期权定价课件
合集下载
期权定价.ppt
$ 4,495 40,770 45,265
4-31 套期保值看跌期权组合带来的利润
看跌期权价值作为股票价格的函数:隐含波动性 = 35%
股价
89
90
91
看跌期权价格
$5.254 $4.785 $4.347
每一看跌期权的利润(亏损) .759
.290
(.148)
套期保值看跌期权组合的价值和利润
股价
89
.44
.6700
4-20
从标准正态分布表查概率
N (.18) = .5714
表 17.2
d
N(d)
.16
.5636
.18
.5714
.20
.5793
4-21
看涨期权价值
Co = SoN(d1) - Xe-rTN(d2) Co = 100 X .6664 - 95 e- .10 X .25 X .5714 Co = 13.70 隐含的波动性
投资组合是能实现完美的套期保值
股票价值
50
200
看涨期权所得 0
-150
净收益
50
50
因此 100 - 2C = 46.30 或 C = 26.85
4-11
两状态方法的推广
假定我们将一年分成两个六个月的时期。 在每个六个月的时期,股价将增长10%或下降5%。 假定初始股价为每股100。 可能的结果:
期权弹性
期权价格变动百分比与股票价格变动百分 比的比值。
4-26
资产组合保险-防止股价的下降
买看跌期权-用无限制的上升潜力来防止 股价下降。
局限
- 如果用指数的看跌期权,会产生追踪误差。 - 看跌期权到期日或许太短。 - 套期保值率或得尔塔随股价的改变而改变。
《期权定价模型》课件
置比例。
03
投资组合绩效评估
通过期权定价模型计算投资组合 的绩效指标,评估投资组合表现
。
02
投资组合调整
根据市场走势和投资者需求,调 整投资组合中的期权和其他资产
。
04
投资组合再平衡
定期或不定期地重新调整投资组 合,以保持其与投资者风险偏好
和投资目标的匹配。
THANKS FOR WATCHING
感谢您的观看
02
期权定价模型简介
几种常见的期权定价模型
Black-Scholes模型
二叉树模型
基于一系列假设条件,通过随机微分方程 来描述期权价格的运动过程,并给出了欧 式期权价格的解析解。
一种离散时间模型,通过模拟标的资产价 格的上升和下降来计算期权价格,适用于 美式期权和欧式期权。
三叉树模型
有限差分模型
市场中不存在可以通过买 卖标的资产和衍生品来获 得无风险利润的策略。
市场中存在足够的标的资 产供买卖,且交易成本为 零。
即投资者可以以一个固定 的无风险利率无限借贷。
即标的资产价格的波动率 在整个期权存续期内保持 不变。
定价模型的适用范围
欧式期权:适用于只能在到期 日行权的期权。
美式期权:适用于在到期日之 前任何时间都可以行权的期权
。
股票期权、期货期权、利率期 权等:适用于各种类型的金融 衍生品。
长期期权、短期期权:适用于 不同存续期的期权。
03
Black-Scholes模型
模型的基本假设
假设1
股票价格变动符合几何布朗运 动,即股票价格连续变动,并
且其收益率服从正态分布。
假设2
市场无摩擦,即没有交易费用 和税收,所有证券都可以无限 分割。
03
投资组合绩效评估
通过期权定价模型计算投资组合 的绩效指标,评估投资组合表现
。
02
投资组合调整
根据市场走势和投资者需求,调 整投资组合中的期权和其他资产
。
04
投资组合再平衡
定期或不定期地重新调整投资组 合,以保持其与投资者风险偏好
和投资目标的匹配。
THANKS FOR WATCHING
感谢您的观看
02
期权定价模型简介
几种常见的期权定价模型
Black-Scholes模型
二叉树模型
基于一系列假设条件,通过随机微分方程 来描述期权价格的运动过程,并给出了欧 式期权价格的解析解。
一种离散时间模型,通过模拟标的资产价 格的上升和下降来计算期权价格,适用于 美式期权和欧式期权。
三叉树模型
有限差分模型
市场中不存在可以通过买 卖标的资产和衍生品来获 得无风险利润的策略。
市场中存在足够的标的资 产供买卖,且交易成本为 零。
即投资者可以以一个固定 的无风险利率无限借贷。
即标的资产价格的波动率 在整个期权存续期内保持 不变。
定价模型的适用范围
欧式期权:适用于只能在到期 日行权的期权。
美式期权:适用于在到期日之 前任何时间都可以行权的期权
。
股票期权、期货期权、利率期 权等:适用于各种类型的金融 衍生品。
长期期权、短期期权:适用于 不同存续期的期权。
03
Black-Scholes模型
模型的基本假设
假设1
股票价格变动符合几何布朗运 动,即股票价格连续变动,并
且其收益率服从正态分布。
假设2
市场无摩擦,即没有交易费用 和税收,所有证券都可以无限 分割。
金融工程_第11章_期权定价的BS公式.ppt
股票价格如何变化的假设
对数正态分布
对数正态分布和正态分布
未来股票价格分布
未来股票价格的期望值和方差
股票价格变化假设:连续时间模 型
股票价格的对数正态分布特性
dS Sdt Sdz
d ln S ( 2 )dt dz
2
ln
ST
ln
S
~
[(
2
2
)(T
t),
T t]
ln
ST
~ [ln
波动率的估计
波动率估计的注意事项
11.3 B-S公式的基本假设及推 导
BS模型推导
Black-Scholes微分方程的正式推导
dS Sdt Sdz
df ( f S f 1 2 f 2S 2 )dt f Sdz
S
t 2 S 2
S
S St Sz
f
( f S
S
f t
1 2
风险中性定价步骤
应用于股票远期合约
到期日远期合约的价值 ST K
f erT E(ST K )
f erT E(ST ) KerT
E(ST ) SerT f S KerT
应用风险中性定价推导B-S公式
欧式看涨期权到期日的期望价值为 E[max(ST X ,0)]
c er(T t) E[max(ST X ,0)]
S
(
2 )(T
2
t),
T t]
期望值
方差
E(ST ) Se(T t)
var(ST ) S e [e 2 2(Tt) 2 (Tt) 1]
例子
例子
练习
11.2 预期收益率和波动率及其估 计
A、预期收益率
第十二章 期权定价理论 《金融工程学》PPT课件
➢ 由于方程中不存在风险偏好,那么风险将不会对其解产生影响,因此 在对期权进行定价时,可以使用任何一种风险偏好,甚至可以提出一 个非常简单的假设:所有投资者都是风险中性的
12.2布莱克—斯科尔斯(B-S)模型
(6)Black-Scholes期权定价公式 Black-Scholes微分方程,对于不同的标的变量 S 的不同衍生证券,会 有许多解,解这个方程时得到的特定衍生证券的定价公式 f 取决于使用 的边界条件,对于股票的欧式看涨期权,关键的边界条件为: f=Max(ST-K,0) (12—28) 由风险中性可知,欧式看涨期权的价格C是期望值的无风险利率贴现的
第12章 期权定价理论
12.1 期权价格概述
➢ 12.1.1期权定价概述
➢ 在所有的金融工程工具中,期权是一种非常独特的工具。因为期 权给予买方一种权利,使买方既可以避免不利风险又可以保留有 利风险,所以期权是防范金融风险的最理想工具。但要获得期权 这种有利无弊的工具,就必须支付一定的费用,即期权价格
一定的假设条件下得到的,这些条件包括:股票价格满足布朗运动;
股票的收益率服从正态分布;期权的有效期内不付红利。该公式的不
足之处是它允许有负的股票价格和期权价格,这显然和实际是不相符
合的,而且该公式没有考虑货币的时间价值。由于其理论的不完备,
计算结果的不准确,再加上当时市场的不发达,因此该定价公式在当
N(d)=
1
d
e
x2
2
dx
2
(12—3)
这些公式都应有以下假设: (1)没有交易费。 (2)可以按无风险利率借入或贷出资金
12.2布莱克—斯科尔斯(B-S)模型
➢ 对期权的定价理论进行开创性研究的学者是法国的Bachelier。1900
期权定价课件
2020/4/17
PPT学习交流
4
• 到期时间
• 较长的到期时间能增加看涨期权的价值;
• 利率
• 高利率降低执行价格的现值,看涨期权的价值增加;
• 股票的股利收益率
• 高股利分配政策将减少看涨期权的价值
2020/4/17
PPT学习交流
5
二叉树期权定价模型
• 假设股票现在的价格为100美元,年末,股价要么在 乘数u=1.2作用下上升至120美元,要么在乘数d=0.9 的作用下下降至90美元。该股票的一个看涨期权的 执行价格为110美元,到期时间是一年,利率是10%。 则该年末看涨期权的持有人的收入要么为零(股价 下跌时),要么为10美元(当股价升至120美元时)
了;
• 其中:C0是当前看涨期权的价值 • S0是当前股票价格; • N(d)是随机地偏离标准正态分布的概率小于d;
• X是执行价格;
• δ是标的股票的年股利收益率;
• R是无风险利率
• T是期权到期前的时间(以年为单位)
• σ是股票连续年收益率的标准差
2020/4/17
PPT学习交流
10
• 例子:对一个看涨期权定价:
• 启示:只要给出股票价格、执行价格、利率和股价 的波动性,就可以算出期权的公平价格
• 大部分的期权定价公式都运用了“复制”这个概念
2020/4/17
PPT学习交流
8
布莱克—斯科尔斯期权定价模型
•
2020/4/17
PPT学习交流
9
• 利率r和方差 σ2都是常量 • 股票价格是连续的,即突然的、剧烈的价格波动被排除
第三章 期权定价
2
PPT学习交流
1
内在价值与时间价值
期权定价理论课件
引入非金融资产
除了金融资产,现实中还存在许多非金融资产,如房地产、艺术品等。将这些资产的价格和风险特性纳入期权定 价模型中,可以更好地服务于实物期权定价和风险管理。
运用计算机技术提高模型计算效率
采用更高效的算法
随着计算机技术的发展,可以采用更高效的算法来计算期 权价格,如蒙特卡洛模拟算法、有限元方法等。这些算法 可以更快地得到期权价格估计值。
、城市规划、自然资源开发等多个领域。
06
期权定价理论的发展趋势与展望
改进现有模型的局限性
01
引入更复杂的因素
随着金融市场的变化和经济的发展,期权定价理论需要引入更多的影响
因素,如宏观经济因素、市场情绪因素等,以更准确地预测期权价格。
02 03
完善假设条件
现有的期权定价模型通常基于一些假设条件,如无摩擦市场、完全竞争 等。为了更真实地反映市场情况,需要进一步放宽或修改这些假设条件 。
期权类型
按行权时间可分为欧式期 权和美式期权;按交易场 所可分为场内期权和场外 期权。
期权持有者权利
期权持有者具有在到期日 之前按照行权价买入或卖 出标的资产的权利。
期权定价模型的起源与发展
起源
期权定价模型最初由BlackScholes模型和二叉树模型两
种主要方法所主导。
发展历程
随着金融市场的不断发展和完善, 各种新型期权定价模型如随机波动 率模型、跳跃扩散模型等逐渐被引 入。
:P = (1 - e^(-rT)) / (1 + d) - K / (1 + d)^T, 其中P表示期权价格,r表示无风险利率,T表示时间步长,d表 示上涨与下跌的比率。 • 模型应用:基于二叉树模型的数字期权定价方法适用于美式期权和欧式期权的定价,具有较高的计算效率和适 用性。
除了金融资产,现实中还存在许多非金融资产,如房地产、艺术品等。将这些资产的价格和风险特性纳入期权定 价模型中,可以更好地服务于实物期权定价和风险管理。
运用计算机技术提高模型计算效率
采用更高效的算法
随着计算机技术的发展,可以采用更高效的算法来计算期 权价格,如蒙特卡洛模拟算法、有限元方法等。这些算法 可以更快地得到期权价格估计值。
、城市规划、自然资源开发等多个领域。
06
期权定价理论的发展趋势与展望
改进现有模型的局限性
01
引入更复杂的因素
随着金融市场的变化和经济的发展,期权定价理论需要引入更多的影响
因素,如宏观经济因素、市场情绪因素等,以更准确地预测期权价格。
02 03
完善假设条件
现有的期权定价模型通常基于一些假设条件,如无摩擦市场、完全竞争 等。为了更真实地反映市场情况,需要进一步放宽或修改这些假设条件 。
期权类型
按行权时间可分为欧式期 权和美式期权;按交易场 所可分为场内期权和场外 期权。
期权持有者权利
期权持有者具有在到期日 之前按照行权价买入或卖 出标的资产的权利。
期权定价模型的起源与发展
起源
期权定价模型最初由BlackScholes模型和二叉树模型两
种主要方法所主导。
发展历程
随着金融市场的不断发展和完善, 各种新型期权定价模型如随机波动 率模型、跳跃扩散模型等逐渐被引 入。
:P = (1 - e^(-rT)) / (1 + d) - K / (1 + d)^T, 其中P表示期权价格,r表示无风险利率,T表示时间步长,d表 示上涨与下跌的比率。 • 模型应用:基于二叉树模型的数字期权定价方法适用于美式期权和欧式期权的定价,具有较高的计算效率和适 用性。
期权定价理论-PPT课件
2019/3/11 11
B-S 期权定价模型是根据ITO过程的特例-几何 布朗运动来代表股价的波动
s x ,( a s , t ) s ,( b s , t ) s t t t t t t d s s d t s d w t t t t
省略下标t,变换后得到几何布朗运动方程
1.在某一小段时间Δt内,它的变动Δw与时段满
足Δt
2019/3/11 5
wt t t
这 里 , w w w , i d N ( 0 , 1 ) t t t 1 t i
(13.1)
2. 在两个不重叠的时段Δt和Δs, Δwt和Δws是独立的, 这个条件也是Markov过程的条件,即增量独立!
利用泰勒展开,忽略高阶段项,f(x,t)可以展开为
2 2 f f 1 f 2 f f ( t x x ) xt 2 t x 2 x xt 2 1 f 2 t 2 (13.8) 2 t
在连续时间下,即 Dt ? 0 从而 Dt 2 ? 0 D t ? 0
b t
2 2
(13.10)
2 且 当时 t 0 , 有 t 0 , 从 而
t 0
l i m D ( x )[ b t ] D ( ) 0 2
2 2 2 2
即Δx2不呈现随机波动!
由(13.10)可得
E ( x ) E ( b t ) b t E () (13.11)
2 f f 1 f 2 d f d t d x 2d x t x 2 x
f f 1 f 2 d t ( a d t b d w ) 2b d t t x 2 x
B-S 期权定价模型是根据ITO过程的特例-几何 布朗运动来代表股价的波动
s x ,( a s , t ) s ,( b s , t ) s t t t t t t d s s d t s d w t t t t
省略下标t,变换后得到几何布朗运动方程
1.在某一小段时间Δt内,它的变动Δw与时段满
足Δt
2019/3/11 5
wt t t
这 里 , w w w , i d N ( 0 , 1 ) t t t 1 t i
(13.1)
2. 在两个不重叠的时段Δt和Δs, Δwt和Δws是独立的, 这个条件也是Markov过程的条件,即增量独立!
利用泰勒展开,忽略高阶段项,f(x,t)可以展开为
2 2 f f 1 f 2 f f ( t x x ) xt 2 t x 2 x xt 2 1 f 2 t 2 (13.8) 2 t
在连续时间下,即 Dt ? 0 从而 Dt 2 ? 0 D t ? 0
b t
2 2
(13.10)
2 且 当时 t 0 , 有 t 0 , 从 而
t 0
l i m D ( x )[ b t ] D ( ) 0 2
2 2 2 2
即Δx2不呈现随机波动!
由(13.10)可得
E ( x ) E ( b t ) b t E () (13.11)
2 f f 1 f 2 d f d t d x 2d x t x 2 x
f f 1 f 2 d t ( a d t b d w ) 2b d t t x 2 x
期权定价理论课件(PPT60页)
之间的相互作用和看涨期权—看跌期权之
间的平价关系能够造就相对公平的价格。
看涨期权—看跌期权之间的平价关系使期
权之间、期权与标的物之间的价格达到均 衡关系。因此,具有相同标的物、协定价 格和到期日的看涨期权与看跌期权之间存 在一定的价格关系。
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
能排除提前执行的可能性。因此其下限为:
P ≥max(D+X-S,0)
22
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
➢五、看涨期权与看跌期权之间 的平价关系
在期权市场,市场参与者(套利者)
期权价格的下限
美式看涨期权价格的下限
无收益资产美式看涨期权价格的下限
提前执行无收益资产美式看涨期权是不明智的。因此,同 一种无收益标的资产的美式看涨期权和欧式看涨期权的价值是
相同的,即:C=c
我们可以得到无收益资产美式看涨期权价格的下限:
由于r>0,所以C>max(S-X,0)
有收益资产的美式看涨期权下限
17
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
期权价格的下限
欧式看跌期权价格的下限
无收益资产欧式看跌期权价格的下限
考虑以下两种组合: 组合A:一份欧式看跌期权加上一单位标的资产
组合B:金额为Xe-r(T-t)的现金
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
润,当总利润小于零时,内在价值为零。内在价值反映了期权合约中
间的平价关系能够造就相对公平的价格。
看涨期权—看跌期权之间的平价关系使期
权之间、期权与标的物之间的价格达到均 衡关系。因此,具有相同标的物、协定价 格和到期日的看涨期权与看跌期权之间存 在一定的价格关系。
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
能排除提前执行的可能性。因此其下限为:
P ≥max(D+X-S,0)
22
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
➢五、看涨期权与看跌期权之间 的平价关系
在期权市场,市场参与者(套利者)
期权价格的下限
美式看涨期权价格的下限
无收益资产美式看涨期权价格的下限
提前执行无收益资产美式看涨期权是不明智的。因此,同 一种无收益标的资产的美式看涨期权和欧式看涨期权的价值是
相同的,即:C=c
我们可以得到无收益资产美式看涨期权价格的下限:
由于r>0,所以C>max(S-X,0)
有收益资产的美式看涨期权下限
17
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
期权价格的下限
欧式看跌期权价格的下限
无收益资产欧式看跌期权价格的下限
考虑以下两种组合: 组合A:一份欧式看跌期权加上一单位标的资产
组合B:金额为Xe-r(T-t)的现金
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
润,当总利润小于零时,内在价值为零。内在价值反映了期权合约中
期权定价(PPT 81页)
• 资产有收益情形
c m a x (S t D X e r(t t),0 )
• 将组合A现金改为D+Xe-r(T-t)
期权定价
17
欧式看•跌资产期无权收价益格情形的下限
pm ax(X er(tt)St,0)
• 考虑两组Байду номын сангаас:
• 组合C:一份欧式看跌期权加上一单位标的资产 • 组合D:金额为Xe-r(T-t)的现金
期权定价
30
四、期权价格曲线的形状 无收益看涨期权价格曲线
上限:St,下限:m ax[StXer(Tt),0](期权的内在价值) 当St→0和,时间价值→ 0,看涨期权价值→ 0和St-Xe-r(T-t)。特别地, 当St=0,C=c=0 当内在价值=0,期权价格=时间价值
时间价值在St=Xe-r(T-t)时最大
• 在实值状态下,越是接近平价的期权,将来标的资产价格来的损失越小,因而未来潜力越 大,时间价值越大。在虚值状态下,越是接近平价的期权,未来标的资产得上升所带来的 收益越大,因而时间价值越大
期权定价
9
二、期权价格的影响因素
影响期权价值的因素
• 标的资产价格 • 执行价格 • 标的资产的波动率 • 有效期 • 无风险利率 • 标的资产的收益
• 无收益情形:在St= Xe-r(T-t) 点最大 • 有收益情形:在St=D+ Xe-r(T-t) 点最大
• 美式看跌期权
• 无收益情形:在St= X 点最大 • 有收益情形:在St= X-D 点最大
期权定价
8
关于该图的几点理解
• 当期权处于平价状态的时候,标的资产无论如何波动也不可能使期权的多头有进一步的损 失(不执行期权),但是却可能给期权多头带来巨大的收益,所以,此时波动对于期权多 头来说,只有利没有弊;
c m a x (S t D X e r(t t),0 )
• 将组合A现金改为D+Xe-r(T-t)
期权定价
17
欧式看•跌资产期无权收价益格情形的下限
pm ax(X er(tt)St,0)
• 考虑两组Байду номын сангаас:
• 组合C:一份欧式看跌期权加上一单位标的资产 • 组合D:金额为Xe-r(T-t)的现金
期权定价
30
四、期权价格曲线的形状 无收益看涨期权价格曲线
上限:St,下限:m ax[StXer(Tt),0](期权的内在价值) 当St→0和,时间价值→ 0,看涨期权价值→ 0和St-Xe-r(T-t)。特别地, 当St=0,C=c=0 当内在价值=0,期权价格=时间价值
时间价值在St=Xe-r(T-t)时最大
• 在实值状态下,越是接近平价的期权,将来标的资产价格来的损失越小,因而未来潜力越 大,时间价值越大。在虚值状态下,越是接近平价的期权,未来标的资产得上升所带来的 收益越大,因而时间价值越大
期权定价
9
二、期权价格的影响因素
影响期权价值的因素
• 标的资产价格 • 执行价格 • 标的资产的波动率 • 有效期 • 无风险利率 • 标的资产的收益
• 无收益情形:在St= Xe-r(T-t) 点最大 • 有收益情形:在St=D+ Xe-r(T-t) 点最大
• 美式看跌期权
• 无收益情形:在St= X 点最大 • 有收益情形:在St= X-D 点最大
期权定价
8
关于该图的几点理解
• 当期权处于平价状态的时候,标的资产无论如何波动也不可能使期权的多头有进一步的损 失(不执行期权),但是却可能给期权多头带来巨大的收益,所以,此时波动对于期权多 头来说,只有利没有弊;
期权定价的数学基础PPT课件
80
15
60
50
股价
V0
0
看涨期权价格
图3-6 股价和看涨期权价格二叉树
2020/1/10
38
交易商提供一个执行价为65美元,一年后到期的看涨 期权,无风险利率为0.048,问期权的公平价格?
如果交易商的报价为6.35美元卖出看涨期权,6.00元 买入,两者之差称为交易商的差价。一客户以每股6.35美元 的价格购入100000股(1000手)看涨期权,交易商现在持 有一个风险很大的头寸,决定通过购买股票对冲风险,应该 买入多少股票,获利情况如何 ?
30 p 90 105 p 0.5
2020/1/10
Institute of Computer Software
Nanjing University
35
重要说明:所求出的p值并不一定和投资
者的观点以及股票市场涨跌的实际概率相对应, 它仅仅是一个产生与无风险回报相等的股票回报。
2020/1/10
31
若已知股价为100美元,将来上涨时价格为l 20 美元,下跌时价格为90美元。假设观察一年的市场行 为,股票上涨的概率的合理选择(见图3-5),是使股票 的期望回报大致在15%左右,该回报比将100美元投
资于安全的银行账户要高得多。q( 90% )。
2020/1/10
32
p
120
100
1 p
2020/1/10
2
三种方法 博弈论方法 资产组合复制方法 概率方法或期望价值方法
2020/1/10
3
两个假定: 第一,到期日的价格只能是两种特定价格中的一种; 第二,第一个假设对三种方法都适用。
2020/1/10
期权定价课件
我们做出的Excel表格如图7.1.1所示:
期权定价课件
二、B-S期权定价公式在Excel中的实现
期权定价课件
二、B-S期权定价公式在Excel中的实现
在Excel中的具体操作步骤如下:
1. 选定A1:C1,然后单击
,并输入:
“Black-Scholes期权定价模型”。
2. 在A3中输入:“期权类型:1=看涨,0=看 跌”;在B3中输入:“股票的波动率( )”; 在C3中输入:“无风险年利率r ()”;在D3中 输入:“执行价格(X)”;在E3中输入:“到 期时间(T-t)”。
5. 在A6:A8中分别输入:“股票的当前价格(S)”, “期权价格”,“内在价值”;在A10:A14中分别输 入:“d1”,“d2 ”,“N(d1)”,“N(d2)”,“看涨期权 价格(C)”;在A15:A17中分别输入:“N(-d1)”, “N(-d2)”,“看跌期权价格(P)”。
6. 在B6:Q6中依次输入:“10”,“12”,“14”, “16”, ,“38”, “40”。
3. 选定D1:E1,单击 ,并在其中输入: “=IF($A$4=1,“看涨期权”,“看跌期权”)。 当A4单元格为1时,输出:“看涨期权”;当B3 单元格不等于1时,输期权出定价:课件“看跌期权”。
二、B-S期权定价公式在Excel中的实现
4. 在A4中输入:“=1”;在B4中输入:“=30%”;在 C4中输入:“=6%”;在D4中输入:“=20”;在D5中 输入:“=0.5”。
2)(T t);d2 d1
T t;
C为欧式看涨期权的价格;P为欧式看跌期权的价格;S为
标的资产(股票)的市场价格;X 为期权的执行价格;
T t为距到期时间;r为连续复利的无风险利率;为标的
期权定价课件
二、B-S期权定价公式在Excel中的实现
期权定价课件
二、B-S期权定价公式在Excel中的实现
在Excel中的具体操作步骤如下:
1. 选定A1:C1,然后单击
,并输入:
“Black-Scholes期权定价模型”。
2. 在A3中输入:“期权类型:1=看涨,0=看 跌”;在B3中输入:“股票的波动率( )”; 在C3中输入:“无风险年利率r ()”;在D3中 输入:“执行价格(X)”;在E3中输入:“到 期时间(T-t)”。
5. 在A6:A8中分别输入:“股票的当前价格(S)”, “期权价格”,“内在价值”;在A10:A14中分别输 入:“d1”,“d2 ”,“N(d1)”,“N(d2)”,“看涨期权 价格(C)”;在A15:A17中分别输入:“N(-d1)”, “N(-d2)”,“看跌期权价格(P)”。
6. 在B6:Q6中依次输入:“10”,“12”,“14”, “16”, ,“38”, “40”。
3. 选定D1:E1,单击 ,并在其中输入: “=IF($A$4=1,“看涨期权”,“看跌期权”)。 当A4单元格为1时,输出:“看涨期权”;当B3 单元格不等于1时,输期权出定价:课件“看跌期权”。
二、B-S期权定价公式在Excel中的实现
4. 在A4中输入:“=1”;在B4中输入:“=30%”;在 C4中输入:“=6%”;在D4中输入:“=20”;在D5中 输入:“=0.5”。
2)(T t);d2 d1
T t;
C为欧式看涨期权的价格;P为欧式看跌期权的价格;S为
标的资产(股票)的市场价格;X 为期权的执行价格;
T t为距到期时间;r为连续复利的无风险利率;为标的
期权定价理论课件
证券业协会
协助证监会和期交所进行 监管,促进期权市场的健 康发展。
期权市场的法规要求
交易规则
规定期权交易的流程、交易方式、交易时间等。
投资者适当性
确保只有符合一定条件的投资者才能参与期权交易。
信息披露
要求期权发行方及时、准确地进行信息披露。
期权市场的道德规范
诚信原则
01
所有参与期权市场的机构和个人都应遵守诚信原则,不得进行
欺诈、内幕交易等行为。
公平原则
02
确保所有投资者在期权交易中享有平等的权利和机会。
公正原则
03
监管机构应对所有市场参与者一视同仁,维护市场的公正性。
THANKS
谢谢您的观看
策略是赚取权利金,获得赚取现金的机会。
日历价差期权组合
策略是赚取权利金,获得赚取现金的机会。
动态对冲策略
动态对冲策略
策略是根据市场走势,不断调整持仓 比例,以降低风险。
动态对冲策略
策略是根据市场走势,不断调整持仓 比例,以降低风险。
05
期权的风险管理
希腊字母在风险管理中的应用
希腊字母
Delta、Gamma、Vega、Theta、Rho、 Lambda
应用
有限差分法广泛应用于金融衍生品定 价、数值分析和科学计算等领域。
03
期权定价的数学基础
概率论基础
概率空间
定义了随机事件、样本空间和概 率测度的概念,为期权定价提供 了基础的概率框架。
随机变量
描述了标的资产价格的可能取值 ,通过随机变量的期望和方差来 评估标的资产的预期收益和风险 。
条件概率与独立性
要点二
详细描述
期权定价是确定期权价值的过程,对于投资者和交易者来 说至关重要。通过合理的期权定价,投资者可以更好地评 估期权的风险和收益,从而做出更明智的决策。同时,对 于交易者来说,了解期权的定价原理和机制有助于制定更 好的交易策略,提高盈利机会。此外,期权定价理论也是 金融工程和风险管理等领域的重要基础。
第九章期权定价ppt可编辑修改课件
(一)欧式看涨期权与看跌期权之间的平价关系
1,无收益资产的欧式期权 考虑如下两个组合:
组合A:一份欧式看涨期权加上金额为Xer(T t) 的现金
组合B:一份有效期和协议价格与看涨期权相同的欧式看跌 期权加上一单位标的资产
2024/8/2
在期权到期时,两个组合的价值均为max(ST,X)。由于欧 式期权不能提前执行,因此两组合在时刻t必须具有相等的
2024/8/2
(五)标的资产的收益
由于标的资产分红付息等将减少标的资产的价格, 而协议价格并未进行相应调整,因此在期权有效期内 标的资产产生收益将使看涨期权价格下降,而使看跌 期权价格上升。
2024/8/2
期权价格的影响因素
变量
欧式看涨 欧式看跌 美式看涨 美式看跌
标的资产的市价 +
-
+
-
期权协议价格 -
(9.4)
2024/8/2
例题
考虑一个不付红利股票的欧式看涨期权,此 时股票价格为20元,执行价格为18元,期权价 格为3元,距离到期日还有1年,无风险年利率 10%。问此时市场存在套利机会吗?如果存在, 该如何套利?
(2)有收益资产欧式看涨期权价格的下限
我们只要将上述组合A的现金改为 D Xer(T ,t) 其中D 为期权有效期内资产收益的现值,并经过类似的推导,就 可得出有收益资产欧式看涨期权价格的下限为:
9.1 期权价格的特性
一、期权价格的构成 期权价格等于期权的内在价值加上时间价值。
1,内在价值 内在价值是指期权持有者立即行使该期权合约
所赋予的权利时所能获得的总收益。 看涨期权的内在价值为max{S-X,0} 看跌期权的内在价值为max{X-S,0}
2024/8/2
投资学第二十一章期权定价PPT课件
01
法规监管
政府和监管机构制定相关法规,规 范期权市场交易行为。
信息披露
要求企业或个人披露真实、准确、 完整的信息,防止欺诈行为。
03
02
保证金制度
要求投资者按规定缴纳保证金,以 降低违约风险。
风险控制
监管机构对期权交易进行实时监控, 防范市场风险。
04
风险管理工具与技术
止损策略
设定止损点,当价格达到某一阈值时 自动平仓,控制亏损幅度。
二叉树模型则通过模拟股票价 格的上升和下降来计算期权价 格,考虑了股票价格的不确定 性。
二叉树模型
01
二叉树模型是一种离散时间模型,用于模拟股票价格的上升和 下降。
02
在二叉树模型中,股票价格的变化取决于未来可能的上升和下
降幅度,以及这些事件发生的概率。
二叉树模型的优点在于它可以处理股票价格的不确定性,并能
投资学第二十一章期权定价ppt课 件
• 引言 • 期权的基本概念 • 期权定价模型 • 期权策略与交易策略 • 期权市场的风险与监管 • 案例分析与实践
01
引言
课程背景
期权定价理论的发展历程
从早期的Black-Scholes模型到后来的各种扩展和改进模型,期权定价理论经历了不断的发展和完善 。
期权交易的流程
要点一
总结词
期权交易的流程解析
要点二
详细描述
期权交易的流程包括以下几个步骤:首先,确定投资目标 ,明确投资期权的目的是为了投机、对冲风险还是套利等 ;其次,选择合适的期权合约,根据标的资产、行权价格 、到期日和权利金等因素进行选择;再次,进行交易,通 过证券交易所或场外交易市场进行买卖;最后,行权或平 仓,根据市场走势和投资策略选择行权或平仓。
法规监管
政府和监管机构制定相关法规,规 范期权市场交易行为。
信息披露
要求企业或个人披露真实、准确、 完整的信息,防止欺诈行为。
03
02
保证金制度
要求投资者按规定缴纳保证金,以 降低违约风险。
风险控制
监管机构对期权交易进行实时监控, 防范市场风险。
04
风险管理工具与技术
止损策略
设定止损点,当价格达到某一阈值时 自动平仓,控制亏损幅度。
二叉树模型则通过模拟股票价 格的上升和下降来计算期权价 格,考虑了股票价格的不确定 性。
二叉树模型
01
二叉树模型是一种离散时间模型,用于模拟股票价格的上升和 下降。
02
在二叉树模型中,股票价格的变化取决于未来可能的上升和下
降幅度,以及这些事件发生的概率。
二叉树模型的优点在于它可以处理股票价格的不确定性,并能
投资学第二十一章期权定价ppt课 件
• 引言 • 期权的基本概念 • 期权定价模型 • 期权策略与交易策略 • 期权市场的风险与监管 • 案例分析与实践
01
引言
课程背景
期权定价理论的发展历程
从早期的Black-Scholes模型到后来的各种扩展和改进模型,期权定价理论经历了不断的发展和完善 。
期权交易的流程
要点一
总结词
期权交易的流程解析
要点二
详细描述
期权交易的流程包括以下几个步骤:首先,确定投资目标 ,明确投资期权的目的是为了投机、对冲风险还是套利等 ;其次,选择合适的期权合约,根据标的资产、行权价格 、到期日和权利金等因素进行选择;再次,进行交易,通 过证券交易所或场外交易市场进行买卖;最后,行权或平 仓,根据市场走势和投资策略选择行权或平仓。
期权定价理论PPT课件
二、期权定价模型与定价方法
期权定价模型 期权定价方法
(一)期权定价模型
Black—Scholes期权定价模型 不变方差弹性(Constant Elasticity of
Variance ,CEV )模型 跳—扩散(Jump-Diffusion)模型 随机波动率(Stochastic Volatility)模型
期权的种类
从交易者的买卖行为划分,期权可以分为买 入期权(又称看涨期权(Call Option))和卖 出期权(又称看跌期权(Put Option))
按照合约所规定的履约时间不同,期权可以 分为欧式期权和美式期权
按照期权标的物性质不同,期权可以分为两 大类,即商品期权和金融期权
新型期权(Exotic Option)
回望期权
回望期权(lookback options)的收益依附 于期权有效期内标的资产达到的最大或 最小价格。欧式回望看涨期权的收益等 于最后标的资产价格超过期权有效期内 标的资产达到的最低价格的那个量。欧 式回望看跌期权的收益等于期权有效期 内标的资产价格达到的最高价格超过最 后标的资产 价格的那个量。
C t rf
SC12S2
S 2
2C S2 rfC
C(T)maxS(T)X,0)
有限差分方法
通过数值方法求解衍生资产所满足的 微分方程来为衍生资产估值,将微分 方程转化为一系列差分方程之后,再 通过迭代法求解这些差分方程总的来 看,有限差分方法的基本思想与二叉 树方法基本相似.
Black-Scholes期权定价法的优缺点
期权定价理论及其应用
期权的基本概念 期权定价模型与定价方法 期权定价模型的参数估计 期权理论的应用
一、期权的基本概念
期权的定义 期权的种类
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
股票价格 20
25
30
35
40
期权收入
0
0
0
5
10
• 若每种场景 发生的可能性相同,概率都为0.2,在高波
动性场景下,期权的收入为6美元,而在低波动性场景
下,看涨期权的期望收入只有3美元
• 极高的股价可无限地增加期权的收入,而极低的股价使 得期权的收入最低为零,因此这种不确定性意味标的股 票的价格波动能增加期权的期望收入,从而提高其价值
期
• 当股价上升很高时,期权价值接近内在价值:
S0—PV(X)
2020/4/17
PPT学习交流
2
期权价值的决定因素
• 股票价格
• 随着股票价格的上升,看涨期权的价值增加;
• 执行价格
• 随着执行价格的上升,看涨期权的价值减少;
• 股票价格的波动性
• 随着标的股票价格波动性的增大而增加; • 例:
2020/4/17
• 股票价格:100 • 执行价格:95 • 利率:0.10 • 股利收益率:0 • 到期时间:0.25年 • 标准差:0.5
• 首先计算d1=0.43,d2=0.18 • N(d1)=0.6664, N(d2)=0.5714 • 从而计算出C=13.70美元
2020/4/17
PPT学习交流
11
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
2020/4/17
PPT学习交流
4
• 到期时间
• 较长的到期时间能增加看涨期权的价值;
• 利率
• 高利率降低执行价格的现值,看涨期权的价值增加;
• 股票的股利收益率
• 高股利分配政策将减少看涨期权的价值
2020/4/17
PPT学习交流
5
二叉树期权定价模型
• 假设股票现在的价格为100美元,年末,股价要么在 乘数u=1.2作用下上升至120美元,要么在乘数d=0.9 的作用下下降至90美元。该股票的一个看涨期权的 执行价格为110美元,到期时间是一年,利率是10%。 则该年末看涨期权的持有人的收入要么为零(股价 下跌时),要么为10美元(当股价升至120美元时)
• 100
120
C
10
•
90
0
2020/4/17
PPT学习交流
6
• 另一个包括一股股票和以10%的利率借入的81.82美 元的投资组合的收入相比较
年末股票价值
90
120
—偿还贷款的本利和
—90
—90
合计
0
30
• 由于该投资组合借入81.82美元,因此其现金支出是
18.18美元,因此该投资组合的价值树:
• 18.18
30
•
0
• 因此该投资组合的收入正好是看涨期权在任何股票 价格下收入的3倍,即三个看涨期权正好可以复制投 资组合的收入,因此三个看涨期权的售价应与“复制 的投资组合”的售价相同,即:
2020/4/17
PPT学习交流
7
• 3C=18.18美元
• 因此,每个看涨期权的售价C=6.06美元
• 启示:只要给出股票价格、执行价格、利率和股价 的波动性,就可以算出期权的公平价格
• 大部分的期权定价公式都运用了“复制”这个概念
2020/4/17
PPT学习交流
8
布莱克—斯科尔斯期权定价模型
•
2020/4/17
PPT学习交流
9
• 利率r和方差 σ2都是常量 • 股票价格是连续的,即突然的、剧烈的价格波动被排除
PPT学习交流
3
• 假设有两种场景:一种是到期日的股价处在10-50美元 之间,另一种是到期日股价在20-40美元之间。在这两 种场景下,股价的期望值或平均值都为30美元,假设一 个看涨期权的执行价格也是30美元,期权的收入为多少?
高波动性场景
股票价格 10
20
30
40
50
期权收入
0
0
0
10
20
低波动性场景
了;
• 其中:C0是当前看涨期权的价值 • S0是当前股票价格; • N(d)是随机地偏离标准正态分布的概率小于d;
• X是执行价格;
• δ是标的股票的年股利收益率;
• R是无风险利率
• T是期权到期前的时间(以年为单位)
• σ是股票连续年收益率的标准差
2020/4/17
PPT学习交流
10
• 例子:对一个看涨期权定价:
第三章 期权定价
2
PPT学习交流
1
内在价值与时间价值
• 内在价值(intrinsic value):
• 股价与执行价格之差; • 或是立即执行一个实值状态的看涨期权所能获得的利润
• 时间价值
• 期权价格与其内在价值的差额 • 是期权价值的一部分 • 期权之所以具有该价值,是因为期权还有一段时间才能到