超长水平井及丛式水平井钻井技术

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超长水平井及丛式水平井钻井技术

1. 钻超长水平井的技术挑战

1)井眼清洁;

2)高摩阻扭矩,需要高抗扭抗拉和耐压钻杆;

3)大斜度长裸眼稳斜段,套管的安全顺利下入;

4)平台设备能力配套与常规井差别,常规超深井考虑钻机的动力和提升载荷能力,而超长水平井侧重考虑水力和顶驱输送扭矩能力;

5)井斜大,裸眼段长,井眼侵泡周期时间长,影响井壁稳定性;

6)普通井的经验很多不适合超长水平井,超长水平井一旦出现失误,惩罚比普通井严重;

7)储层埋藏深度不确定性和仪器精度误差对钻井轨迹调整影响;

8)钻杆伸缩性大,在接近完钻深度只能单根钻,对复杂情况处理活动空间小。

井眼清洁;

井眼清洁在超长水平井中是个很关键的因素,制约超长水平井延伸能力。斜井清洁跟直井区别很大,至少需要比直井很长的循环周时间,而且在程序方法处理上也大大不同,随着井斜的增加,井眼清洁难度加大,岩屑上返更加困难,需要循环时间更长。

一.影响井眼清洁因素:

⑴井眼大小⑻岩屑尺寸

⑵钻杆尺寸⑼滑动定向比例

⑶排量⑽钻井速度

⑷转盘转速⑾井壁稳定性

⑸泥浆流变性⑿岩屑分散性

⑹井眼轨迹

⑺泥浆环空流态

二.井眼清洁原理

井眼清洁有两种方式,一从井眼机械直接运除出来,二通过分散,岩屑溶解在泥浆,这对于大尺寸浅表层采用海水钻就利用这个原理,边钻边造浆,把分散的岩屑带至地面直接排海,间隔打高粘把有颗粒形状的岩屑返出,达到井眼清洁。

a)钻具的转速是井眼清洁的关键因素

在斜井中,井眼高边高速流体清砂作用象传送带,岩屑沉至井眼底边低速层,最终降至井眼底边形成岩屑床,中间岩屑运移长短的距离与井斜角度、排量、转速、流体的流变性及泥浆比重相关,岩屑运移传送带速度与排量相关。

钻具转速扮演在高角度井眼清砂关键因素,因为活动流体处于井眼高边,钻具和岩屑都倾向于井眼底边,通过钻具机械的搅动,将岩屑搅起至传送带上,且钻具的搅动,在钻具上会产生牵引力,部分岩屑也会伴随钻具转动螺旋上升,通过这两者的作用将岩屑带至地面,而钻具转速由井眼大小和单位进尺快慢决定,在12-1/4"、17-1/2"井段至少需要120RPM,8-1/2"井段需要70RPM以上,但高齿轮传送带仍需要钻具转速达到120RPM以上,钻具钻速越高,在钻具周围牵带岩屑越多,超过钻具接头的高度,另外使流体原自由流动高速通道变窄,产生紊流,进而搅动岩屑床,利于清砂,但这种高转速当时也许只将部分岩屑带出来,

井眼干净仍需要长时间循环和倒划眼短起下等措施,这在后面小节论述。基于高转速清砂原理设计了清砂工具如带螺旋流道翼的钻杆,破坏岩屑床,更易将岩屑搅至传送带上,使清砂更好。关于在钻柱使用此类钻杆存在误区,不是只是使用一两根的问题,必须有足够的数量,因为它只是比普通钻杆稍好,在其的上部,相比普通钻杆,只是整体岩屑沉下来的距离稍远点。

b)排量对清砂影响

排量对清砂是有作用的,岩屑毕竟经过泥浆的流动携带至地面,排量太低使得所谓携砂传送带过于狭窄,这样井眼环空很大空间被非激态泥浆占据,因此即使钻具的搅动,将岩屑搅离低边,但很难进到传送带,进到传送带也易从中掉离,因此井眼很难清洗干净,但对于小井眼8-1/2",因钻杆和井眼间隙相对较小,井眼相对较易清洗干净。而在井眼上部的隔水套管,钻柱与套管间隙大,环空返速很低,岩屑很难上返,因此需要很高的排量,排量高造成系统的整个压耗过高,超过设备承受力,因此需在隔水管底部环空,与地面泵构成另外循环回路,通过单独泵适当提高隔水管清砂排量。

c)井段井眼排量和转速参考要求

①17-1/2"井眼150-180 rpm 1200-1500

gpm

②12-1/4"井眼120-180 rpm 800-1000

gpm

③9-7/8"井眼 120-150 rpm 450-650 gpm

④8-1/2"井眼至少》70 rpm,最好》120 rpm 350-500 gpm

高摩阻扭矩,需要高抗扭抗拉和耐压钻杆;

关于超长水平井摩阻扭矩认识归纳如下:

①对于高角度,垂深浅的井:高摩阻和低有效悬重会限制钻井深度,在无悬重或负悬重情况下,钻具必须通过旋转下到井深;

②垂深深的超长水平井:由于钻柱的负荷使钻井深度不会太深,因为下部钻具重量越重,旋转扭矩越大,超过钻柱的强度;

③S型剖面的超长水平井:如果井眼平滑缓降,井段不长,对钻柱摩阻扭矩影响不大,但对于降至井斜很小的井,因悬挂着有效钻具重量,会产生较高的摩阻扭矩;

④低角度井:摩阻一般不存在问题,滑动定向比较容易,但扭拒很高和套管磨损成为问题焦点;

⑤中角度井:结合高角度和低角度特性,摩阻比扭矩也许显得更关键,扭矩则为不定因素;

⑥高角度井:摩阻扭矩都很重要,如下部钻具重量重可能会产生高扭矩,因此在钻具组合上用加重钻杆代替钻铤,并控制一定数量,尽可能少加,在钻柱上采用复合钻柱和倒装钻具。

(b)钻具屈曲

钻具在井眼里由于受压而发生弯曲,在大尺寸井眼、小角度井,小的钻具刚性很容易发生受压失稳产生弯曲。高角度井难发生钻具弯曲,但不是不可能,在其稳斜段和直井段如钻具受压也会发生弯曲,在造斜段由于钻柱的弯曲应力存在

使此段钻具弯曲更为困难。弯曲形态分正弦弯曲和螺旋弯曲。

(1)正弦弯曲:是钻柱发生弯曲的第一形态,也称蛇行弯曲,但由于钻具重量,钻具只在低边发生屈曲,但屈曲的钻具没有触及高边井眼的井壁,在钻井中不利因素影响钻压有效传递,在钻井中导向马达经常性发生制动,工具面不易控制。

(2)螺旋弯曲:钻柱发生二次弯曲形态,钻柱压缩象弹簧,充满整个井眼,由于井壁支点支撑消耗了钻压的传递,发生钻具自锁。

因钻具弯曲力远低于钻具材质的屈服值,因此钻具是可以受压弯曲的,不是不可以,但只局限于钻具静止状态,因为钻具旋转发生弯曲,产生交变应力使钻具很快发生疲劳破坏。对于钻具弯曲有害影响,可采取以下有效措施:(1)采用尺寸大的刚性强的高强度钻杆;

(2)倒装钻具;

(3)在关键井段加强此处钻具的刚性;

(4)减小摩阻,提高泥浆的润滑性,使用减阻设备;

(5)采用旋转导向钻具代替常规导向马达;

(c)摩阻扭矩计算模型计算。

摩阻扭矩现在可以采用计算机软件理论计算,算法建立在普通的力学数学模型上,可以跟现场数据互动,通过现场数据可对软件输入数据进行校定。摩阻扭矩计算假设钻具两种形态:柔索模型和刚性模型。大多数模型计算都假设柔索模型理论计算,不考虑钻具的刚性和几何形态。

井眼剖面类型

以下为超长水平井眼剖面类型的几种选择:

1)直增稳剖面:适度的稳定造斜率(2.5º-3º/30m),减少稳斜角度和斜深。主要使用于垂深、12-1/4"井段的水力因素受限,没有浅层稳定性问题的井;

2)双增剖面:一般增斜至中间角度(如50º),稳斜,然后增至最终角度,这样设计使表层套管以合适井深下入复杂层段以下。这种剖面与拟悬链剖面比较,减少稳斜角和钻井井深;

3)拟悬链剖面设计;拟变曲率增斜最初解决表层井眼不稳定的问题,降低造斜段扭矩,但会增加稳斜角和完钻钻井斜深;

4)S型剖面设计:不利方面增加上部井段中间稳斜角,很可能造成钻下部地层钻具无悬重。在最后产层井深降低角度穿越主要从以下角度考虑:a)减少产层地质垂深和测量仪器精度不确定性影响;

b)降低产层或深部地层作业风险;

c)在产层段减少泥浆比重;

d)减少可钻性差的地层钻入层段

e)如果深度根据垂深确定的话,可以减少整个井深;

5)三维水平井设计:根据地质和储层特殊要求设计。

超长水平井套管的下入程序

相关文档
最新文档