翅片管模型
研究发现,翅片管式换热器管热阻与铜管翅片的接触热阻及管外空气侧的热阻比为2∶1∶7。

可见管外翅片的换热仍然是制约换热器效能的主要因素,因此,强化空气侧的换热成了管翅式换热器强化传热的重要问题。

翅片管式换热器是一种在制冷、空调、化工等工业领域广泛采用的一种换热器形式,对它的研究不仅有利于提高换热器的换热效率和整体系统性能,而且对改进翅片换热器的设计型式,推出更加节能、节材的紧凑式换热器有着重要的指导意义。

1.2翅片管强化传热的数值解法
随着高速计算机的出现和现代计算技术的发展,以及湍流模型的不断发展与完善,使用电子计算机作为模拟和实验的手段成为可能,从而可以用数值方法来求解流体力学和传热学中的各种各样的问题。

数值传热学(Numerical Heat Transfer,NHT)又称计算传热学(Computational Heat Transfer,CHT)是指对描写流动与传热问题的控制方程采用数值方法通过计算机予以求解的一门传热学与数值方法相结合的交叉学科。

数值传热学求解问题的基本思想是:把原来在空间与时间坐标中连续的物理量的场(如速度场、温度场、浓度场等),用一系列有限个离散点(称为节点,node)上的值的集合来代替,通过一定的原则建立起这些离散点上变量值之间关系的代数方程(称为离散方程,discretization equation),求解所建立起来的代数方程以获得所求解变量的近似值[8]。

上述基本思想可以用图1-5来表示。

由于翅片管结构及各种工况因素对换热效果的影响十分复杂,以解析方法及实验方法为主要研究方法都不能满足研究的需要,而且随着计算机工业的进一步发展,计算传热学与计算流体动力学发挥着越来越重要的作用。

本文将针对平直翅片管对换热特性与
流动阻力的影响利用商业软件FLUENT6.2进行数值模拟。

与实验研究相比,数值解法具有以下一些优点[9]:
(1) 经济性好。

运用计算机的数值方法进行预测的最重要优点是它的成本低。

在大多数实际应用中,计算机运算的成本要比相应的实验研究的成本低好几个数量级。

而且随着计算机工业的进一步发展(处理器运算速度的提高,硬件成本的下降),它在科学研究的重要性将越来越突出。

(2) 研究周期短。

用计算机进行计算和研究能以及其惊人的速度进行。

一个设计者能够在一天之研究出多种方案,并从中选择最佳的设计,而相应的实验研究却需要很长的时间。

(3) 数据完整。

对一个问题进行数值求解可以得到详尽而完备的数据。

它能够提供在整个计算区域所有的有关变量(如速度、压力、温度、浓度等)的值。

与实验的情况
图1-5 工程物理问题数值计算的一般步骤
不同,在计算中几乎没有不能达到的位置。

(4) 具有模拟理想条件的能力。

人们有时为了研究一种基本的物理现象,希望实现若干理想化的条件,例如:常物性、绝热条件、流动充分发展等等,在数值计算中很容易实现这样的一些条件和要求,而在实验中却很难近似到这种理想化的条件。

数值计算方法的这些优点使人们热衷于计算机的分析,但是它也有一些局限性。

因为结果的准确度是由数学模型的精度和数值方法共同决定,因此数学模型和计算方法必须都具有良好的完善性,而且对于十分复杂的问题,数值解目前也很难获得。

虽然在某些研究领域中,目前数值计算几乎已取代了实验研究,但在流体力学与传热学的领域中,
实验研究、理论分析与数值计算这三种研究手段则是相辅相成、互为补充的。

理论分析方法的优点在于所得结果具有普遍性,各种影响因素清晰可见,可以为检验数值计算结果的准确度提供拟合参照的依据,是指导实验研究和验证新的数值计算方法的理论基础。

但是,它往往要求对计算对象进行抽象和简化,才有可能得出理论解。

实验测量方法是研究流动与传热问题的最基本的方法,它所得到的实验结果是真实可信的,它是理论分析和数值方法的基础,一方面补充现有的结构模型试验数据库,另一方面为工程设计人员提供新的技术支持,同时还可以与数值模拟的结果进行对比来改进试验设计,因而其重要性不容低估。

然而,实验往往受到模型尺寸、流场扰动、人身安全和测量精度的限制,有时可能很难通过实验方法得到结果[10]。

而数值求解(CFD)方法恰好克服了前面两种方法的弱点,在计算机上实现了一个特定的计算,就好像在计算机上做一次物理实验。

它可以通过比较各种型号的换热器的换热和流动阻力优劣情况,初步给出换热器试验设计参数选择的建议,并能用于研究换热器的换热流动性能,对换热器的开发和设计有指导作用。

总之,科学技术发展到今天的阶段,把实验测定、理论分析与数值模拟这三种研究手段有机而协调地结合起来,是研究流动与传热问题的理想而有效的方法。

[2]
1.3平直翅片管换热器的研究进展及成果
人们在进行强化翅片表面换热的研究中,提出了各种强化换热的方法。

总的来说有以下的几种方法:一是减小换热管的结构尺寸,采用小管径换热管代替大管径换热管,同时减小管排横向间距及纵向间距。

从目前家用空调中所采用的换热管尺寸来看,其管径有不断减小的发展趋势,从以前的9.52mm,7.94mm到现在的7.0mm;二是增强空气侧的湍流强度,可通过不断改变气流来流方向,来达到强化换热的目的,主要采用将翅
片冲压成波纹形,由此产生了波纹形翅片类型;三是采用间断式翅片表面,将翅片表面沿气流方向逐渐断开,以阻止翅片表面空气层流边界层的发展,使边界层在各表面不断地破坏,又在下一个冲条形成新的边界层,不断利用冲条的前缘效应,达到强化换热的目的。

属于这种翅片的有条缝形翅片和百叶窗形翅片等。

以下就国外对这几种强化方式下的翅片类型的实验研究进展作概述介绍,如表1所示:
1.3.1平直翅片管实验研究进展及成果
(1) 早在1971年,Rich就对管径为13.3mm,管排间距为27.5mm和管列间距为
31.8mm的16种不同结构的平翅片换热器进行了实验研究,实验结果表明翅片间距对换热系数有显著的影响,而管排数对的空气压降几乎没有影响[11]。

(2) 1978年,McQuiston发表了第一个基于五种结构参数(翅片间距1.81-6.35mm、管外径为9.96mm、管排间距为22mm、管列间距为25.4mm、管排数为4)的平翅片换热及压降通用关联式[11]。

(3) 1986年,Gray和Webb又提出了管排数大于4排的实验关联式,其关联式能较好地预测大管径、大管排间距和大管列间距下的换热特性和压降特性[11]。

(4) 1991年,Seshimo and Fujii在迎面风速为0.5m/s-2.5m/s的实验条件下,对21种平翅片形换热器进行了研究。

(5) 1994年,康海军[12]等对平翅片在不同翅片间距和管排数的情况下,对9种不同结构的平翅片换热器进行了实验,发现片距对传热的影响依赖于临界Re 数,对于层流来讲,片间距的增加会导致换热的下降,而对于阻力而言,片间距越大,阻力越小,且两排管的性能优于三、四排管。

并提出了在工业常用Re数围的换热和阻力性能通用关联式。

(6) 1996年,何国庚[13]等分别对16排、26排和32排的平翅片空气冷却器进行了实验,指出风速对风侧阻力的影响并不相同:在较少排数时,风速的影响显著些;而随着管排数的增加,风速的影响也趋向稳定。

(7) 1996年以来,Wangel一直致力于翅片管的研究,对平翅片换热器也做了大量的研究,同时针对翅片换热器的发展形式,对小管径和小结构尺寸的换热器进行了研究,得出大量十分有价值的研究成果。

(8) 2000年,Wangel对18种不同结构的翅片管换热器的空气侧换热特性进行了研
究,并分析了管排数、翅片间距、管径对换热特性的影响。

指出在不同的雷诺数下,空气侧的换热特性与翅片间距、管排数和换热管管径有十分重要的关系[11]。

(9) Sparrowe也对单排及双排平直管换热器进行了研究,指出边界层的发展是单排管换热特性的最重要因素,涡流的影响只有在高雷诺数的情况下才获得[11]。

1.3.2平直翅片管数值研究进展及成果
(1) Saboya在研究此问题时指出,边界层的发展是制约单排管换热特性的重要因素。

后来, Torikoshi对板间通道进行了3D数值模拟,发现只要翅片间距足够小,管子后漩涡将被翅片的“壁面效应”抑制,此时整个流场将处于层流状态。

(2) Ricardo也对板间的流体行为进行了3D模拟。

同时借助可视化实验技术,揭示了翅片间距对传热、流阻的影响。

(3) 宋富强对不同风速下的传热机理进行场协同数值研究,得到了不同位置速度矢量与温度梯度的协同程度,发现低流速时,全场的温度梯度与速度协同程度好,因而换热速率随流速近线型增加,但管子背风侧的换热强度较差。

双排管整体翅片数值模拟表明,风速为0.5~3.5m/ s时,对流给热系数及压力降均随流速呈线性增长。

多排管束纵、横向间距对传热的影响数值模拟结果发现,传热随着两种间距的增大而减小,进一步场协同原理总体平均分析表明,横向管距越小,纵向管距越大,热、流场总体协同性越好。

(4) 2002年,交通大学宋富强,屈治国[14]等对翅片管散热器进行了低速下流动和换热的数值模拟,得到了流速与换热系数的关系,以及不同流速下翅片管流动与换热的温度场、速度场和速度与温度梯度的夹角场,并首次利用场协同原理进行了分析9结果表明:当流速很低时,速度与换热系数几乎成线性变化,场的协同性很好;随着速
度的增加,场的协同性变差,换热系数随速度增加的程度减弱。

(5) 2003年,何江海等[15]对整体式平直翅片管换热器进行数值计算,得到了气流速分别为1.0~3.0m/s时的温度与压力分布特性,并由计算结进一步得出不同来流速度时的空气侧对流换热系数与压降的变化情况。

(6) 2006年,徐百平等[11]对换热器的流动与传热进行了数值模拟研究。

根据得到的换热器通道的传热与阻力特性,提出了可以通过控制宏观流场来减阻强化传热的思想。

(7) 2008年,傅明星[16]利用三维稳态模拟研究了叉排和顺排布置形式、几何尺寸和雷诺数Red对双排平直翅片管换热器换热和流动特性的影响,研究成果丰富。

(8) 2010年,马挺、曾敏[17]等数值模拟方法对平直翅片管燃气侧在高温和常温两种不同环境中传热与阻力特性进行了对比研究,数值模拟结果表明:燃气进口温度对Nu数影响较大,温差对阻力系数f影响较大,辐射对Nu数影响较大,对阻力系数f影响很小。

高温换热器用平直翅片管的传热与阻力特性不同于常温条件下的平直翅片管,在热力设计中平直翅片管常温下的传热与阻力规律不能直接推广到高温环境。

1.4本文的主要研究容
综上所述,影响翅片的换热及阻力特性因素众多,翅片管式换热器在制冷与空调系统中应用非常广泛。

作为其中的关键部件,换热器的性能与效率对于整个系统的影响就显得尤为重要。

针对上述课题的意义、翅片管式换热器的换热特点及国外在实验与数值模拟方面发展状况的分析,本课题应用FLUENT6.2商业软件对平直翅片管式换热器在充分发展流动情况下的传热性能和流动阻力特性进行数值模拟,得出平直翅片管式换热器管排横纵向间距、翅片间距、管排数和Re数等因素对换热与阻力特性的影响,以此为
工业上平直翅片表面换热设备的选择提供参考依据。

具体容如下:
1. 假定流动为三维、稳态的层流流动,翅片管管壁面温度恒定,且认为流动与换热在经过进口延长区后均已进入周期性充分发展阶段,建立平直翅片通道一个周期中的流动与换热控制方程数学模型。

2. 根据空调设备中常见的整体式平直翅片管尺寸结构选取几何模型,并使用GAMBIT软件对计算区域全流场及翅片部导热区域进行六面体网格划分,管子周围及流体近翅片区域采用边界层加密处理。

采用的流体工质为常物性的空气。

3. 根据有限容积法的二阶迎风格式(Second Order Upwind)对计算区域进行离散化,对离散后的控制方程设置边界条件和初始条件,并采用标准的SIMPLE算法和稳定的层流模型来求解压力速度耦合问题,对于翅片表面温度分布,采用翅片导热与流体对流换热耦合求解。

4. 数值计算平直翅片管在层流、恒壁温条件下的换热特性与流动阻力,模拟得出流场各参数分布,分析来流速度及管排数、管间距、翅片间距等几何结构参数与努赛尔数Nu和流动压降△P的关系,并得出其对平直翅片管换热因子j、阻力系数f及综合性能参数j/f的影响。

5. 对计算结果利用EXCEL、TECPLOT软件进行后处理,并对数据分析,得出结论,为工业应用上平直翅片管结构的设计和改进、优化分析提供理论依据。

相关文档
最新文档