江苏省常州市2018年前黄高中自主招生数学必做试卷(含答案)
2018-2019最新江苏常州市第一中学初升高自主招生考试数学模拟精品试卷【含解析】【5套试卷】
![2018-2019最新江苏常州市第一中学初升高自主招生考试数学模拟精品试卷【含解析】【5套试卷】](https://img.taocdn.com/s3/m/ae9e3b96f61fb7360b4c65b9.png)
江苏常州市第一中学自主招生考试数学模拟精品试卷(第一套)考试时间:90分钟 总分:150分一、选择题(本题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的,请你把正确选项前的字母填涂在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.下列事件中,必然事件是( ) A .掷一枚硬币,正面朝上 B .a 是实数,|a |≥0C .某运动员跳高的最好成绩是20.1米D .从车间刚生产的产品中任意抽取一个,是次品2、如图是奥迪汽车的标志,则标志图中所包含的图形变换没有的是( )A .平移变换B .轴对称变换C .旋转变换D .相似变换3.如果□×3ab =3a 2b ,则□内应填的代数式( )A .abB .3abC .aD .3a4.一元二次方程x (x -2)=0根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根5、割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周O长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”。
试用这个方法解决问题:如图,⊙的内接多边形周长为3 ,⊙O 的外切多边形周长为3.4,则下列各数中与此圆的周长最接近的是( ) A.10D6、今年5月,我校举行“庆五四”歌咏比赛,有17位同学参加选拔赛,所得分数互不相同,按成绩取前8名进入决赛,若知道某同学分数,要判断他能否进入决赛,只需知道17位同学分数的( ) A.中位数 B.众数 C.平均数 D.方差7.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是( )A.⎩⎪⎨⎪⎧x +1>0,x -3>0 B. ⎩⎪⎨⎪⎧x +1>0,3-x >0C.⎩⎪⎨⎪⎧x +1<0,x -3>0 D.⎩⎪⎨⎪⎧x +1<0,3-x >08.已知二次函数的图象(0≤x ≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )A .有最小值0,有最大值3B .有最小值-1,有最大值0C .有最小值-1,有最大值3D .有最小值-1,无最大值9.如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )主视方向A .2.5B .2 2 C.3 D. 510.江苏常州市第一中学广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x (单位:米)的一部分,则水喷出的最大高度是( )A .4米B .3米C .2米D .1米 11、两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是( )(A )两个外离的圆 (B )两个外切的圆(C )两个相交的圆 (D )两个内切的圆12.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①b 2-4ac >0; ②abc >0; ③8a +c >0; ④9a +3b +c <0.其中,正确结论的个数是( ) A .1 B .2 C .3 D .4二、填空题(本小题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案13.当x ______时,分式13-x有意义.14.在实数范围内分解因式:2a 3-16a =________.15.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.0000963贝克/立方米.数据“0.0000963”用科学记数法可表示为________.16.如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =________.17.若一次函数y =(2m -1)x +3-2m 的图象经过 一、二、四象限,则m 的取值范围是________.18.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有________个小圆. (用含 n 的代数式表示)三、解答题(本大题7个小题,共90分)19.(本题共2个小题,每题8分,共16分) (1).计算:(2011-1)0+18sin45°-2-1(2).先化简,再计算: x 2-1x 2+x ÷⎝⎛⎭⎪⎫x -2x -1x ,其中x 是一元二次方程x 2-2x -2=0的正数根.20.(本题共2个小题,每题6分,共12分)(1).如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(x2+17) cm,正六边形的边长为(x2+2x) cm(其中x>0).求这两段铁丝的总长.(2).描述证明海宝在研究数学问题时发现了一个有趣的现象:将上图横线处补充完整,并加以证明.21.(本题12分)某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.票数结果统计如图一:其次,对三名候选人进行了笔试和面试两项测试.各项成绩如下表所示:面试859580图二是某同学根据上表绘制的一个不完全的条形图.请你根据以上信息解答下列问题:(1)补全图一和图二;(2)请计算每名候选人的得票数;(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2∶5∶3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?22.(本题12分)如图,已知直线AB与x轴交于点C,与双曲线y=kx交于A(3,203)、B(-5,a)两点.AD⊥x轴于点D,BE∥x轴且与y轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.23、(本题12分)如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A, AD与BC交于点E,F在DA的延长线上,且AF=AE.(1)试判断BF与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2.∠F=60,求弓形AB的面积24.(本题12分)已知双曲线y =kx与抛物线y =ax 2+bx +c 交于A (2,3)、B (m,2)、c (-3,n )三点.(1)求双曲线与抛物线的解析式;(2)在平面直角坐标系中描出点A 、点B 、点C ,并求出△ABC 的面积.25.(本题共2个小题,每题7分,共14分) (1)观察下列算式:① 1 × 3-22=3-4=-1 ② 2 × 4-32=8-9=-1 ③ 3 × 5-42=15-16=-1 ④ __________________________ ……(1)请你按以上规律写出第4个算式; (2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.(2)如图,在直角坐标系中,O 为坐标原点. 已知反比例函数y=kx(k >0)的图象经过点A (2,m ),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为12.(1)求k 和m 的值;(2)点C (x ,y )在反比例函数y =kx的图象上,求当1≤x ≤3时函数值y 的取值范围;(3)过原点O 的直线l 与反比例函数y =kx的图象交于P 、Q 两点,试根据图象直接写出线段PQ 长度的最小值.2018-2019年最新江苏常州市第一中学自主招生考试数学模拟精品试卷答案(第一套)1.答案 B解析 据绝对值的意义,一个数的绝对值是一个非负数,|a |≥0.2.C3.答案 C解析 □=3a 2b ÷3ab =a . 4.答案 A解析 x (x -2)=0,x =0或x -2=0,x 1=0,x 2=2,方程有两个不相等的实数根.5.C6.A7.答案 B 解析 观察数轴,可知-1<x <3,只有⎩⎪⎨⎪⎧x +1>0,3-x >0的解集为-1<x <3.8.答案 C解析 当0≤x ≤3时,观察图象,可得图象上最低点(1,-1),最高点(3,3),函数有最小值-1,最大值3.9.答案 D解析 在Rt △OAB 中,∠OAB =90°,所以OB =12+22= 5 10.答案 A解析 y =-x 2+4x =-(x -2)2+4,抛物线开口向下,函数有最大值4.11.D 12.答案 D解析 由图知:抛物线与x 轴有两个不同的交点,则△=b 2-4ac >0,故①正确.抛物线开口向上,得a >0;又对称轴为直线x =-b2a=1,b =-2a <0.抛物线交y 轴于负半轴,得 c <0,所以abc >0,②正确.根据图象,可知当x =-2时,y >0,即4a -2b +c >0,把b =-2a 代入,得4a -2(-2a )+c =8a +c >0,故③正确.当x =-1时,y <0,所以x =3时,也有y <0,即9a +3b +c <0,故④正确.二.填空题 13.答案 ≠3解析 因为分式有意义,所以3-x ≠0,即x ≠3. 14.答案 2a (a +2 2)(a -2 2) 15.答案 9.63×10-5解析 0.0000963=9.63×10-5. 16.答案 105°解析 如图,∵(60°+∠CAB )+(45°+∠ABC )=180°,∴∠CAB +∠ABC =75°,在△ABC 中,得∠C =105°.17.答案 m <12解析 因为直线经过第一、二、四象限,所以⎩⎪⎨⎪⎧2m -1<0,3-2m >0,解之,得m <12.18.答案 n (n +1)+4或n 2+n +4解析 第1个图形有2+4=(1×2+4)个小圆,第2个图形6+4=(2×3+4)个小圆,第3个图形有12+4=(3×4+4)个小圆,……第n 个图形有[n (n +1)+4]个小圆.三、解答题(本大题7个小题,共90分) 19.(本题共216分)(1).解:原式=1+3 2312.(2)解:原式=x +1x -1x x +1÷x 2-2x +1x =x -1x ·xx -12=1x -1. 解方程得x 2-2x -2=0得, x 1=1+3>0,x 2=1-3<0. 当x =1+3时,原式=11+3-1=13=33.20.(1).解:由已知得,正五边形周长为5(x 2+17) cm ,正六边形周长为6(x 2+2x ) cm.因为正五边形和正六边形的周长相等, 所以5(x 2+17)=6(x 2+2x ).整理得x 2+12x -85=0,配方得(x +6)2=121, 解得x 1=5,x 2=-17(舍去).故正五边形的周长为5×(52+17)=210(cm).又因为两段铁丝等长,所以这两段铁丝的总长为420 cm. 答:这两段铁丝的总长为420 cm.(2)解:如果a b +ba +2=ab ,那么a +b =ab .证明:∵a b +b a +2=ab ,∴a 2+b 2+2abab=ab ,∴a 2+b 2+2ab =(ab )2,∴(a +b )2=(ab )2, ∵a >0,b >0,a +b >0,ab >0, ∴a +b =ab .21.解:(1)乙30%;图二略.(2)甲的票数是:200×34%=68(票), 乙的票数是:200×30%=60(票),丙的票数是:200×28%=56(票),(3)甲的平均成绩:x 1=68×2+92×5+85×32+5+3=85.1,乙的平均成绩:x 2=60×2+90×5+95×32+5+3=85.5,丙的平均成绩:x 3=56×2+95×5+80×32+5+3=82.7,∵乙的平均成绩最高,∴应该录取乙.22.解:(1)∵双曲线y =k x 过A (3,203),∴k =20.把B (-5,a )代入y =20x,得a =-4.∴点B 的坐标是(-5,-4). 设直线AB 的解析式为y =mx +n ,将 A (3,203)、B (-5,-4)代入得,⎩⎨⎧203=3m +n ,-4=-5m +n ,解得:m =43,n =83.∴直线AB 的解析式为:y =43x +83.(2)四边形CBED 是菱形.理由如下:易求得点D 的坐标是(3,0),点C 的坐标是(-2,0). ∵ BE //x 轴, ∴点E 的坐标是(0,-4). 而CD =5, BE =5, 且BE //CD . ∴四边形CBED 是平行四边形. 在Rt △OED 中,ED 2=OE 2+OD 2, ∴ ED =32+42=5,∴ED =CD . ∴四边形CBED 是菱形.23.解:证明:(1)BF 与⊙O 相切,连接OB 、OA ,连接BD , ∵AD ⊥AB ,∴∠BAD=90°,∴BD 是直径,∴BD 过圆心. ∵AB=AC ,∴∠ABC=∠C , ∵∠C=∠D ,∴∠ABC=∠D , ∵AD ⊥AB ,∴∠ABD+∠D=90°, ∵AF=AE ,∴∠EBA=∠FBA , ∴∠ABD+∠FBA=90°,∴OB ⊥BF , ∴BF 是⊙O 切线.(2)∵∠F=600,∴∠D=900-∠F=300,∴∠AOB=600,∴△AOB 为等边三角形..S 弓形AB=3322433602602020-=⨯-ππ.24.解:(1)把点A (2,3)代入y =kx得:k =6.∴反比例函数的解析式为:y =6x.把点B (m,2)、C (-3,n )分别代入y =6x得: m =3,n =-2.把A (2,3)、B (3,2)、C (-3,-2)分别代入y =ax 2+bx +c 得:⎩⎪⎨⎪⎧4a +2b +c =3,9a +3b +c =2,9a -3b +c =-2,解之得 ⎩⎪⎨⎪⎧a =-13,b =23,c =3.∴抛物线的解析式为:y =-13x 2+23x +3.(2)描点画图(如图):S △ABC =12(1+6)×5-12×1×1-12×6×4=352-12-12=5.25.(1).解:(1)4×6-52=24-25=-1.(2)答案不唯一.如n ()n +2-()n +12=-1.(3)n ()n +2-()n +12 =n 2+2n -()n 2+2n +1 =n 2+2n -n 2-2n -1 =-1. 所以一定成立.(2)解:(1)∵A (2,m ),∴OB =2,AB =m ,∴S △A OB =12OB ·AB =12×2×m =12,∴m =12.∴点A 的坐标为(2,12).把A (2,12)代入y =k x ,得12=k2,∴k =1.(2)∵当x =1时,y =1;当x =3时,y =13,又∵反比例函数y =1x在x >0时,y 随x 的增大而减小,∴当1≤x ≤3时,y 的取值范围为13≤y ≤1.(3) 由图象可得,线段PQ 长度的最小值为2 2.(1)(2)(3)2018-2019年最新江苏常州市第一中学自主招生考试数学模拟精品试卷(第二套)考试时间:90分钟 总分:150分第I 卷一、选择题(每小题5分,共60分) 1、下列计算中,正确的是( )A .B .C .D .2、如右图,在□ABCD 中,AC 平分∠DAB ,AB = 3,则□ABCD 的周长为( ) A .6B .9C .12D .153、已知二次函数c bx ax y ++=2(0≠a )的图象如右图所 示,则下列结论 ①0<++c b a ②0<+-c b a ③02<+a b ④0>abc 中正确的个数是( ) A .1个 B .2个 C .3个 D .4个4、如图是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是( )020=623)(a a =93=±2a a a =+(A )25 (B )66 (C )91 (D )120 5、有如下结论(1)有两边及一角对应相等的两个三角形全等;(2)菱形既是轴对称图形又是中心对称图形;(3)对角线相等的四边形是矩形;(4)平分弦的直径垂直于弦,并且平分弦所对的两条弧。
江苏省姜堰、溧阳、前黄中学2018届高三4月联考数学试题(解析版)
![江苏省姜堰、溧阳、前黄中学2018届高三4月联考数学试题(解析版)](https://img.taocdn.com/s3/m/feaffd58915f804d2b16c1db.png)
1.23【解析】由z 1=3﹣2i ,z 2=1+ai (a∈R), 则z 1•z 2=(3﹣2i )(1+ai )=3+3ai ﹣2i ﹣2ai 2=(3+2a )+(3a ﹣2)i . ∵z 1•z 2为实数, ∴3a ﹣2=0,解得:a=23. 故答案为:23.点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中: (1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和. 3.充分不必要【解析】由1a >14,解得:0<a <4, 故命题p :0<a <4; 若∀x∈R,ax 2+ax+1>0, 则20{40a a a =-><,解得:0<a <4,或a=0时,1>0恒成立, 故q :0≤a<4;故命题p 是命题q 的充分不必要条件, 故答案为:充分不必要.考点:古典概型.5.45【解析】执行程序框图,可得i=1,S=0S=112⨯,i=2不满足条件i≥5,S=112⨯+123⨯,i=3不满足条件i≥5,S=112⨯+123⨯+134⨯,i=4不满足条件i≥5,S=112⨯+123⨯+134⨯+145⨯=1﹣15=45,i=5满足条件i≥5,退出循环,输出S的值为45.故答案为:45.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6.5【解析】作出可行域如图所示:当直线3y 44zx =+经过点B ()12,时,纵截距最大,即目标函数取到最大值, 3425z =-+⨯=,故答案为:5点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.8【解析】由题意知,弧长为4π×8=2π, 即围成圆锥形容器底面周长为2π, 所以圆锥底面半径为r=1, 可得圆锥高h=37, 所以容积V=13πr 2×h=13π77πcm 3; 故答案为:π9.23【解析】由图象可得最小正周期为23π.所以f (0)=f (23π),注意到23π与2π关于712π对称, 故f (23π)=﹣f (2π)=23.故答案为: 2310.32【解析】设OA 所在的直线方程为b y x a =,则OB 所在的直线方程为b y x a=-,解方程组2{ 2by x a x py ==得: 222{ 2pbx apb y a==,所以点A 的坐标为2222,pb pb a a ⎛⎫ ⎪⎝⎭, 抛物线的焦点F 的坐标为: 0,2p ⎛⎫⎪⎝⎭.因为F 是ABC ∆的垂心,所以1OB AF k k ⋅=-,所以,2222252124pb pb bapba aa⎛⎫-⎪-=-⇒= ⎪⎪⎪⎝⎭.所以,2222293142c be ea a==+=⇒=.考点:1、双曲线的标准方程与几何性质;2、抛物线的标准方程与几何性质. 若圆上只有一个点到直线AB的距离为22,则有圆心(2,0)到直线AB;若圆上只有3个点到直线AB的距离为,则有圆心(2,0)到直线AB=r﹣,解得r=2;综上,r的取值范围是(2,2).故答案为:,).∴22AB +22AC =5AB •AC ,即 2AB 2+2AC 2=5AB•AC•cosA≥4AB•AC,∴cosA ≥45,即cos α≥45, ∵sin (2π﹣2α)=cos2α=2cos 2α﹣1≥725,故答案为: 725.13.1ln2-【解析】令g (x )= 223ln x x x --,g′(x )=4x 13x--=()()2411431x x x x x x +---=,故g (x )=x ﹣ln (x+2)在(0, 1)上是减函数,(1,+∞)上是增函数, 故当x=﹣1时,g (x )有最小值﹣1, 而4x a a x e e --+≥4,(当且仅当x a e -=4a x e -,即x=a+ln2时,等号成立); 故f (x )≥3(当且仅当等号同时成立时,等号成立); 故x=a+ln2=1, 即a=1﹣ln2. 故答案为:1﹣ln2.14. 【解析】如图,由|x 2﹣2x ﹣1|﹣t=0得到:t=|(x ﹣1)2﹣2|,则0<t <2.∴2<2+t <4.0<2﹣t <2.∴<8,0<,∴<∴<2(x 4﹣x 1)+(x 3﹣x 2)<.故答案是:().点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 15.(1) 4b = (2) ()8,82【解析】试题分析:(1)利用正余弦定理, sin cos 3cos sin A C A C =可转化为2222b ac -=,又222a c b -=,从而得到b 的值;(2)由正弦定理1sin sin 2S bc A A C ==,故324S AcosC A π⎛⎫+=-⎪⎝⎭限制角A 的范围,求出cos S A C +的取值范围.(2)由正弦定理sin sin b c B C =得114sin 4sin sin sin 22sin 4S bc A A C A C π==⋅⋅=()324S AcosC A C A π⎛⎫∴+=-=-⎪⎝⎭, 在ABC ∆中,由3040{202A A C A Cπππ<<<<<<> 得3,82A ππ⎛⎫∈ ⎪⎝⎭ 320,44A ππ⎛⎫∴-∈ ⎪⎝⎭,3cos 2,142A π⎛⎫⎛⎫∴-∈ ⎪ ⎪ ⎪⎝⎭⎝⎭(S AcosC ∴+∈.16.(1)见解析(2)见解析【解析】试题分析:(1)要证D 为BC 的中点,又AB=AC ,即证AD⊥BC即可;(2)连接1A B ,连接1A C 交1AC 于点G ,连接DG ,由(1)易证//EF DG ,从而问题得证. 试题解析:(2) 连接1A B ,连接1A C 交1AC 于点G ,连接DG矩形11A ACC , ∴ G 为1A C 的中点,又由(1)得D 为BC 的中点,∴△1A BC 中, 1//DG A B又点E , F 分别是1BB , 11A B 的中点,∴△11A B B 中, 1//EF A B , ∴ //EF DG ,又EF ⊄平面1ADC , DG ⊂平面1ADC∴ //EF 平面1ADC点睛:垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.17.(1) 14000.9a m =⨯+, 2324 1.9a m =+ (2) 40m <(3)(]0,55m ∈【解析】试题分析:(1)根据,A 市2017年的碳排放总量为400万吨,通过技术改造和倡导低碳生活等措施,此后每年的碳排放量比上一年的碳排放总量减少10%.同时,因经济发展和人口增加等因素,每年又新增加碳排放量m 万吨,即可求A 市2019年的碳排放总量(用含m 的式子表示);(2)求出数列的通项,A 市永远不需要采取紧急限排措施,则有∀n∈N *,a n ≤550,分类讨论,即可求m 的取值范围.(Ⅱ)()230.94000.90.9a m m m =⨯⨯+++ 324000.90.90.9m m m =⨯+++,…124000.90.90.90.9n n n n a m m m m --=⨯+++⋅⋅⋅+,()10.94000.94000.91010.910.9nnn n m m -=⨯+=⋅+--,()400100.910n m m =-⋅+.由已知有*,550n n N a ∀∈≤(1)当400100m -=即40m =时,显然满足题意; (2)当400100m ->即40m <时,由指数函数的性质可得: ()400100.910550m m -⨯+≤,解得190m ≤. 综合得40m <;(3)当400100m -<即40m >时,由指数函数的性质可得: 10550m ≤,解得55m ≤,综合得4055m <≤.(13分) 综上可得所求范围是(]0,55m ∈.18.(1) 102e <≤(2) 221572416x y ⎛⎛⎫++±= ⎪ ⎝⎭⎝⎭【解析】试题分析:(1) 设直线m 与x 轴的交点是Q ,依题意FQ FA ≥,把条件代数化,即可解得范围;(2)由题意易得椭圆方程是: 22143x y +=,设()()1122M x y N x y ,,, ,则 2211143x y +=, 2222143x y +=.由3455OB OM ON =+,得 12123434,5555B x x y y ⎛⎫++ ⎪⎝⎭. 因为B 是椭圆C 上一点,所以22121234345555+=143x x y y ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ ,得到1212043x x y y +=,因为圆过,A F 两点, 所以线段MN 的中点的坐标为121(,)22y y +- 又()222221212121212111123131224444y y y y y y x x y y ⎡⎤+⎛⎫⎛⎫⎛⎫=++=-+-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,从而求得圆的方程.(2)当12e =且()2,0A -时, ()1,0F ,故2,1a c ==,所以b =椭圆方程是: 22143x y += 设()()1122M x y N x y ,,, ,则 2211143x y +=, 2222143x y +=. 由3455OB OM ON =+,得 12123434,5555B x x y y ⎛⎫++ ⎪⎝⎭.因为B 是椭圆C 上一点,所以 22121234345555+=143x x y y ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 即222222112212123434214354355543x y x y x x y y ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++⋅⋅+=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1212043x x y y+= ………① 因为圆过,A F 两点, 所以线段MN 的中点的坐标为121(,)22y y +-又()222221212121212111123131224444y y y y y y x x y y ⎡⎤+⎛⎫⎛⎫⎛⎫=++=-+-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦………② 由①和②得()222212121212111313121313132224442444416y y x x x x x x ⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫⎤⎡⎛⎫=-+-+-=-+=⋅-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎥⎢⎝⎭⎝⎭⎦⎣⎝⎭⎝⎭⎝⎭⎣⎦,所以圆心坐标为1(,)24-± 故所求圆方程为221572416x y ⎛⎫⎛⎫++±= ⎪ ⎪ ⎪⎝⎭⎝⎭ 19.(1) y =-1ex -1 (2)①(0,e)②见解析试题解析:(1)当a =0时,f(x)=-1-lnx ,f ′(x)=-1x. 设切点为T(x 0,-1-lnx 0), 则切线方程为:y +1+lnx 0=-1x ( x -0x ). 因为切线过点(0,-1),所以 -1+1+ln x 0=-1x (0-x 0),解得x 0=e . 所以所求切线方程为y =-1ex -1.当0<xf ′(x)<0,函数f(x)单调递减;当xf ′(x)>0,f(x)单调递增, 所以f(x)min ==12-1=-12-要使函数f(x)有两个零点,首先 -12-0,解得0<a <e当0<a <e 时,1e .因为f(1e )=22a e >0,故f(1e<0. 又函数f(x)在(0,上单调递减,且其图像在(0,上不间断, 所以函数f(x)在区间(0,内恰有1个零点. 考察函数g(x)=x -1-lnx ,则g′(x)=1-1x =1x x-. 当x∈(0,1)时,g′(x)<0,函数g(x)在(0,1)上单调递减; 当x∈(1,+∞)时,g′(x)>0,函数g(x)在(1,+∞)上单调递增, 所以g(x)≥g(1)=0,故f(2a )=2a -1-ln 2a≥0. 因为2a>0,故2a因为2a )≤0,且f(x)在所以函数f(x)在区间2a ] 上恰有1个零点,即在1个零点.综上所述,a 的取值范围是(0,e).f ′(x 1)+f ′(x 2)<0等价于ax 1-11x +ax 2-21x <0,即a(x 1+x 2)-11x -21x <0,即12122lnx x x x --11x -21x <0,即2ln 12x x +21x x -12x x >0.设h(x)=2lnx +1x -x ,x ∈(0,1).则h′(x)=2x -21x -1=2221x x x --=-()221x x -<0, 所以函数h(x)在(0,1)单调递减,所以h(x)>h(1)=0. 因为12x x ∈(0,1),所以2ln 12x x +21x x -12xx >0, 20.(1)3322n - (2) 122n -【解析】试题分析:(1)直接利用递推关系式求出数列的通项公式.(2)根据已知条件和数列的等量关系求出数列的通项公式. 试题解析:(2)当n >kn T k n+1T k,=1TnTk TnTk+n+1,因为M={3,4},所以取k=3,当n >3时,有a n+4a n ﹣2=a n+12; 取k=4,当n >4时,有a n+5a n ﹣3=a n+12. 由a n+5a n ﹣3=a n+12知,数列a 2,a 6,a 10,a 14,a 18,a 22,…,a 4n ﹣2,…,是等比数列,设公比为q .…① 由a n+4a n ﹣2=a n+1 知,数列a 2,a 5,a 8,a 11,a 14,a 17,…,a 3n ﹣1,…,是等比数列,设公比为q 1,…② 数列a 3,a 6,a 9,a 12,a 15,a 18,…,a 3n ,…,成等比数列,设公比为q 2,…③ 数列a 4,a 7,a 10,a 13,a 16,a 19,a 22,…,a 3n+1,…,成等比数列,设公比为q 3,…④由①②得,142aa=q3,且142aa=q14,所以q1=34q;由①③得,186aa=q3,且186aa=q24,所以q2=34q;由①④得,2210aa=q3,且2210aa=q34,所以q3=34q;所以q1=q2=q3=34 q.由①③得,a6=a2q,a6=a3q2,所以32aa=2qq=14q,由①④得,a10=a2q2,a10=a4q32,所以42aa=12223qqq=,所以a2,a3,a4是公比为q 14的等比数列,所以{an}(n≥2)是公比为q14的等比数列.因为当n=4,k=3时,T7T1=T42T32;当n=5,k=4时,T9T1=T52T42,所以(14q)7=2a24,且(14q)10=2a26,所以14q=2,a22又a1,所以{a n}(n∈N*)是公比为14q的等比数列.故数列{a n}的通项公式是a n=2n﹣1.21.x y+=cos14πρθ⎛⎫-=⎪⎝⎭【解析】试题分析:把圆的极坐标方程转化为直角坐标方程,求出圆心及点A,进而得到直线的直角坐标方程,再把其转化为极坐标方程.直线CA的直角坐标方程为x y+=即直线CA 的极坐标方程为cos 14πρθ⎛⎫-= ⎪⎝⎭. 22.(1)1116(2)见解析 【解析】试题分析:(1)根据卡片上分别标有数﹣i ,i ,﹣2,2其中i 是虚数单位,可求P (A ),利用对立事件的概率公式,可求P (B );(2)确定随机变量ξ=|a•b|的取值,求出相应的概率,可得分布列与数学期望E ξ. 试题解析:(1)∵卡片上分别标有数﹣i ,i ,﹣2,2其中i 是虚数单位, ∴P (A )=24=12, P (B )=1﹣P (B )=1﹣[00413441111()()()2222C C ⋅⋅+⋅⋅]=1﹣516=1116(2)a ,b ,ξ的可能取值如下表所示:由表可知:P (ξ=1)=416=14,P (ξ=2)=816=12,P (ξ=4)=416=14∴随机变量ξ的分布列为∴E ξ=1×14+2×12+4×14=94点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是:“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X ~B(n ,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得. 23.(1) 122,4,a a == 38,a = (2)见解析【解析】试题分析:(1)利用等式,求出1a , 2a , 3a 的值;(2)归纳猜想,利用数学归纳法加以证明. 试题解析:(1)1=2a , 2=4a , 3=8a . (2)猜想: =2nn a .则1n k =+时, 123+101112+13+1+11123+12222k k k k k k k k k C C C C a C++++++++=++++⋯+. 由111k k kn n n C C C +++=+得1021320112233123222k k k k k k k kC C C C C C a C ++++++++++=++++⋯ -1+1+++1+1+122k k k k k k k k k k k C C C ++++ 0121+1123+1+123+1222222k k kk k k k k k k k k C C C C C -+++++=++++⋯++, 121+1023+1+1111211222222k k kk k k k k k k k k k C C C C a C -++++++-⎛⎫=++++⋯++ ⎪⎝⎭121+10231-1+1+11121+1222222k k k kk k k k k k k kk k kC C C C C C -+++++++-⎛⎫=++++⋯++ ⎪⎝⎭. 又()()()()()()()()()()+1+1+1+11121!2221!21!112=!1!1!1!1!1!2k k k k k k k k k k k C C k k k k k k k ++++++++===+++++121+10231-1+1+111121112222222k k k kk k k k k k k k k k k k C C C C C C -++++++++-+⎛⎫=++++⋯+++ ⎪⎝⎭, 于是11122k k k a a ++=+. 所以112k k a ++=, 故1n k =+时结论也成立.由①②得, =2nn a *n N ∈,.。
江苏省常州市江苏前黄高级中学2018年高二数学文月考试题含解析
![江苏省常州市江苏前黄高级中学2018年高二数学文月考试题含解析](https://img.taocdn.com/s3/m/c7bd1aaf3b3567ec112d8aee.png)
江苏省常州市江苏前黄高级中学2018年高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 某几何体的三视图如图所示,则该几何体的体积胃()A.1+B.3+ C.D.3参考答案:C考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由三视图确定该几何体的结构,然后利用相应的体积公式进行求解.解答:解:由三视图可知,该几何体是一个底面为直角梯形的四棱柱.其中棱柱的高为1.底面直角梯形的上底为1,下底为2,梯形的高为1.所以四棱柱的体积为V==.故选:C.点评:本题主要考查三视图的识别以及几何体的体积公式.2. 将函数图象上的所有点向左平移个单位长度,则所得图象的函数解析式是()A. B. C.D.参考答案:A3. 正棱锥的高和底面边长都缩小为原来的,则它的体积是原来的A. B.C.D.参考答案:B略4. 下列说法中,错误的个数是()①一条直线与一个点就能确定一个平面②若直线∥,平面,则∥③若函数定义域内存在满足,则必定是的极值点④函数的极大值就是最大值A、1个B、2个C、3个D、4个参考答案:D略5. 用S表示图中阴影部分的面积,则S的值是()A.∫a c f(x)dx B.|∫a c f(x)dx|C.∫a b f(x)dx+∫b c f(x)dx D.∫b c f(x)dx﹣∫a b f(x)dx参考答案:D【考点】6G:定积分在求面积中的应用.【分析】先将阴影部分的面积用定积分表示∫b c f(x)dx﹣∫a b f(x)dx,然后根据定积分的意义进行选择即可.【解答】解析:由定积分的几何意义知区域内的曲线与X轴的面积代数和.即∫b c f(x)dx﹣∫a b f(x)dx选项D正确.故选D.6. 曲线在点处的切线与坐标轴围成的三角形面积为()A、B、C、D、参考答案:A7. 点P(﹣1,2)到直线8x﹣6y+15=0的距离为()A.2 B.C.1 D.参考答案:B【考点】点到直线的距离公式.【专题】计算题.【分析】点P(x0,y0)到直线ax+by+c=0的距离:d=,由此能求出点P (﹣1,2)到直线8x﹣6y+15=0的距离.【解答】解:点P(﹣1,2)到直线8x﹣6y+15=0的距离:d==,故选B.【点评】本题考查点到直线的距离公式的应用,解题时要注意公式的灵活运用,合理地进行求解.8. 函数的定义域是()A. B. C.D.参考答案:A9. 若方程x+(a是常数),则下列结论正确的是()A.,方程表示椭圆。
2018年江苏省常州市中考数学试卷(附参考解析)
![2018年江苏省常州市中考数学试卷(附参考解析)](https://img.taocdn.com/s3/m/38b6735ddd36a32d73758183.png)
2018年江蘇省常州市中考數學試卷一、選擇題(本大題共8小題,每小題2分,共16分.在每小題所給出的四個選項中,只有一項是正確的)1.(2.00分)﹣3的倒數是()A.﹣3 B.3 C.﹣ D.2.(2.00分)已知蘋果每千克m元,則2千克蘋果共多少元?()A.m﹣2 B.m+2 C.D.2m3.(2.00分)下列圖形中,哪一個是圓錐的側面展開圖?()A. B.C.D.4.(2.00分)一個正比例函數的圖象經過(2,﹣1),則它的運算式為()A.y=﹣2x B.y=2x C.D.5.(2.00分)下列命題中,假命題是()A.一組對邊相等的四邊形是平行四邊形B.三個角是直角的四邊形是矩形C.四邊相等的四邊形是菱形D.有一個角是直角的菱形是正方形6.(2.00分)已知a為整數,且,則a等於()A.1 B.2 C.3 D.47.(2.00分)如圖,AB是⊙O的直徑,MN是⊙O的切線,切點為N,如果∠MNB=52°,則∠NOA的度數為()A.76°B.56°C.54°D.52°8.(2.00分)某數學研究性學習小組製作了如下的三角函數計算圖尺:在半徑為1的半圓形量角器中,畫一個直徑為1的圓,把刻度尺CA的0刻度固定在半圓的圓心O處,刻度尺可以繞點O旋轉.從圖中所示的圖尺可讀出sin∠AOB的值是()A.B.C.D.二、填空題(本大題共10小題,每小題2分,共20分.不需寫出解答過程,請把答案直接寫在答題卡相應位置上)9.(2.00分)計算:|﹣3|﹣1=.10.(2.00分)化簡:=.11.(2.00分)分解因式:3x2﹣6x+3=.12.(2.00分)已知點P(﹣2,1),則點P關於x軸對稱的點的座標是.13.(2.00分)地球與月球的平均距離大約384000km,用科學計數法表示這個距離為km.14.(2.00分)中華文化源遠流長,如圖是中國古代文化符號的太極圖,圓中的黑色部分和白色部分關於圓心中心對稱.在圓內隨機取一點,則此點取黑色部分的概率是.15.(2.00分)如圖,在▱ABCD中,∠A=70°,DC=DB,則∠CDB=.16.(2.00分)如圖,△ABC是⊙O的內接三角形,∠BAC=60°,的長是,則⊙O的半徑是.17.(2.00分)下麵是按一定規律排列的代數式:a2,3a4,5a6,7a8,…則第8個代數式是.18.(2.00分)如圖,在△ABC紙板中,AC=4,BC=2,AB=5,P是AC上一點,過點P沿直線剪下一個與△ABC相似的小三角形紙板,如果有4種不同的剪法,那麼AP長的取值範圍是.三、解答題(本大題共10小題,共84分.請在答題卡指定區域內作答,如無特殊說明,解答應寫出文字說明、演算步驟或推理過程)19.(6.00分)計算:|﹣1|﹣﹣(1﹣)0+4sin30°.20.(8.00分)解方程組和不等式組:(1)(2)21.(8.00分)如圖,把△ABC沿BC翻折得△DBC.(1)連接AD,則BC與AD的位置關係是.(2)不在原圖中添加字母和線段,只加一個條件使四邊形ABDC是平行四邊形,寫出添加的條件,並說明理由.22.(8.00分)為了解某市初中學生課外閱讀情況,調查小組對該市這學期初中學生閱讀課外書籍的冊數進行了抽樣調查,並根據調查結果繪製成如下統計圖.根據統計圖提供的資訊,解答下列問題:(1)本次抽樣調查的樣本容量是;(2)補全條形統計圖;(3)該市共有12000名初中生,估計該市初中學生這學期課外閱讀超過2冊的人數.23.(8.00分)將圖中的A型、B型、C型矩形紙片分別放在3個盒子中,盒子的形狀、大小、質地都相同,再將這3個盒子裝入一只不透明的袋子中.(1)攪勻後從中摸出1個盒子,求摸出的盒子中是A型矩形紙片的概率;(2)攪勻後先從中摸出1個盒子(不放回),再從餘下的兩個盒子中摸出一個盒子,求2次摸出的盒子的紙片能拼成一個新矩形的概率(不重疊無縫隙拼接).24.(8.00分)如圖,已知點A在反比例函數y=(x>0)的圖象上,過點A作AC⊥x軸,垂足是C,AC=OC.一次函數y=kx+b的圖象經過點A,與y軸的正半軸交於點B.(1)求點A的座標;(2)若四邊形ABOC的面積是3,求一次函數y=kx+b的運算式.25.(8.00分)京杭大運河是世界文化遺產.綜合實踐活動小組為了測出某段運河的河寬(岸沿是平行的),如圖,在岸邊分別選定了點A、B和點C、D,先用卷尺量得AB=160m,CD=40m,再用測角儀測得∠CAB=30°,∠DBA=60°,求該段運河的河寬(即CH的長).26.(10.00分)閱讀材料:各類方程的解法求解一元一次方程,根據等式的基本性質,把方程轉化為x=a的形式.求解二元一次方程組,把它轉化為一元一次方程來解;類似的,求解三元一次方程組,把它轉化為解二元一次方程組.求解一元二次方程,把它轉化為兩個一元一次方程來解.求解分式方程,把它轉化為整式方程來解,由於“去分母”可能產生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數學思想轉化,把未知轉化為已知.用“轉化”的數學思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通過因式分解把它轉化為x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)問題:方程x3+x2﹣2x=0的解是x1=0,x2=,x3=;(2)拓展:用“轉化”思想求方程=x的解;(3)應用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB 段拉直並固定在點P,然後沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.27.(10.00分)(1)如圖1,已知EK垂直平分BC,垂足為D,AB與EK相交於點F,連接CF.求證:∠AFE=∠CFD.(2)如圖2,在Rt△GMN中,∠M=90°,P為MN的中點.①用直尺和圓規在GN邊上求作點Q,使得∠GQM=∠PQN(保留作圖痕跡,不要求寫作法);②在①的條件下,如果∠G=60°,那麼Q是GN的中點嗎?為什麼?28.(10.00分)如圖,二次函數y=﹣+bx+2的圖象與x軸交於點A、B,與y 軸交於點C,點A的座標為(﹣4,0),P是拋物線上一點(點P與點A、B、C 不重合).(1)b=,點B的座標是;(2)設直線PB與直線AC相交於點M,是否存在這樣的點P,使得PM:MB=1:2?若存在求出點P的橫坐標;若不存在,請說明理由;(3)連接AC、BC,判斷∠CAB和∠CBA的數量關係,並說明理由.2018年江蘇省常州市中考數學試卷參考答案與試題解析一、選擇題(本大題共8小題,每小題2分,共16分.在每小題所給出的四個選項中,只有一項是正確的)1.(2.00分)﹣3的倒數是()A.﹣3 B.3 C.﹣ D.【分析】根據倒數的定義可得﹣3的倒數是﹣.【解答】解:﹣3的倒數是﹣.故選:C.【點評】主要考查倒數的概念及性質.倒數的定義:若兩個數的乘積是1,我們就稱這兩個數互為倒數.2.(2.00分)已知蘋果每千克m元,則2千克蘋果共多少元?()A.m﹣2 B.m+2 C.D.2m【分析】根據蘋果每千克m元,可以用代數式表示出2千克蘋果的價錢.【解答】解:∵蘋果每千克m元,∴2千克蘋果2m元,故選:D.【點評】本題考查列代數式,解答本題的關鍵是明確題意,列出相應的代數式.3.(2.00分)下列圖形中,哪一個是圓錐的側面展開圖?()A. B.C.D.【分析】根據圓錐的側面展開圖的特點作答.【解答】解:圓錐的側面展開圖是光滑的曲面,沒有棱,只是扇形.故選:B.【點評】此題考查了幾何體的展開圖,注意圓錐的側面展開圖是扇形.4.(2.00分)一個正比例函數的圖象經過(2,﹣1),則它的運算式為()A.y=﹣2x B.y=2x C.D.【分析】設該正比例函數的解析式為y=kx(k≠0),再把點(2,﹣1)代入求出k的值即可.【解答】解:設該正比例函數的解析式為y=kx(k≠0),∵正比例函數的圖象經過點(2,﹣1),∴2=﹣k,解得k=﹣2,∴這個正比例函數的運算式是y=﹣2x.故選:A.【點評】本題考查的是待定係數法求正比例函數的解析式,熟知正比例函數圖象上點的座標一定適合此函數的解析式是解答此題的關鍵.5.(2.00分)下列命題中,假命題是()A.一組對邊相等的四邊形是平行四邊形B.三個角是直角的四邊形是矩形C.四邊相等的四邊形是菱形D.有一個角是直角的菱形是正方形【分析】根據矩形、正方形、平行四邊形、菱形的判定即可求出答案.【解答】解:A、一組對邊平行且相等的四邊形是平行四邊形,是假命題;B、三個角是直角的四邊形是矩形,是真命題;C、四邊相等的四邊形是菱形,是真命題;D、有一個角是直角的菱形是正方形,是真命題;故選:A.【點評】本題考查菱形、矩形和平行四邊形的判定與命題的真假區別,關鍵是根據矩形、正方形、平行四邊形、菱形的判定解答.6.(2.00分)已知a為整數,且,則a等於()A.1 B.2 C.3 D.4【分析】直接利用,接近的整數是2,進而得出答案.【解答】解:∵a為整數,且,∴a=2.故選:B.【點評】此題主要考查了估算無理數大小,正確得出無理數接近的有理數是解題關鍵.7.(2.00分)如圖,AB是⊙O的直徑,MN是⊙O的切線,切點為N,如果∠MNB=52°,則∠NOA的度數為()A.76°B.56°C.54°D.52°【分析】先利用切線的性質得∠ONM=90°,則可計算出∠ONB=38°,再利用等腰三角形的性質得到∠B=∠ONB=38°,然後根據圓周角定理得∠NOA的度數.【解答】解:∵MN是⊙O的切線,∴ON⊥NM,∴∠ONM=90°,∴∠ONB=90°﹣∠MNB=90°﹣52°=38°,∵ON=OB,∴∠B=∠ONB=38°,∴∠NOA=2∠B=76°.故選:A.【點評】本題考查了切線的性質:圓的切線垂直於經過切點的半徑.也考查了圓周角定理.8.(2.00分)某數學研究性學習小組製作了如下的三角函數計算圖尺:在半徑為1的半圓形量角器中,畫一個直徑為1的圓,把刻度尺CA的0刻度固定在半圓的圓心O處,刻度尺可以繞點O旋轉.從圖中所示的圖尺可讀出sin∠AOB的值是()A.B.C.D.【分析】如圖,連接AD.只要證明∠AOB=∠ADO,可得sin∠AOB=sin∠ADO==;【解答】解:如圖,連接AD.∵OD是直徑,∴∠OAD=90°,∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,∴∠AOB=∠ADO,∴sin∠AOB=sin∠ADO==,故選:D.【點評】本題考查圓周角定理、直徑的性質、銳角三角函數等知識,解題的關鍵是學會用轉化的思想思考問題,屬於中考創新題目.二、填空題(本大題共10小題,每小題2分,共20分.不需寫出解答過程,請把答案直接寫在答題卡相應位置上)9.(2.00分)計算:|﹣3|﹣1=2.【分析】原式利用絕對值的代數意義,以及減法法則計算即可求出值.【解答】解:原式=3﹣1=2.故答案為:2【點評】此題考查了有理數的減法,熟練掌握運算法則是解本題的關鍵.10.(2.00分)化簡:=1.【分析】原式利用同分母分式的減法法則計算即可.【解答】解:原式==1,故答案為:1【點評】此題考查了分式的加減法,熟練掌握運算法則是解本題的關鍵.11.(2.00分)分解因式:3x2﹣6x+3=3(x﹣1)2.【分析】先提取公因式3,再對餘下的多項式利用完全平方公式繼續分解.【解答】解:3x2﹣6x+3,=3(x2﹣2x+1),=3(x﹣1)2.【點評】本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然後再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.12.(2.00分)已知點P(﹣2,1),則點P關於x軸對稱的點的座標是(﹣2,﹣1).【分析】根據關於x軸對稱的點的橫坐標相等,縱坐標互為相反數,可得答案.【解答】解:點P(﹣2,1),則點P關於x軸對稱的點的座標是(﹣2,﹣1),故答案為:(﹣2,﹣1).【點評】本題考查了關於x軸對稱的對稱點,利用關於x軸對稱的點的橫坐標相等,縱坐標互為相反數是解題關鍵.13.(2.00分)地球與月球的平均距離大約384000km,用科學計數法表示這個距離為 3.84×105km.【分析】科學記數法的一般形式為:a×10n,在本題中a應為3.84,10的指數為6﹣1=5.【解答】解:384 000=3.84×105km.故答案為3.84×105.【點評】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.14.(2.00分)中華文化源遠流長,如圖是中國古代文化符號的太極圖,圓中的黑色部分和白色部分關於圓心中心對稱.在圓內隨機取一點,則此點取黑色部分的概率是.【分析】根據中心對稱圖形的性質得到圓中的黑色部分和白色部分面積相等,根據概率公式計算即可.【解答】解:∵圓中的黑色部分和白色部分關於圓心中心對稱,∴圓中的黑色部分和白色部分面積相等,∴在圓內隨機取一點,則此點取黑色部分的概率是,故答案為:.【點評】本題考查的是概率公式、中心對稱圖形,掌握概率公式是解題的關鍵.15.(2.00分)如圖,在▱ABCD中,∠A=70°,DC=DB,則∠CDB=40°.【分析】根據等腰三角形的性質,平行四邊形的性質以及三角形內角和定理即可解決問題.【解答】解:∵四邊形ABCD是平行四邊形,∴∠A=∠C=70°,∵DC=DB,∴∠C=∠DBC=70°,∴∠CDB=180°﹣70°﹣70°=40°,故答案為40°.【點評】本題考查平行四邊形的性質、等腰三角形的性質、三角形內角和定理等知識,解題的關鍵是熟練掌握基本知識,屬於中考常考題型.16.(2.00分)如圖,△ABC是⊙O的內接三角形,∠BAC=60°,的長是,則⊙O的半徑是2.【分析】連接OB、OC,利用弧長公式轉化為方程求解即可;【解答】解:連接OB、OC.∵∠BOC=2∠BAC=120°,的長是,∴=,∴r=2,故答案為2.【點評】本題考查三角形的外接圓與外心,圓周角定理,弧長的計算等知識,解題的關鍵是熟練掌握弧長公式,屬於中考常考題型.17.(2.00分)下麵是按一定規律排列的代數式:a2,3a4,5a6,7a8,…則第8個代數式是15a16.【分析】直接利用已知單項式的次數與係數特點得出答案.【解答】解:∵a2,3a4,5a6,7a8,…∴單項式的次數是連續的偶數,係數是連續的奇數,∴第8個代數式是:(2×8﹣1)a2×8=15a16.故答案為:15a16.【點評】此題主要考查了單項式,正確得出單項式次數與係數的變化規律是解題關鍵.18.(2.00分)如圖,在△ABC紙板中,AC=4,BC=2,AB=5,P是AC上一點,過點P沿直線剪下一個與△ABC相似的小三角形紙板,如果有4種不同的剪法,那麼AP長的取值範圍是3≤AP<4.【分析】分四種情況討論,依據相似三角形的對應邊成比例,即可得到AP的長的取值範圍.【解答】解:如圖所示,過P作PD∥AB交BC於D或PE∥BC交AB於E,則△PCD∽△ACB或△APE∽△ACB,此時0<AP<4;如圖所示,過P作∠APF=∠B交AB於F,則△APF∽△ABC,此時0<AP≤4;如圖所示,過P作∠CPG=∠CBA交BC於G,則△CPG∽△CBA,此時,△CPG∽△CBA,當點G與點B重合時,CB2=CP×CA,即22=CP×4,∴CP=1,AP=3,∴此時,3≤AP<4;綜上所述,AP長的取值範圍是3≤AP<4.故答案為:3≤AP<4.【點評】本題主要考查了相似三角形的性質,相似三角形的對應角相等,對應邊的比相等.三、解答題(本大題共10小題,共84分.請在答題卡指定區域內作答,如無特殊說明,解答應寫出文字說明、演算步驟或推理過程)19.(6.00分)計算:|﹣1|﹣﹣(1﹣)0+4sin30°.【分析】直接利用特殊角的三角函數值以及絕對值的性質、零指數冪的性質分別化簡得出答案.【解答】解:原式=1﹣2﹣1+4×=1﹣2﹣1+2=0.【點評】此題主要考查了實數運算,正確化簡各數是解題關鍵.20.(8.00分)解方程組和不等式組:(1)(2)【分析】(1)方程組利用加減消元法求出解即可;(2)分別求出不等式組中兩不等式的解集,找出解集的公共部分即可.【解答】解:(1),①+②得:x=2,把x=2代入②得:y=﹣1,所以方程組的解為:;(2),解不等式①得:x≥3;解不等式②得:x≥﹣1,所以不等式組的解集為:x≥3.【點評】此題考查瞭解二元一次方程組,熟練掌握運算法則是解本題的關鍵.21.(8.00分)如圖,把△ABC沿BC翻折得△DBC.(1)連接AD,則BC與AD的位置關係是BC⊥AB.(2)不在原圖中添加字母和線段,只加一個條件使四邊形ABDC是平行四邊形,寫出添加的條件,並說明理由.【分析】(1)先由折疊知,AB=BD,∠ACB=∠DBC,進而判斷出△AOB≌△DOB,最後用平角的定義即可得出結論;(2)由折疊得出∠ABC=∠DBC,∠ACB=∠DCB,再判斷出∠ABC=∠ACB,進而得出∠ACB=∠DBC=∠ABC=∠DCB,最後用兩邊分別平行的四邊形是平行四邊形.【解答】解:(1)如圖,連接AD交BC於O,由折疊知,AB=BD,∠ACB=∠DBC,∵BO=BO,∴△ABO≌△DBO(SAS),∴∠AOB=∠DOB,∵∠AOB+∠DOB=180°,∴∠AOB=∠DOB=90°,∴BC⊥AD,故答案為:BC⊥AD;(2)添加的條件是AB=AC,理由:由折疊知,∠ABC=∠DBC,∠ACB=∠DCB,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB=∠DBC=∠ABC=∠DCB,∴AC∥BD,AB∥CD,∴四邊形ABDC是平行四邊形.【點評】此題主要考查了折疊的性質,平行四邊形的判定,等腰三角形的性質,全等三角形的判定和性質,判斷出△ABO≌△DBO(SAS)是解本題的關鍵.22.(8.00分)為了解某市初中學生課外閱讀情況,調查小組對該市這學期初中學生閱讀課外書籍的冊數進行了抽樣調查,並根據調查結果繪製成如下統計圖.根據統計圖提供的資訊,解答下列問題:(1)本次抽樣調查的樣本容量是100;(2)補全條形統計圖;(3)該市共有12000名初中生,估計該市初中學生這學期課外閱讀超過2冊的人數.【分析】(1)根據2冊的人數除以占的百分比即可得到總人數;(2)求出1冊的人數是100×30%=30人,4冊的人數是100﹣30﹣40﹣20=10人,再畫出即可;(3)先列出算式,再求出即可.【解答】解:(1)40÷40%=100(冊),即本次抽樣調查的樣本容量是100,故答案為:100;(2)如圖:;(3)12000×(1﹣30%)=8400(人),答:估計該市初中學生這學期課外閱讀超過2冊的人數是8400人.【點評】本題考查了條形統計圖、扇形統計圖,總體、個體、樣本、樣本容量,用樣本估計總體等知識點,兩圖結合是解題的關鍵.23.(8.00分)將圖中的A型、B型、C型矩形紙片分別放在3個盒子中,盒子的形狀、大小、質地都相同,再將這3個盒子裝入一只不透明的袋子中.(1)攪勻後從中摸出1個盒子,求摸出的盒子中是A型矩形紙片的概率;(2)攪勻後先從中摸出1個盒子(不放回),再從餘下的兩個盒子中摸出一個盒子,求2次摸出的盒子的紙片能拼成一個新矩形的概率(不重疊無縫隙拼接).【分析】(1)直接利用概率公式計算可得;(2)畫樹狀圖得出所有等可能結果,從中找打2次摸出的盒子的紙片能拼成一個新矩形的結果數,利用概率公式計算可得.【解答】解:(1)攪勻後從中摸出1個盒子有3種等可能結果,所以摸出的盒子中是A型矩形紙片的概率為;(2)畫樹狀圖如下:由樹狀圖知共有6種等可能結果,其中2次摸出的盒子的紙片能拼成一個新矩形的有4種結果,所以2次摸出的盒子的紙片能拼成一個新矩形的概率為=.【點評】此題考查了列表法或樹狀圖法求概率.用到的知識點為:概率=所求情況數與總情況數之比.24.(8.00分)如圖,已知點A在反比例函數y=(x>0)的圖象上,過點A作AC⊥x軸,垂足是C,AC=OC.一次函數y=kx+b的圖象經過點A,與y軸的正半軸交於點B.(1)求點A的座標;(2)若四邊形ABOC的面積是3,求一次函數y=kx+b的運算式.【分析】(1)根據反比例函數k值的幾何意義可求點A的座標;(2)根據梯形的面積公式可求點B的座標,再根據待定係數法可求一次函數y=kx+b的運算式.【解答】解:(1)∵點A在反比例函數y=(x>0)的圖象上,AC⊥x軸,AC=OC,∴AC•OC=4,∴AC=OC=2,∴點A的座標為(2,2);(2)∵四邊形ABOC的面積是3,∴(OB+2)×2÷2=3,解得OB=1,∴點B的座標為(0,1),依題意有,解得.故一次函數y=kx+b的運算式為y=x+1.【點評】考查了反比例函數與一次函數的交點問題,關鍵是熟練掌握反比例函數k值的幾何意義、梯形的面積、待定係數法求一次函數解析式.25.(8.00分)京杭大運河是世界文化遺產.綜合實踐活動小組為了測出某段運河的河寬(岸沿是平行的),如圖,在岸邊分別選定了點A、B和點C、D,先用卷尺量得AB=160m,CD=40m,再用測角儀測得∠CAB=30°,∠DBA=60°,求該段運河的河寬(即CH的長).【分析】過D作DE⊥AB,可得四邊形CHED為矩形,由矩形的對邊相等得到兩對對邊相等,分別在直角三角形ACH與直角三角形BDE中,設CH=DE=xm,利用銳角三角函數定義表示出AH與BE,由AH+HE+EB=AB列出方程,求出方程的解即可得到結果.【解答】解:過D作DE⊥AB,可得四邊形CHED為矩形,∴HE=CD=40m,設CH=DE=xm,在Rt△BDE中,∠DBA=60°,∴BE=xm,在Rt△ACH中,∠BAC=30°,∴AH=xm,由AH+HE+EB=AB=160m,得到x+40+x=160,解得:x=30,即CH=30m,則該段運河的河寬為30m.【點評】此題考查瞭解直角三角形的應用,熟練掌握銳角三角函數定義是解本題的關鍵.26.(10.00分)閱讀材料:各類方程的解法求解一元一次方程,根據等式的基本性質,把方程轉化為x=a的形式.求解二元一次方程組,把它轉化為一元一次方程來解;類似的,求解三元一次方程組,把它轉化為解二元一次方程組.求解一元二次方程,把它轉化為兩個一元一次方程來解.求解分式方程,把它轉化為整式方程來解,由於“去分母”可能產生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數學思想轉化,把未知轉化為已知.用“轉化”的數學思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通過因式分解把它轉化為x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)問題:方程x3+x2﹣2x=0的解是x1=0,x2=﹣2,x3=1;(2)拓展:用“轉化”思想求方程=x的解;(3)應用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB 段拉直並固定在點P,然後沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.【分析】(1)因式分解多項式,然後得結論;(2)兩邊平方,把無理方程轉化為整式方程,求解,注意驗根;(3)設AP的長為xm,根據畢氏定理和BP+CP=10,可列出方程,由於方程含有根號,兩邊平方,把無理方程轉化為整式方程,求解,【解答】解:(1)x3+x2﹣2x=0,x(x2+x﹣2)=0,x(x+2)(x﹣1)=0所以x=0或x+2=0或x﹣1=0∴x1=0,x2=﹣2,x3=1;故答案為:﹣2,1;(2)=x,方程的兩邊平方,得2x+3=x2即x2﹣2x﹣3=0(x﹣3)(x+1)=0∴x﹣3=0或x+1=0∴x1=3,x2=﹣1,當x=﹣1時,==1≠﹣1,所以﹣1不是原方程的解.所以方程=x的解是x=3;(3)因為四邊形ABCD是矩形,所以∠A=∠D=90°,AB=CD=3m設AP=xm,則PD=(8﹣x)m因為BP+CP=10,BP=,CP=∴+=10∴=10﹣兩邊平方,得(8﹣x)2+9=100﹣20+9+x2整理,得5=4x+9兩邊平方並整理,得x2﹣8x+16=0即(x﹣4)2=0所以x=4.經檢驗,x=4是方程的解.答:AP的長為4m.【點評】本題考查了轉化的思想方法,一元二次方程的解法.解無理方程是注意到驗根.解決(3)時,根據畢氏定理和繩長,列出方程是關鍵.27.(10.00分)(1)如圖1,已知EK垂直平分BC,垂足為D,AB與EK相交於點F,連接CF.求證:∠AFE=∠CFD.(2)如圖2,在Rt△GMN中,∠M=90°,P為MN的中點.①用直尺和圓規在GN邊上求作點Q,使得∠GQM=∠PQN(保留作圖痕跡,不要求寫作法);②在①的條件下,如果∠G=60°,那麼Q是GN的中點嗎?為什麼?【分析】(1)只要證明FC=FB即可解決問題;(2)①作點P關於GN的對稱點P′,連接P′M交GN於Q,連接PQ,點Q即為所求.②結論:Q是GN的中點.想辦法證明∠N=∠QMN=30°,∠G=∠GMQ=60°,可得QM=QN,QM=QG;【解答】(1)證明:如圖1中,∵EK垂直平分線段BC,∴FC=FB,∴∠CFD=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠CFD.(2)①作點P關於GN的對稱點P′,連接P′M交GN於Q,連接PQ,點Q即為所求.②結論:Q是GN的中點.理由:設PP′交GN於K.∵∠G=60°,∠GMN=90°,∴∠N=30°,∵PK⊥KN,∴PK=KP′=PN,∴PP′=PN=PM,∴∠P′=∠PMP′,∵∠NPK=∠P′+∠PMP′=60°,∴∠PMP′=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN,QM=QG,∴QG=QN,∴Q是GN的中點.【點評】本題考查作圖﹣複雜作圖、線段的垂直平分線的性質、直角三角形斜邊中線的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬於中考常考題型.28.(10.00分)如圖,二次函數y=﹣+bx+2的圖象與x軸交於點A、B,與y 軸交於點C,點A的座標為(﹣4,0),P是拋物線上一點(點P與點A、B、C 不重合).(1)b=﹣,點B的座標是(,0);(2)設直線PB與直線AC相交於點M,是否存在這樣的點P,使得PM:MB=1:2?若存在求出點P的橫坐標;若不存在,請說明理由;(3)連接AC、BC,判斷∠CAB和∠CBA的數量關係,並說明理由.【分析】(1)由點A的座標,利用二次函數圖象上點的座標特徵可求出b的值,代入y=0求出x值,進而可得出點B的座標;(2)代入x=0求出y值,進而可得出點C的座標,由點A、C的座標利用待定係數法可求出直線AC的解析式,假設存在,設點M的座標為(m,m+2),分B、P在直線AC的同側和異側兩種情況考慮,由點B、M的座標結合PM:MB=1:2即可得出點P的座標,再利用二次函數圖象上點的座標特徵可得出關於m的一元二次方程,解之即可得出結論;(3)作∠CBA的角平分線,交y軸於點E,過點E作EF⊥BC於點F,設OE=n,則CE=2﹣n,EF=n,利用面積法可求出n值,進而可得出==,結合∠AOC=90°=∠BOE可證出△AOC∽△BOE,根據相似三角形的性質可得出∠CAO=∠EBO,再根據角平分線的性質可得出∠CBA=2∠EBO=2∠CAB,此題得解.【解答】解:(1)∵點A(﹣4,0)在二次函數y=﹣+bx+2的圖象上,∴﹣﹣4b+2=0,∴b=﹣.當y=0時,有﹣x2﹣x+2=0,解得:x1=﹣4,x2=,∴點B的座標為(,0).故答案為:﹣;(,0).(2)當x=0時,y=﹣x2﹣x+2=2,∴點C的座標為(0,2).設直線AC的解析式為y=kx+c(k≠0),將A(﹣4,0)、C(0,2)代入y=kx+c中,得:,解得:,∴直線AC的解析式為y=x+2.假設存在,設點M的座標為(m,m+2).①當點P、B在直線AC的異側時,點P的座標為(m﹣,m+3),∵點P在拋物線y=﹣x2﹣x+2上,∴m+3=﹣×(m﹣)2﹣×(m﹣)+2,整理,得:12m2+20m+9=0.∵△=202﹣4×12×9=﹣32<0,∴方程無解,即不存在符合題意得點P;②當點P、B在直線AC的同側時,點P的座標為(m+,m+1),∵點P在拋物線y=﹣x2﹣x+2上,∴m+1=﹣×(m+)2﹣×(m+)+2,整理,得:4m2+44m﹣9=0,解得:m1=﹣,m2=,∴點P的橫坐標為﹣2﹣或﹣2+.綜上所述:存在點P,使得PM:MB=1:2,點P的橫坐標為﹣2﹣或﹣2+.(3)∠CBA=2∠CAB,理由如下:作∠CBA的角平分線,交y軸於點E,過點E作EF⊥BC於點F,如圖2所示.∵點B(,0),點C(0,2),∴OB=,OC=2,BC=.設OE=n,則CE=2﹣n,EF=n,由面積法,可知:OB•CE=BC•EF,即(2﹣n)=n,解得:n=.∵==,∠AOC=90°=∠BOE,∴△AOC∽△BOE,∴∠CAO=∠EBO,∴∠CBA=2∠EBO=2∠CAB.【點評】題考查了二次函數圖象上點的座標特徵、待定係數法求一次函數解析式、三角形的面積、畢氏定理、一次函數圖象上點的座標特徵以及相似三角形的判定與性質,解題的關鍵是:(1)由點A的座標,利用二次函數圖象上點的座標特徵求出b的值;(2)分B、P在直線AC的同側和異側兩種情況找出點P的座標;(3)構造相似三角形找出兩角的數量關係.。
江苏省前黄高级中学2018-2019学年上学期期中高考数学模拟题
![江苏省前黄高级中学2018-2019学年上学期期中高考数学模拟题](https://img.taocdn.com/s3/m/05226322eff9aef8941e063c.png)
江苏省前黄高级中学2018-2019学年上学期期中高考数学模拟题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( ) A .4B .5C .6D .72. 已知集合{| lg 0}A x x =≤,1={|3}2B x x ≤≤,则A B =( ) A .(0,3] B .(1,2]C .(1,3]D .1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力.3. 设a ,b 为正实数,11a b+≤23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力. 4. 在ABC ∆中,22tan sin tan sin A B B A =,那么ABC ∆一定是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 5. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .20486. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}xB x x R =≤∈,则集合U AC B 为( )A.]1,1[-B.]1,0[C.]1,0(D.)0,1[- 【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.7. 已知1cos()62πα-=,则cos cos()3παα+-=( )A .12B .12± C .2 D .2±8. 满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )A.()||x f e x =B.2()x x f e e =C.2(ln )ln f x x = D.1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.9. 某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m n +的值是( )A .10B .11C .12D .13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力.10.一个几何体的三视图如图所示,则该几何体的体积是( )A .64B .72C .80D .112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力.11.已知函数[)[)1(1)sin 2,2,212()(1)sin 22,21,222nn x n x n n f x x n x n n ππ+⎧-+∈+⎪⎪=⎨⎪-++∈++⎪⎩(n N ∈),若数列{}m a 满足*()()m a f m m N =∈,数列{}m a 的前m 项和为m S ,则10596S S -=( ) A.909 B.910 C.911 D.912【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力. 12.函数2(44)xy a a a =-+是指数函数,则的值是( ) A .4 B .1或3 C .3 D .1二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________.14.若函数63e ()()32e x xbf x x a =-∈R 为奇函数,则ab =___________. 【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力. 15.已知平面向量a ,b 的夹角为3π,6=-b a,向量c a -,c b -的夹角为23π,23c a -=,则a 与c的夹角为__________,a c ⋅的最大值为 .【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力. 16.81()x x-的展开式中,常数项为___________.(用数字作答) 【命题意图】本题考查用二项式定理求指定项,基础题.三、解答题(本大共6小题,共70分。
江苏省前黄中学、姜堰中学、溧阳中学三校2018届高三名校联考卷(十二)数学试题+Word版含答案
![江苏省前黄中学、姜堰中学、溧阳中学三校2018届高三名校联考卷(十二)数学试题+Word版含答案](https://img.taocdn.com/s3/m/d54193ed27284b73f24250fc.png)
2018届高三年级江苏三校联考卷(十二)数学(满分160分,考试时间120分钟)一、填空题:本大题共14小题,每小题5分,共计70分.1. 若z1=3-2i,z2=1+a i(a∈R),z1·z2为实数,则a=________.2. 某地区对某路段公路上行驶的汽车的速度实施监控,从中抽取40辆汽车进行测速分析,得到如图所示的时速的频率分布直方图,根据该图,时速在70 km/h以下的汽车有________辆.(第2题) (第5题) (第9题)3. 已知命题p:1a>14,q:?x∈R,ax2+ax+1>0,则p成立是q成立的____________条件.(填“充分不必要”“必要不充分”“充分必要”或“既不充分又不必要”)4. 从甲、乙、丙、丁四个人中随机选取两人,则甲、乙两人中有且只有一个被选取的概率是________.5. 执行如图所示的程序框图,输出S的值为________.6. 设实数x,y满足x-y+1≥0,2x-3y+2≤0,y-2≤0,则z=-3x+4y的最大值是________.7. 若f(x)是周期为2的奇函数,当x ∈(0, 1)时,f(x)=x 2-8x +30,则f(10)=________.8. 正方形铁片的边长为8 cm ,以它的一个顶点为圆心,一边长为半径画弧剪下一个顶角为π4的扇形,用这块扇形铁片围成一个圆锥形容器,则这个圆锥形容器的容积为________.9. 已知函数f(x)=A cos (ωx +φ)的部分图象如图所示,f π2=-23,则f(0)=________.10. 在平面直角坐标系xOy 中,双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线C 2:x 2=2py(p >0)交于点O ,A ,B ,若△OAB 的垂心为C 2的焦点,则C 1的离心率为________.11. 已知点A(-3,0),B(-1,-2),若圆(x -2)2+y 2=r 2(r >0)上恰有两点M ,N ,使得△MAB 和△NAB 的面积均为4,则r 的取值范围是________.12. 设D ,E 分别为线段AB ,AC 的中点,且BE →·CD →=0,记α为AB →与AC →的夹角,则cos 2α的最小值为________.13. 已知函数f(x)=2x 2-3x -ln x +ex -a +4e a -x ,其中e 为自然对数的底数,若存在实数x 0使f(x 0)=3成立,则实数a 的值为________.14. 若方程|x 2-2x -1|-t =0有四个不同的实数根x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则2(x 4-x 1)+(x 3-x 2)的取值范围是________.二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a 2-c 2=2b ,且sin A cos C =3cos A sin C. (1) 求b 的值;(2) 若B =π4,S 为△ABC 的面积,求S +82cos A cos C 的取值范围.16. (本小题满分14分)如图,在正三棱柱ABCA1B1C1中,点D在棱BC上,AD⊥C1D,E,F分别是BB1,A1B1的中点.(1) 求证:D为BC的中点;(2) 求证:EF∥平面ADC1.。
推荐下载 -江苏省前黄高级中学2018学年第一学期高一年级第二次阶段考试数学试卷
![推荐下载 -江苏省前黄高级中学2018学年第一学期高一年级第二次阶段考试数学试卷](https://img.taocdn.com/s3/m/f11342cf960590c69ec376b4.png)
江苏省前黄高级中学2018—2018学年第一学期 高一年级第二次阶段考试数学试卷 2018-12-18命题人:邵炳良一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个符合题目要求)1.不等式0341≤--x x的解集是( C )A .{43|≤x x 或1≥x }B .{143|≤≤x x } C .{43|<x x 或1≥x }D .{143|≤<x x }2.在等差数列{}n a 中,已知1590S =,则8a 等于 ( C )A .3B .4C .6D .123. 三个数0.76,60.7,0.7log 6的大小顺序是 ( D )A. 60.7<0.7log 6<0.76 B.60.7<0.76<0.7log 6C. 0.7log 6<0.76<60.7 D. 0.7log 6<60.7<0.764.函数3)1(22+++=x m x y 在区间(]2,∞-上是减函数,则m 的取值范围是 ( C )A .3m ≤B .3m ≥C .3m ≤-D .3m ≥- 5.下列命题中,p 是q 的必要不充分条件是 ( B )A .p :0x y >>;q :22x y > B .p :2x ≠;q :24x ≠C .p :,,a b c 成等比数列,q:b =D .p :A B ⇒;q :B A ⇒非非6.下列函数中值域为()0,+∞的是 ( B )A.1231xy -=+ B.115x y -⎛⎫= ⎪⎝⎭C.y =y =7.等差数列{}n a 中的项124,,a a a 恰成等比数列,则14a a 的值为 ( D ) A.1 B.12 C.14D. 以上均不成立 8.等差数列{}n a 中,59a a =,公差0d <,则当n S 取最大时n 的值为 ( C )A.4 或5B.5 或6C.6 或7D.不存在9.若一个等差数列{}n a 前三项的和为34,最后三项的和为146,所有项的和为390,则此数列的项数 ( C ) A .11 B 。
江苏省常州市前黄高中2017-2018学年高二上学期期末数学试卷(理科)Word版含解析.pdf
![江苏省常州市前黄高中2017-2018学年高二上学期期末数学试卷(理科)Word版含解析.pdf](https://img.taocdn.com/s3/m/f8552d89482fb4daa58d4bbc.png)
2017-2018学年江苏省常州市前黄高中高二(上)期末数学试卷(理科)最新试卷十年寒窗苦,踏上高考路,心态放平和,信心要十足,面对考试卷,下笔如有神,短信送祝福,愿你能高中,马到功自成,金榜定题名。
一、填空题(每小题5分,共70分)1.命题“?x ∈R ,x 2+2>0”的否定是______命题.(填“真”或“假”之一)2.已知复数z 满足(i 为虚数单位),则|z |=______.3.从1,2,…5这5个自然数中任意抽取2个数,抽到“至少有1个数是偶数”的概率为______.4.抛物线x 2=﹣8y 的焦点坐标为______.5.设x ∈R ,则“|x ﹣2|<1”是“x 2+x ﹣2>0”的______条件.(填充分不必要、必要不充分、充要条件、既不充分也不必要)6.已知双曲线x 2﹣=1(m >0)的一条渐近线方程为x +y=0,则m=______.7.已知函数f (x )=x 2﹣2xf ′(﹣1),则f ′(1)=______.8.已知F 是椭圆+=1(a >b >0)的左焦点,A 为右顶点,P 是椭圆上一点,PF ⊥x 轴.若|PF |=|AF |,则该椭圆的离心率是______.9.若函数f (x )=lnx +ax 2﹣(a +2)x 在处取得极大值,则正数a 的取值范围是______.10.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件:①f (x )=a x ?g (x )(a >0,a ≠1);②g (x )≠0;③f (x )?g'(x )>f'(x )?g (x );若,则a=______.11.已知函数f (x )=e x ﹣1+x ﹣2(e 为自然对数的底数).g (x )=x 2﹣ax ﹣a+3.若存在实数x 1,x 2,使得f (x 1)=g (x 2)=0.且|x 1﹣x 2|≤1,则实数a 的取值范围是______.12.如图,在梯形ABCD 中,AB ∥DC ,AB=a ,CD=b (a >b ).若EF ∥AB ,EF 到CD 与AB 的距离之比为m :n ,则可推算出:.试用类比的方法,推想出下述问题的结果.在上面的梯形ABCD 中,延长梯形两腰AD ,BC 相交于O 点,设△OAB ,△OCD 的面积分别为S 1,S 2,EF ∥AB 且EF 到CD 与AB 的距离之比为m :n ,则△OEF 的面积S 0与S 1,S 2的关系是______.13.设函数f (x )=|e x ﹣e 2a |,若f (x )在区间(﹣1,3﹣a )内的图象上存在两点,在这两点处的切线互相垂直,则实数a 的取值范围是______.14.已知A 为椭圆的上顶点,B ,C 为该椭圆上的另外两点,且△ABC 是以A 为直角顶点的等腰直角三角形.若满足条件的△ABC 只有一解,则椭圆的离心率的取值范围是______.二、解答题(共90分.请在答题纸上写出详细的解题过程)15.已知命题p :函数在(﹣∞,+∞)上有极值,命题q :双曲线的离心率e ∈(1,2).若p ∨q 是真命题,p ∧q 是假命题,求实数a 的取值范围.16.已知数列{a n }的前n 项和为S n ,通项公式为.(Ⅰ)计算f (1),f (2),f (3)的值;(Ⅱ)比较f (n )与1的大小,并用数学归纳法证明你的结论.17.如图,在四棱锥S ﹣ABCD 中,底面ABCD 是边长为1的菱形,底面ABCD ,SA=2,M 为SA 的中点.(1)求异面直线AB 与MD 所成角的大小;(2)求直线AS 与平面SCD 所成角的正弦值;(3)求平面SAB 与平面SCD 所成锐二面角的余弦值.18.如图,现要在边长为100m 的正方形ABCD 内建一个交通“环岛”.以正方形的四个顶点为圆心在四个角分别建半径为xm (x 不小于9)的扇形花坛,以正方形的中心为圆心建一个半径为m 的圆形草地.为了保证道路畅通,岛口宽不小于60m ,绕岛行驶的路宽均小于10m .(1)求x 的取值范围;(运算中取1.4)(2)若中间草地的造价为a 元/m 2,四个花坛的造价为元/m 2,其余区域的造价为元/m 2,当x 取何值时,可使“环岛”的整体造价最低?19.已知椭圆+=1(a>b>0)的右焦点F(1,0),离心率为,过F作两条互相垂直的弦AB,CD,设AB,CD的中点分别为M,N.(1)求椭圆的方程;(2)证明:直线MN必过定点,并求出此定点坐标;(3)若弦AB,CD的斜率均存在,求△FMN面积的最大值.20.已知函数f(x)=cosx+ax 2﹣1,a∈R.(1)当a=0时,求函数f(x)在处的切线方程;(2)当a=1时,求函数f(x)在[﹣π,π]上的最大值和最小值;(3)若对于任意的实数x恒有f(x)≥0,求实数a的取值范围.2017-2018学年江苏省常州市前黄高中高二(上)期末数学试卷(理科)参考答案与试题解析一、填空题(每小题5分,共70分)1.命题“?x∈R,x2+2>0”的否定是假命题.(填“真”或“假”之一)【考点】特称命题.【分析】先判断原命题的真假性,根据原命题与命题的否定真假相反的原则即可判断命题的否定的真假【解答】解:∵x2+2≥2∴命题“?x∈R,x2+2>0”是真命题∴原命题的否定是假命题故答案为:假2.已知复数z满足(i为虚数单位),则|z|=2.【考点】复数求模.【分析】先求出复数z,然后利用求模公式可得答案.【解答】解:由iz=1+i得,==,故|z|=.故答案为:2.3.从1,2,…5这5个自然数中任意抽取2个数,抽到“至少有1个数是偶数”的概率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】分别列举出所有的基本事件和满足条件的基本事件,根据概率公式计算即可.【解答】解:从1,2,…5这5个自然数中任意抽取2个数,结果数如下(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种结果,每种结果等可能出现,属于古典概率记“至少有1个数是偶数”为事件A,则A包含的结果有:(1,2),(1,4),(2,3),(2,4),(2,5),(3,4),(4,5)共7种结果由古典概率公式可得P(A)=,故答案为:4.抛物线x2=﹣8y的焦点坐标为(0,﹣2).【考点】抛物线的简单性质.【分析】抛物线x2=8y中,p=4,由抛物线焦点坐标公式,计算可得答案.【解答】解:抛物线x2=﹣8y中,p=4,焦点在y轴上,则其焦点坐标为(0,﹣2);故答案为(0,﹣2).5.设x∈R,则“|x﹣2|<1”是“x2+x﹣2>0”的充分不必要条件.(填充分不必要、必要不充分、充要条件、既不充分也不必要)【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义进行判断即可.【解答】解:由|x﹣2|<1得﹣1<x﹣2<1,得1<x<3,由x2+x﹣2>0得x>1或x<﹣2,则(1,3)?(﹣∞,﹣2)∪(1,+∞),故“|x﹣2|<1”是“x2+x﹣2>0”的充分不必要条件,故答案为:充分不必要6.已知双曲线x2﹣=1(m>0)的一条渐近线方程为x+y=0,则m=.【考点】双曲线的简单性质.【分析】利用双曲线x2﹣=1(m>0)的一条渐近线方程为x+y=0,可得m=.【解答】解:∵双曲线x2﹣=1(m>0)的一条渐近线方程为x+y=0,∴m=,故答案为:.7.已知函数f(x)=x2﹣2xf′(﹣1),则f′(1)=.【考点】导数的运算.【分析】根据函数的导数公式进行求解即可.【解答】解:∵f(x)=x2﹣2xf′(﹣1),∴f′(x)=2x﹣2f′(1),令x=1,则f′(1)=2﹣2f′(1),则f′(1)=,故答案为:.。
2018-2019学年江苏省前黄高级中学、溧阳中学高二上学期第二次阶段检测数学试题 解析版
![2018-2019学年江苏省前黄高级中学、溧阳中学高二上学期第二次阶段检测数学试题 解析版](https://img.taocdn.com/s3/m/dfbf6ddd941ea76e58fa046e.png)
绝密★启用前江苏省前黄高级中学、溧阳中学2018-2019学年高二上学期第二次阶段检测数学试题一、填空题1.命题“,”的否定是________命题.(填“真”或“假”)【答案】真【解析】【分析】先判断原命题的真假性,再根据原命题与命题的否定真假相反的原则即可判断.【详解】∵,x20恒成立,∴命题“∀x∈R,”是假命题,∴原命题的否定是真命题.故答案为:真【点睛】有些命题的真假难以判断时,用正难则反的思想解决问题.属于基础题2.在平面直角坐标系中,双曲线的离心率为_______.【答案】【解析】【分析】由双曲线的几何性质可得c,进而由双曲线的离心率公式计算可得答案.【详解】根据题意,双曲线的方程为,则a2=4,b2=5,则c==3,则其离心率e==;故答案为:.本题考查了双曲线的离心率,熟练应用双曲线标准方程和离心率公式的计算,属于基础题.3.函数的单调减区间为________.【答案】【解析】【分析】求函数的导数,解f′(x)<0,即可求出函数的单调减区间.【详解】函数f(x)=lnx+的定义域为(0,+∞),函数的导数f′(x)=,由f′(x)=<0,解得x<1,即函数的单调减区间为(0,1),故答案为:(0,1).【点睛】本题考查函数单调区间的求解,利用函数单调性和导数之间的关系是解决本题的关键,注意定义域,属于基础题.4.在平面直角坐标系中,抛物线的焦点坐标为_________.【答案】【解析】【分析】利用抛物线的标准方程,可得p,进而可求解焦点坐标.【详解】抛物线y2=8x的开口向右,P=4,所以抛物线的焦点坐标(2,0).故答案为:(2,0).【点睛】本题考查抛物线的简单性质的应用,是基本知识的考查,属于基础题.5.设,则“”是“”的______________条件.(从“充分不必要”、“必要不充分”、“既不充分也不必要”、“充要”中选择).【答案】充分不必要【分析】由,得1<x<3;由x2+x﹣2>0得x>1或x<﹣2,再根据充分条件和必要条件的定义进行判断即可.【详解】由|x﹣2|<1得﹣1<x﹣2<1,得1<x<3,由x2+x﹣2>0得x>1或x<﹣2,(1,3)⊊(﹣∞,﹣2)∪(1,+∞),故“|x﹣2|<1”是“x2+x﹣2>0”的充分不必要条件,故答案为:充分不必要【点睛】本题主要考查充分条件和必要条件的判断,根据绝对值不等式以及一元二次不等式的解法求出不等式的等价条件是解决本题的关键,属于基础题.6.在平面直角坐标系中,已知双曲线的一条渐近线与直线平行,则实数____.【答案】【解析】【分析】双曲线的渐近线方程为y=,由渐近线与直线平行,求出m即可.【详解】在平面直角坐标系xOy中,双曲线的渐近线方程为y=∵渐近线与直线平行,∴.故答案为:.本题考查双曲线的渐近线方程、双曲线的标准方程和直线平行的性质等基础知识,属于基础题.7.已知函数,则______.【答案】1【解析】由题得所以,所以,故填1.8.在平面直角坐标系中,已知为抛物线上一点,且点纵坐标为,则到抛物线焦点的距离为____.【答案】【解析】【分析】由题意可得点P的横坐标为4,由抛物线的定义可得点P到该抛物线焦点的距离等于点P到准线x=﹣1的距离,由此求得结果.【详解】由抛物线y2=4x上一点P点纵坐标为,故点P的横坐标为4.再由抛物线y2=4x的准线为x=﹣1,以及抛物线的定义可得点P到该抛物线焦点的距离等于点P到准线的距离,故点P到该抛物线焦点的距离是4﹣(﹣1)=5,故答案为:5.【点睛】本题主要考查抛物线的定义、标准方程,以及简单性质的应用,属于基础题.9.函数的零点个数为_____.【答案】2【分析】先利用导数判断函数的单调性,然后求出f(x)的极大值与极小值,再说明f(x)有几个零点.【详解】对函数f(x)进行求导:f'(x)=3x2+6x﹣9令f'(x)=0,则(x+3)(x﹣1)=0⇒x1=1,x2=﹣3当x∈(﹣∞,﹣3)时,f'(x)>0,f(x)在(﹣∞,-3)上单调递增;当x∈(﹣3,1)时,f'(x)<0,f(x)在(-3,1)上单调递减;当x∈(1,+∞)时,f'(x)>0,f(x)在(1,+∞)上单调递增;当x=﹣3时,函数f(x)= f(-3)=32;当x=1时,函数f(x)= f(1)=0,根据零点存在定理,所以f(x)有2个零点.故答案为;2【点睛】本题考查了函数零点存在定理的应用,用导函数判断函数的单调性求出极值是关键,属于中档题.10.在平面直角坐标系中,已知是椭圆的左焦点,为右顶点,是椭圆上一点且轴.若,则该椭圆的离心率为_____.【答案】【解析】【分析】由题意得F(﹣c,0),A(a,0),把x=﹣c代入椭圆方程可得:y=±,即得|PF|,再利用|PF|=|AF|,化简后可得离心率.【详解】F(﹣c,0),A(a,0),把x=﹣c代入椭圆方程可得:y2=,解得y=±,∴|PF|=,AF=a+c,∵|PF|=|AF|,∴=(a+c),∴3(a2﹣c2)=a2+ac,化为:3e2+e﹣2=0,又0<e<1,解得e=.故答案为:.【点睛】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题,考查了推理能力与计算能力,属于基础题.11.若函数在处取得极大值,则实数的取值范围是_____.【答案】【解析】【分析】求出函数的导数,通过讨论a的范围,求出函数的单调区间,从而求出函数的极值点,结合已知条件,判断即可.【详解】f(x)的定义域是(0,+∞),f′(x)=+2ax﹣(a+2)=,①0<a<2时,<,令f′(x)>0,解得:x<或x>,令f′(x)<0,解得:<x<,∴f(x)在(0,)递增,在(,)递减,在(,+∞)递增,∴函数f(x)在x=处取得极大值,符合题意,②a=2时,f′(x)≥0,f(x)递增,无极值,③a>2时,>,令f′(x)>0,解得:x>或x<,令f′(x)<0,解得:<x<,∴f(x)在(0,)递增,在(,)递减,在(,+∞)递增,∴函数f(x)在x=处取得极大值,不符合题意,④a<0时,>0>令f′(x)>0,解得:0<x<,令f′(x)<0,解得:x>,∴f(x)在(0,)递增,在(,+∞)递减,∴函数f(x)在x=处取得极大值,符合题意.⑤a=0时,f′(x)=0的根x=,∴f(x)在(0,)递增,在(,+∞)递减,∴函数f(x)在x=处取得极大值,符合题意.综上,a∈(,2),故答案为:(-,2).【点睛】本题考查了函数的单调性、极大值问题,考查导数的应用以及分类讨论思想,是一道中档题.12.过点作曲线(其中为自然对数的底数)的切线,切点为,设在轴上的投影是点,过点再作曲线的切线,切点为,设在轴上的投影是点,依次下去,得到第个切点,则点的坐标为________.【答案】【解析】【分析】设T1(x1,),可得切线方程代入点P坐标,可解得x1=0,即T1(0,1),可得H1(0,0),再写切线方程代入点H1(0,0),可得T2(1,e),H2(1,0),…由此可推得规律,从而可得的坐标.【详解】设T1(x1,),此处的导数为,故切线方程为y﹣=(x﹣x1),代入点P(﹣1,0)可得0﹣=(﹣1﹣x1),解得x1=0,即T1(0,1),H1(0,0),同理可得过点H1再作曲线C的切线方程为y﹣=(x﹣x2),代入点H1(0,0),可得0﹣=(0﹣x2),可解得x2=1,故T2(1,e),H2(1,0),…依次下去,可得T n+1的坐标为(n,e n),即得=故答案为:.【点睛】本题考查利用导数研究曲线上某点切线的方程,归纳推理是解决问题的关键,属中档题.13.在平面直角坐标系中,已知椭圆左、右焦点分别为,上顶点为,离心率为,为椭圆上在第一象限内一点,记的面积为,的面积为.若,则直线的斜率为_______.【答案】【解析】【分析】设直线P的方程,利用,得到A到直线P的距离是直线P的2倍,再由离心率为,即可求出P的斜率.【详解】设直线P的斜率为k,则直线P的方程为y=k(x+c),即kx-y+kc=0,A到直线P的距离是直线P的2倍.又离心率为或点P为第一象限内椭圆上的一点,故答案为:【点睛】本题考查椭圆的几何性质,点到直线距离公式的运用,也考查了计算能力,属于基础题. 14.若存在正数,使得(其中为自然对数的底数),则实数的取值范围是___________.【答案】【解析】【分析】由变量分离得﹣=(﹣2e)ln=(t﹣2e)lnt,(令t=>0),令h(t)=(t﹣2e)lnt,(t >0),利用h(t)的范围求出实数z的取值范围.【详解】由变量分离得﹣=(﹣2e)ln=(t﹣2e)lnt,(令t=>0),令h(t)=(t﹣2e)lnt,(t>0),则h(t)=lnt+,h(t)=+>0,所以h(t)在t递增,且h′(e)=0h(t)在(0,e)上递减,在(e,+)上递增∴h(t)≥h(e)=﹣e,∴﹣≥﹣e,解得z<0或z≥.∴实数z的取值范围是(﹣∞,0)∪[,+∞).故答案为:(﹣∞,0)∪[,+∞)【点睛】本题考查实数的取值范围,变量分离求新函数的范围是关键,也考查了不等式的运算,属于中档题.二、解答题15.设实数满足,其中;实数满足.(1)若,且为真,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.【答案】(1)实数的取值范围是;(2)实数的取值范围是.【解析】试题分析:(1)利用一元二次不等式的解法可化简命题p,q,若p∨q为真,则p,q 至少有1个为真,即可得出;(2)根据p是q的必要不充分条件,即可得出.试题解析:(1)由x2﹣4ax+3a2<0,得(x﹣3a)(x﹣a)<0,又a>0,所以a<x<3a,当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.q为真时等价于(x﹣2)(x﹣3)<0,得2<x<3,即q为真时实数x的取值范围是2<x<3.若p∨q为真,则实数x的取值范围是1<x<3.(2)p是q的必要不充分条件,等价于q⇒p且p推不出q,设A={x|a<x<3a},B={x|2<x<3},则B⇐A;则,所以实数a的取值范围是1≤a≤2。
2018年___自主招生数学试卷(含答案解析)
![2018年___自主招生数学试卷(含答案解析)](https://img.taocdn.com/s3/m/d3f0cf114a73f242336c1eb91a37f111f1850d96.png)
2018年___自主招生数学试卷(含答案解析)2018年___自主招生数学试卷一、选择题(本大题共6小题,共24.0分)1.√16的平方根是()A.4B.±4C.22.若√(1−x)2=x−1成立,则x满足()A.x≥1B.x≥C.x≤1D.±23.已知x=√5−1,则x2+2x的值是()A.2B.3C.4D.54.如图所示的四条直线a、b、c、d,直线a、b与水平线平行,以其中一条为x轴,d与水平线垂直,取向右为正方向;直线c、以其中一条为y轴,取向上为正方向.某同学在此坐标平面上画了二次函数x=xx2+2xx+2(x≠0)的图象如图,则下面结论正确的是()A.a为x轴,c为y轴B.a为x轴,d为y轴C.b为x轴,c 为y轴D.b为x轴,d为y轴5.如图,已知AB为圆的直径,C为半圆上一点,D为半圆的中点,xx⊥xx,垂足为H,HM平分∠xxx,HM交AB于x.若xx=3,xx=1,则MH长为()A.1B.1.5C.0.5D.0.76.如图,△xxx中,∠x=90°,D是BC边上一点,∠xxx=3∠xxx,xx=8,xx=7.则AB的值为()A.15B.20C.2√2+7D.2√2+√7二、填空题(本大题共10小题,共40.0分)7.已知实数x、y满足x+2x=5,则x−x=3.8.分解因式:x2+4xx+4x2+x+2x−2=(x+2x+1)2−3.9.在平面直角坐标系中,点A,B的坐标分别为(x,3),(3x−1,3),若线段AB与直线x=2x+1相交,则m的取值范围为(0,1)。
10.若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是9cm。
11.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D、N处,B在同一直线上,分别落在M、F与BE交于点G.设AB=√3,那么△xxx的周长为4+4√3.12.如图,已知点x1,x2,…,xx均在直线x=x−1上,点x1,x2,…,xx均在双曲线x=−x上,x1x1⊥x并且满足:x1x2⊥x轴,x2x2⊥x轴,…,xx−1xx⊥x轴,xxxx⊥x轴,且x1x2=x2x3=…=xx−1xx,则n的最小值为2.1.由题意可知,点B在x轴负半轴,点A在x轴正半轴,且AB垂直于x轴,因此AB的斜率为0,即AB为x轴,所以B的纵坐标为0.又因为B在x轴负半轴,所以其横坐标为负数,设为-a。
推荐-江苏省前黄高级中学2018届第三次阶段考试数学试卷(理科) 精品
![推荐-江苏省前黄高级中学2018届第三次阶段考试数学试卷(理科) 精品](https://img.taocdn.com/s3/m/c2a74916bb68a98271fefa7d.png)
江苏省前黄高级中学2018届第三次阶段考试数学试卷(理科)第一卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题意要求的。
1、已知集合}2{2+-==x y y P ,}2{+-==x y x Q ,则Q P 为…( ) A 、)1,1(),2,0( B 、)}1,1(),2,0{( C 、φ D 、}2{≤y y2、已知243:>-x p ,021:2>--x x q ,则q p ⌝⌝是的………………( ) A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件3、函数x x f a log )(=满足2)9(=f ,则)2log (91--f 的值是………( )A 、2B 、2C 、22D 、2log 3 4、在等比数列{}n a 中,=+=+=+544321,18,162a a a a a a …………( ). A 、6 B 、-6 C 、2± D 、6± 5、设)(x f 为偶函数,对于任意的0>x 的数都有)2(2)2(x f x f --=+, 已知4)1(=-f ,则=-)3(f ……………………………………………( ) A 、2 B 、-2 C 、8 D 、-86、设点P 是曲线3233+-=x x y 上的任意一点,P 点处切线的倾斜角为α,则角α的取值范围是………………………………………………………( )A 、),32[)2,0[πππB 、),65[)2,0[πππC 、),32[ππD 、)65,2(ππ7、已知等差数列}{n a 的公差0≠d ,且931,,a a a 成等比数列,则1042931a a a a a a ++++的值为………………………………………………………………………( )A 、21B 、1613C 、1316D 、28.等比数列}{n a 中,c S n n +=2,则=+++22221n a a a ………………( )A 、12-nB 、121--nC 、)14(31-n D 、14-n9、二次函数c bx ax x f ++=2)(中,10≠>a a 且,对于任意的R x ∈都有)1()3(x f x f -=-,设])1[(),1(log2log a af n a f m a ==,则……………( ) A 、n m = B 、n m < C 、n m > D 、n m ,的大小关系不确定10、已知等差数列}{n a ,n S 表示前n 项的和,,0,0993<>+S a a 则n S S S ,,21中最小的是…………………………………………………………………………………( )A 、4SB 、5SC 、6SD 、9S11、按如下方式定义函数()f x :对于每个实数x ,()f x 的值为2,6,215x x x -+中的最小值.则()f x 最大值为………………………………………………( ) A .4 B .9 C .16 D .2512、如图,在杨辉三角中,斜线l 的上方,从1开始箭头所示的数组成一个锯齿数列:1,3,3,4,6,5,10,…,记其前n 项和为n S ,则19S 等于……( ) A 、283 B 、228 C 、172 D 、12911 11 1 … … … … l理科第二卷(非选择题共90分)二、填空题:本大题共6小题,每小题4分,共24分。
江苏省前黄高级中学导数及其应用多选题试题含答案
![江苏省前黄高级中学导数及其应用多选题试题含答案](https://img.taocdn.com/s3/m/9eb8b3bc3b3567ec112d8ad7.png)
江苏省前黄高级中学导数及其应用多选题试题含答案一、导数及其应用多选题1.关于函数()e cos xf x a x =-,()π,πx ∈-下列说法正确的是( )A .当1a =时,()f x 在0x =处的切线方程为y x =B .若函数()f x 在()π,π-上恰有一个极值,则0a =C .对任意0a >,()0f x ≥恒成立D .当1a =时,()f x 在()π,π-上恰有2个零点 【答案】ABD 【分析】直接逐一验证选项,利用导数的几何意义求切线方程,即可判断A 选项;利用分离参数法,构造新函数和利用导数研究函数的单调性和极值、最值,即可判断BC 选项;通过构造新函数,转化为两函数的交点个数来解决零点个数问题,即可判断D 选项. 【详解】解:对于A ,当1a =时,()e cos xf x x =-,()π,πx ∈-,所以()00e cos00f =-=,故切点为(0,0),则()e sin xf x x '=+,所以()00e sin01f '=+=,故切线斜率为1,所以()f x 在0x =处的切线方程为:()010y x -=⨯-,即y x =,故A 正确; 对于B ,()e cos xf x a x =-,()π,πx ∈-,则()e sin xf x a x '=+,若函数()f x 在()π,π-上恰有一个极值,即()0f x '=在()π,π-上恰有一个解, 令()0f x '=,即e sin 0x a x +=在()π,π-上恰有一个解, 则sin xxa e -=在()π,π-上恰有一个解, 即y a =与()sin xxg x e -=的图象在()π,π-上恰有一个交点, ()sin cos xx xg x e -'=,()π,πx ∈-,令()0g x '=,解得:134x π=-,24x π=, 当3,,44x ππππ⎛⎫⎛⎫∈--⎪ ⎪⎝⎭⎝⎭时,()0g x '>,当3,44x ππ⎛⎫∈-⎪⎝⎭时,()0g x '<, ()g x ∴在3,4ππ⎛⎫--⎪⎝⎭上单调递增,在443,ππ⎛⎫- ⎪⎝⎭上单调递减,在,4ππ⎛⎫ ⎪⎝⎭上单调递增,所以极大值为3423204g e ππ-⎛⎫-=> ⎪⎝⎭,极小值为42204g e ππ-⎛⎫=< ⎪⎝⎭, 而()()()0,0,00g g g ππ-===, 作出()sinxg x e -=,()π,πx ∈-的大致图象,如下:由图可知,当0a =时,y a =与()sinx g x e-=的图象在()π,π-上恰有一个交点, 即函数()f x 在()π,π-上恰有一个极值,则0a =,故B 正确; 对于C ,要使得()0f x ≥恒成立,即在()π,πx ∈-上,()e cos 0xf x a x =-≥恒成立,即在()π,πx ∈-上,cos x xa e ≥恒成立,即maxcos x x a e ⎛⎫≥ ⎪⎝⎭,设()cos x x h x e =,()π,πx ∈-,则()sin cos xx xh x e--'=,()π,πx ∈-, 令()0h x '=,解得:14x π=-,234x π=, 当3,,44x ππππ⎛⎫⎛⎫∈--⎪⎪⎝⎭⎝⎭时,()0h x '>,当3,44x ππ⎛⎫∈- ⎪⎝⎭时,()0h x '<,()h x ∴在,4ππ⎛⎫--⎪⎝⎭上单调递增,在3,44ππ⎛⎫-⎪⎝⎭上单调递减,在3,4ππ⎛⎫⎪⎝⎭上单调递增, 所以极大值为42204h e ππ-⎛⎫-=> ⎪⎝⎭,()()11,h h e e ππππ--==,所以()cos x xh x e =在()π,πx ∈-上的最大值为42204h e ππ-⎛⎫-=> ⎪⎝⎭, 所以422a e π-≥时,在()π,πx ∈-上,()e cos 0xf x a x =-≥恒成立,即当422a e π-≥时,()0f x ≥才恒成立,所以对任意0a >,()0f x ≥不恒成立,故C 不正确; 对于D ,当1a =时,()e cos xf x x =-,()π,πx ∈-,令()0f x =,则()e cos 0xf x x =-=,即e cos x x =,作出函数xy e =和cos y x =的图象,可知在()π,πx ∈-内,两个图象恰有两个交点,则()f x 在()π,π-上恰有2个零点,故D 正确.故选:ABD. 【点睛】本题考查函数和导数的综合应用,考查利用导数的几何意义求切线方程,考查分离参数法的应用和构造新函数,以及利用导数研究函数的单调性、极值最值、零点等,考查化简运算能力和数形结合思想.2.已知函数()1ln f x x x x=-+,()()1ln x x x x g --=,则下列结论正确的是( ) A .()g x 存在唯一极值点0x ,且()01,2x ∈ B .()f x 恰有3个零点C .当1k <时,函数()g x 与()h x kx =的图象有两个交点D .若120x x >且()()120f x f x +=,则121=x x 【答案】ACD 【分析】根据导数求得函数()g x '在(0,)+∞上为单调递减函数,结合零点的存在性定,可判定A 正确;利用导数求得函数 ()f x 在(,0)-∞,(0,)+∞单调递减,进而得到函数 ()f x 只有2个零点,可判定B 不正确;由()g x kx =,转化为函数()()1ln x x x ϕ-=和 ()(1)m x k x =-的图象的交点个数,可判定C 正确;由()()120f x f x +=,化简得到 ()121()f x f x =,结合单调性,可判定D 正确. 【详解】由函数()()1ln x x x x g --=,可得 ()1ln ,0g x x x x '=-+>,则()2110g x x x''=--<,所以()g x '在(0,)+∞上为单调递减函数,又由 ()()110,12ln 202g g '=>=-+<, 所以函数()g x 在区间(1,2)内只有一个极值点,所以A 正确; 由函数()1ln f x x x x=-+, 当0x >时,()1ln f x x x x=-+,可得 ()221x x f x x -+-'=, 因为22131()024x x x -+-=---<,所以 ()0f x '<,函数()f x 在(0,)+∞单调递减;又由()10f =,所以函数在(0,)+∞上只有一个零点, 当0x <时,()1ln()f x x x x =--+,可得 ()221x x f x x -+-'=,因为22131()024x x x -+-=---<,所以 ()0f x '<,函数()f x 在(,0)-∞单调递减; 又由()10f -=,所以函数在(,0)-∞上只有一个零点, 综上可得函数()1ln f x x x x=-+在定义域内只有2个零点,所以B 不正确; 令()g x kx =,即()1ln x x x kx --=,即 ()1ln (1)x x k x -=-,设()()1ln x x x ϕ-=, ()(1)m x k x =-, 可得()1ln 1x x x ϕ'=+-,则 ()2110x x xϕ''=+>,所以函数()x ϕ'(0,)+∞单调递增, 又由()01ϕ'=,可得当(0,1)x ∈时, ()0x ϕ'<,函数()x ϕ单调递减, 当(1,)x ∈+∞时,()0x ϕ'>,函数 ()x ϕ单调递增, 当1x =时,函数()x ϕ取得最小值,最小值为()10ϕ=, 又由()(1)m x k x =-,因为1k <,则 10k ->,且过原点的直线,结合图象,即可得到函数()()1ln x x x ϕ-=和 ()(1)m x k x =-的图象有两个交点,所以C 正确;由120x x >,若120,0x x >>时,因为 ()()120f x f x +=,可得()()12222222211111ln ln 1f x f x x x f x x x x x ⎛⎫⎛⎫=-=--+=+-= ⎪ ⎪⎝⎭⎝⎭,即()121()f x f x =,因为()f x 在(0,)+∞单调递减,所以 121x x =,即121=x x , 同理可知,若120,0x x <<时,可得121=x x ,所以D 正确. 故选:ACD.【点睛】函数由零点求参数的取值范围的常用方法与策略:1、分类参数法:一般命题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从()f x 中分离参数,然后利用求导的方法求出由参数构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围;2、分类讨论法:一般命题情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各个小范围并在一起,即可为所求参数的范围.3.下列说法正确的是( )A .函数()23sin 0,42f x x x x π⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是1 B .函数()cos sin tan 0,tan 2x f x x x x x π⎛⎫⎛⎫=⋅+∈ ⎪ ⎪⎝⎭⎝⎭的值域为(C .函数()1sin 2cos 2f x x a x =+⋅在()0,π上单调递增,则a 的取值范围是(],1-∞- D .函数()222sin 42cos tx x xf x x xπ⎛⎫+++ ⎪⎝⎭=+的最大值为a ,最小值为b ,若2a b +=,则1t = 【答案】ACD 【分析】化简函数解析式为()2cos 1f x x ⎛=--+ ⎝⎭,利用二次函数的基本性质可判断A 选项的正误;令sin cos t x x =+,可得()()3231t t f x g t t -==-,利用导数法可判断B 选项的正误;利用导数与函数单调性的关系可判断C 选项的正误;计算出()()2f x f x t +-=,利用函数的对称性可判断D 选项的正误. 【详解】 A 选项,()222311cos cos cos 1442f x x x x x x ⎛=--=-+=--+ ⎝⎭, 又0,2x π⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,则当cos x =时函数()f x 取得最大值1,A 对; B 选项,()2233sin cos sin cos cos sin sin cos x x x xf x x x x x+∴=+=⋅ ()()22sin cos sin cos sin cos sin cos x x x x x x x x++-⋅=⋅()()2sin cos sin cos 3sin cos sin cos x x x x x x x x⎡⎤++-⋅⎣⎦=⋅,设sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,则()22sin cos 12sin cos t x x x x =+=+,则21sin cos 2t x x -⋅=,0,2x π⎛⎫∈ ⎪⎝⎭,3,444x πππ⎛⎫∴+∈⎪⎝⎭,sin 4x π⎤⎛⎫∴+∈⎥⎪⎝⎭⎝⎦,(t ∴∈, 令()223221323112t t t t t g t t t ⎛⎫--⨯ ⎪-⎝⎭==--,(t ∈,()()422301t g t t --'=<-, ()g t ∴在区间(上单调递减,()()32min 1g t g===-所以,函数()f x 的值域为)+∞,B 错; C 选项,()1sin 2cos 2f x x a x =+⋅在区间()0,π上是增函数,()cos2sin 0f x x a x ∴=-⋅≥',即212sin sin 0x a x --⋅≥,令sin t x =,(]0,1t ∈,即2210t at --+≥,12a t t ∴≤-+,令()12g t t t =-+,则()2120g t t'=--<,()g t ∴在(]0,1t ∈递减,()11a g ∴≤=-,C 对;D选项,()222cos 222cos tx x x xf x x x⎛⎫+++ ⎪⎝⎭=+ ()()2222cos sin sin 2cos 2cos t x x t x x t x x t x xx x++⋅+⋅+==+++, 所以,()()()()22sin sin 2cos 2cos t x x t x xf x t t x xx x --+-=+=-+⋅-+-,()()2f x f x t ∴+-=,所以,函数()f x 的图象关于点()0,t 对称,所以,22a b t +==,可得1t =,D 对. 故选:ACD. 【点睛】结论点睛:利用函数的单调性求参数,可按照以下原则进行:(1)函数()f x 在区间D 上单调递增()0f x '⇔≥在区间D 上恒成立; (2)函数()f x 在区间D 上单调递减()0f x '⇔≤在区间D 上恒成立; (3)函数()f x 在区间D 上不单调()f x '⇔在区间D 上存在异号零点; (4)函数()f x 在区间D 上存在单调递增区间x D ⇔∃∈,使得()0f x '>成立; (5)函数()f x 在区间D 上存在单调递减区间x D ⇔∃∈,使得()0f x '<成立.4.设函数()()()1f x x x x a =--,则下列结论正确的是( ) A .当4a =-时,()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为194B .当1a =时,函数()f x 的图像与直线427y =有2个交点 C .当2a =时,()f x 的图像关于点()1,0中心对称D .若函数()f x 有两个不同的极值点1x ,2x ,则当2a ≥时,()()120f x f x +≤ 【答案】BCD 【分析】运用平均变化率的定义可分析A ,利用导数研究()f x 的单调性和极值,可分析B 选项,证明()()20f x f x +-=可分析C 选项,先得出1x ,2x 为方程()23210x a x a -++=的两个实数根,结合韦达定理可分析D 选项. 【详解】对于A ,当4a =-时,()()()14f x x x x =-+,则()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为()()()119123192221412⎛⎫⨯-⨯--⨯-⨯ ⎪⎝⎭=---,故A 错误;对于B ,当1a =时,()()23212f x x x x x x =-=-+,()()()2341311f x x x x x '=-+=--,可得下表:因为327f ⎛⎫= ⎪⎝⎭,()10f =,()42227f =>,结合()f x 的单调性可知, 方程()427f x =有两个实数解,一个解为13,另一个解在()1,2上,故B 正确; 对于C ,当2a =时,()()()()()()()231211111f x x x x x x x x ⎡⎤=--=---=---⎣⎦,则有()()()()()()33211110f x f x x x x x +-=---+---=,故C 正确; 对于D ,()()()1f x x x x a =--,()()()()()2121321f x x x a x x a x a x a '=--+--=-++,令()0f x '=,可得方程()23210x a x a -++=,因为()()22412130a a a ∆=-+=-+>,且函数()f x 有两个不同的极值点1x ,2x ,所以1x ,2x 为方程()23210x a x a -++=的两个实数根,则有()12122132x x a a x x ⎧+=+⎪⎪⎨⎪=⎪⎩,则()()()()()()1211122211f x f x x x x a x x x a +=--+--()()()()33221212121x x a x x a x x =+-++++()()()()()22212112212121212x x x x x x a x x x x a x x ⎡⎤=+-++++-++⎣⎦()()()22211221212221233a x x x x x x x x a ⎡⎤=+-+-+++⎢⎥⎣⎦ ()()()()()21242212113327a a a x x a a --⎡⎤=+-++=-+⋅⎢⎥⎣⎦因为2a ≥,所以()()120f x f x +≤,故D 正确; 故选:BCD . 【点睛】关键点点睛:本题考查利用导数研究函数的单调性,平均变化率,极值等问题,本题的关键是选项D ,利用根与系数的关系,转化为关于a 的函数,证明不等式.5.设函数()()1x af x a x a =->的定义域为()0,∞+,已知()f x 有且只有一个零点,下列结论正确的有( ) A .a e =B .()f x 在区间()1,e 单调递增C .1x =是()f x 的极大值点D .()f e 是()f x 的最小值【答案】ACD 【分析】()f x 只有一个零点,转化为方程0x a a x -=在(0,)+∞上只有一个根,即ln ln x ax a=只有一个正根.利用导数研究函数ln ()xh x x=的性质,可得a e =,判断A ,然后用导数研究函数()x e f x e x =-的性质,求出()'f x ,令()0f x '=,利用新函数确定()'f x 只有两个零点1和e ,并证明出()'f x 的正负,得()f x 的单调性,极值最值.判断BCD . 【详解】()f x 只有一个零点,即方程0x a a x -=在(0,)+∞上只有一个根,x a a x =,取对数得ln ln x a a x =,即ln ln x ax a=只有一个正根. 设ln ()xh x x =,则21ln ()x h x x-'=,当0x e <<时,()0h x '>,()h x 递增,0x →时,()h x →-∞,x e >时,()0h x '<,()h x 递减,此时()0h x >,max 1()()h x h e e==. ∴要使方程ln ln x ax a =只有一个正根.则ln 1a a e =或ln 0a a<,解得a e =或0a <,又∵1a >,∴a e =.A 正确;()x e f x e x =-,1()x e f x e ex -'=-,1()0x e f x e ex -'=-=,11x e e x --=,取对数得1(1)ln x e x -=-,易知1x =和x e =是此方程的解.设()(1)ln 1p x e x x =--+,1()1e p x x-'=-,当01x e <<-时,()0p x '>,()p x 递增,1x e >-时,()0p x '<,()p x 递减,(1)p e -是极大值,又(1)()0p p e ==, 所以()p x 有且只有两个零点,01x <<或x e >时,()0p x <,即(1)ln 1e x x -<-,11e x x e --<,1e x ex e -<,()0f x '>,同理1x e <<时,()0f x '<,所以()f x 在(0,1)和(,)e +∞上递增,在(1,)e 上递减,所以极小值为()0f e =,极大值为(1)f ,又(0)1f =,所以()f e 是最小值.B 错,CD 正确. 故选:ACD . 【点睛】关键点点睛:本题考用导数研究函数的零点,极值,单调性.解题关键是确定()'f x 的零点时,利用零点定义解方程,1()0x e f x e ex -'=-=,11x e e x --=,取对数得1(1)ln x e x -=-,易知1x =和x e =是此方程的解.然后证明方程只有这两个解即可.6.已知函数()f x 的定义域为()0,∞+,其导函数()f x '满足()1f x x'<,且()11f =,则下列结论正确的是( ) A .()2f e >B .10f e ⎛⎫> ⎪⎝⎭C .()1,x e ∀∈,()2f x <D .1,1x e ⎛⎫∀∈ ⎪⎝⎭, ()120x f x f ⎛⎫+>⎪⎝⎭- 【答案】BCD【分析】令()()ln F x f x x =-,求导得:'1()()0F x f x x'=-<,可得函数的单调性,再结合(1)1f =,可得(1)1F =,对选项进行一一判断,即可得答案;【详解】令()()ln F x f x x =-,∴'1()()0F x f x x'=-<, ()F x ∴在(0,)+∞单调递减,(1)1f =,(1)(1)1F f ∴==,对A ,()(1)()11()2F e F f e f e <⇒-<⇒<,故A 错误;以B ,111(1)()110e F F f f e e ⎛⎫⎛⎫>⇒+>⇒> ⎪ ⎪⎝⎭⎝⎭,故B 正确;对C ,(1,)()(1)()ln 1x e F x F f x x ∈∴<⇒-<,()1ln f x x ∴<+, (1.),ln (0,1)x e x ∈∈, 1ln (1,2)x ∴+∈,()2f x ∴<,故C 正确;对D ,111,1,,()x x F x F e x x ⎛⎫⎛⎫∈>> ⎪ ⎪⎝⎭⎝⎭()1ln ln f x x f x x ⎛⎫⇒->+ ⎪⎝⎭ 1()2ln f x f x x ⎛⎫⇒-> ⎪⎝⎭,1,1,ln (1,0)x x e ⎛⎫∈∴∈- ⎪⎝⎭, 1()2f x f x ⎛⎫∴->- ⎪⎝⎭1()20f x f x ⎛⎫⇒-+> ⎪⎝⎭,故D 正确; 故选:BCD.【点睛】根据条件构造函数,再利用导数的工具性研究函数的性质,是求解此类抽象函数问题的关键.7.下列命题正确的有( )A .已知0,0a b >>且1a b +=,则1222a b -<<B .34a b ==a b ab+=C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞ 【答案】ACD【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围.【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<;B 选项,34a b ==log a =4log b =1212112(log 3log 4)2a b ab a b+=+=+=; C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点, 所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-;D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞ 故选:ACD【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.8.已知实数a ,b ,c ,d 满足2111a a e cb d --==-,其中e 是自然对数的底数,则()()22a c b d -+-的值可能是( ) A .7B .8C .9D .10【答案】BCD【分析】 由题中所给的等式,分别构造函数()2xf x x e =-和()2g x x =-+,则()()22a cb d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),Ncd 的距离的平方,利用导数的几何意义可知当()01f x '=-时,切点到直线的距离最小,再比较选项.【详解】 由212a a a e b a e b-=⇒=-,令()2x f x x e =-,()12x f x e '∴=- 由1121c d c d -=⇒=-+-,令()2g x x =-+ 则()()22a c b d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,设()y f x =上与()y g x =平行的切线的切点为()000,M x y由()0001210xf x e x '=-=-⇒=,∴切点为()00,2M -所以切点为()00,2M -到()y g x =的距离的平方为28=的距离为(),M a b 与(),N c d 的距离的平方的最小值.故选:BCD.【点睛】本题考查构造函数,利用导数的几何意义求两点间距离的最小值,重点考查转化思想,构造函数,利用几何意义求最值,属于偏难题型.。
常州自主招生试题及答案
![常州自主招生试题及答案](https://img.taocdn.com/s3/m/a34b6f5b54270722192e453610661ed9ad5155cb.png)
常州自主招生试题及答案自主招生是指高等学校根据招生计划和招生标准,在保证考生素质的前提下,由学校自行组织选拔工作的一种招生方式。
自主招生试题除了要考察学生的基础知识水平外,还需要考察学生的综合素质和创新能力。
下面为大家提供常州自主招生试题及答案供参考。
一、数学试题1. 若方程 $3^x-10 \cdot 3^{x-1}+25=0$ 有两个相等的解,则 x 的值为多少?【答案】 x=2【解析】将方程改写为 $(3^x-5)^2=0$,解得 $3^x-5=0$,由此得到$x=2$。
2. 已知 $x^2+3x+2=0$,则 $x_1^3+x_2^3$ 的值为多少?【答案】 $-4$【解析】根据题目条件可知,$x_1$ 和 $x_2$ 是方程的两个根,利用韦达定理得 $x_1+x_2=-3$,$x_1 \cdot x_2=2$。
根据立方和公式,$x_1^3+x_2^3=(x_1+x_2)^3-3x_1x_2(x_1+x_2)$,代入数值计算得$x_1^3+x_2^3=(-3)^3-3 \cdot 2 \cdot (-3)=-4$。
二、英语试题阅读理解:Once upon a time, there lived a poor farmer. Although he had little money, he was grateful for what he had and lived a happy life with his family.One day, the farmer discovered a golden egg in the nest of his old hen. He was amazed and realized that this egg was special. The next day, he found another golden egg. From then on, every morning there would be a golden egg waiting for him in the nest.The farmer became rich and began to live a luxurious life. But he became greedy and wanted all the golden eggs immediately. He thought that there must be many golden eggs inside the hen.One day, he couldn't bear it any longer and decided to kill the hen to take out all the golden eggs at once. But when he opened the hen, there was nothing inside except its organs. The farmer realized his mistake and regretted his greediness.1. How did the farmer feel when he found the first golden egg?【答案】 The farmer was amazed.2. Why did the farmer want to kill the hen?【答案】 Because he wanted to get all the golden eggs at once.三、物理试题1. 调制音频信号占据的频率范围为 20 kHz~20 MHz,信号的最小带宽为多少?【答案】 20 MHz - 20 kHz = 19980 kHz【解析】信号的最小带宽等于频率范围的差值,带宽 = 20 MHz - 20 kHz = 19980 kHz。
江苏省前黄高级中学数列多选题试题含答案
![江苏省前黄高级中学数列多选题试题含答案](https://img.taocdn.com/s3/m/13fa9695f46527d3240ce0f2.png)
江苏省前黄高级中学数列多选题试题含答案一、数列多选题1.已知等比数列{}n a 的公比为q ,前n 项和0n S >,设2132n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( ) A .若1q =,则n n T S = B .若2q >,则n n T S > C .若14q =-,则n n T S > D .若34q =-,则n n T S > 【答案】BD 【分析】先求得q 的取值范围,根据q 的取值范围进行分类讨论,利用差比较法比较出n T 和n S 的大小关系. 【详解】由于{}n a 是等比数列,0n S >,所以110,0a S q =>≠, 当1q =时,10n S na =>,符合题意; 当1q ≠时,()1101n n a q S q-=>-,即101nq q ->-,上式等价于1010n q q ⎧->⎨->⎩①或1010n q q ⎧-<⎨-<⎩②.解②得1q >.解①,由于n 可能是奇数,也可能是偶数,所以()()1,00,1q ∈-.综上所述,q 的取值范围是()()1,00,-+∞.2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛⎫=- ⎪⎝⎭,所以()2311222n n n n T S S q q S q q ⎛⎫⎛⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝⎭,而0n S >,且()()1,00,q ∈-⋃+∞.所以,当112q -<<-,或2q >时,0n n T S ->,即n n T S >,故BD 选项正确,C 选项错误. 当12(0)2q q -<<≠时,0n n T S -<,即n n T S <. 当12q =-或2q 时,0,n n n n T S T S -==,A 选项错误.综上所述,正确的选项为BD. 故选:BD 【点睛】本小题主要考查等比数列的前n 项和公式,考查差比较法比较大小,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.2.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .954S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 【答案】ACD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,依次判断四个选项,即可得正确答案. 【详解】对于A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对于B ,911235813+21+3488S =++++++=,故B 错误;对于C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-,可得:13520192426486202020182020a a a a a a a a a a a a a a +++⋅⋅⋅+=+-+-+-++-=,故C正确.对于D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-,可得22212201920202019201920202019a a a a a a a a+++==,故D 正确;故选:ACD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换,属于中档题.3.设数列{}{},n n a b 的前n 项和分别为,n n S T ,1121,n n n S S S n++==,且212n n n n a b a a ++=,则下列结论正确的是( ) A .20202020a =B .()12n n n S +=C .()112n b n n =-+D .1334n T n ≤-< 【答案】ABD 【分析】可由累乘法求得n S 的通项公式,再由()12n n n S +=得出n a n =,代入212n n n n a b a a ++=中可得()112n b n n =++.由裂项相消法求出n T ,利用数列的单调性证明1334n T n ≤-<.【详解】 由题意得,12n n S n S n++=, ∴当2n ≥时,121121112n n n n n S S S n n S S S S S n n ---+=⋅⋅⋅⋅⋅=⋅⋅⋅⋅--()13112n n +⋅=,且当1n =时也成立, ∴ ()12n n n S +=,易得n a n =,∴ 20202020a =,故,A B 正确; ∴ ()()()211111112222n n b n n n n n n +⎛⎫==+=+- ⎪+++⎝⎭,∴11111111111111112324351122212n T n n n n n n n n ⎛⎫⎛⎫=+-+-+-++-+-=++-- ⎪ ⎪-++++⎝⎭⎝⎭3111342124n n n n ⎛⎫=+-+<+ ⎪++⎝⎭, 又n T n -随着n 的增加而增加, ∴1113n T n T -≥-=,∴1334n T n ≤-<,C 错误,D 正确, 故选:ABD. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.4.已知数列{}n a 满足11a =,()111n n na n a +-+=,*n N ∈,其前n 项和为n S ,则下列选项中正确的是( )A .数列{}n a 是公差为2的等差数列B .满足100n S <的n 的最大值是9C .n S 除以4的余数只能为0或1D .2n n S na = 【答案】ABC 【分析】根据题意对()111n n na n a +-+=变形得()1111111n n a a n n n n n n +=-+-=++,进而根据累加法求得()*21n a n n N =-∈,再依次讨论各选项即可得答案.【详解】解:因为()111n n na n a +-+=,故等式两边同除以()1n n +得:()1111111n n a a n n n n n n +=-+-=++, 所以()1111111n n a a n n n n n n -=-----=,()()12111221211n n a a n n n n n n --=------=--,,2111121122a a =-⨯-= 故根据累加法得:()11121n a a n nn =-≥-, 由于11a =,故()212n a n n =-≥,检验11a =满足, 故()*21n a n n N=-∈所以数列{}n a 是公差为2的等差数列,故A 选项正确; 由等差数列前n 项和公式得:()21212n n n S n +-==,故2100n n S =<,解得:10n <,故满足100n S <的n 的最大值是9,故B 选项正确; 对于C 选项,当*21,n k k N =-∈时,22441n n k S k ==-+,此时n S 除以4的余数只能为1;当*2,n k k N =∈时,224n n k S ==,此时n S 除以4的余数只能0,故C 选项正确;对于D 选项,222n S n =,()2212n n n n n n a =-=-,显然2n n S na ≠,故D 选项错误.故选:ABC 【点睛】本题考查累加法求通项公式,裂项求和法,等差数列的相关公式应用,考查运算求解能力,是中档题.本题解题的关键在于整理变形已知表达式得()1111111n n a a n n n n n n +=-+-=++,进而根据累加法求得通项公式.5.记数列{}n a 的前n 项和为n S ,*n ∈N ,下列四个命题中不正确的有( ) A .若0q ≠,且对于*212,n n n n a a a ++∀∈=N ,则数列{}n a 为等比数列B .若nn S Aq B =+(非零常数q ,A ,B 满足1q ≠,0A B +=),则数列{}n a 为等比数列C .若数列{}n a 为等比数列,则232,,,n n n n n S S S S S --仍为等比数列D .设数列{}n a 是等比数列,若123a a a <<,则{}n a 为递增数列 【答案】AC 【分析】若0n a =,满足对于*212,n n n n a a a ++∀∈=N ,但数列{}n a 不是等比数列,可判断A ;利用n a 与n S 的关系,可求得数列{}n a 的通项公式,可判断B ;若数列{}n a 为等比数列,当公比1q =-,且n 为偶数时,此时232,,,n n n n n S S S S S --均为0,可判断C ;设数列{}n a 是等比数列,且公比为q ,若123a a a <<,即1211a a q a q <<,分类讨论10a >与10a <两种情况,可判断D ; 【详解】对于A ,若0n a =,满足对于*212,n n n n a a a ++∀∈=N ,但数列{}n a 不是等比数列,故A 错误;对于B ,当2n ≥时,()111(1)nn n n n n a S S Aq B AqB Aq q ---=-=+-+=-且1q ≠;当1n =时,0A B +=,则()111a S Aq B A q ==+=-符合上式,故数列{}n a 是首项为()1A q -公比为q 的等比数列,故B 正确;对于C ,若数列{}n a 为等比数列,当公比1q =-,且n 为偶数时,此时232,,,n n n n n S S S S S --均为0,不为等比数列,故C 错误;对于D ,设数列{}n a 是等比数列,且公比为q ,若123a a a <<,即1211a a q a q <<,若10a >,可得21q q <<,即1q >,则{}n a 为递增数列;若10a <,可得21q q >>,即01q <<,则{}n a 为递增数列;故D 正确;故选:AC 【点睛】结论点睛:本题考查等比数列通项公式及和的性质,等比数列和的性质:公比为1q ≠-的等比数列{}n a 的前n 项和为n S ,则232,,,n n n n n S S S S S --仍成等比数列,其公比为n q ;同理等差数列和的性质:公差为d 的等差数列{}n a 的前n 项和为n S ,数列232,,,m m m m m S S S S S --构成等差数列,公差为md ,考查学生的分析能力,属于中档题.6.已知数列{}n a ,下列结论正确的有( ) A .若12a =,11n n a a n +++=,则20211a =.B .若11132n n a a a ++=,=,则71457a =C .若12nn S =3+,则数列{}n a 是等比数列 D .若11212n n n a a a a ++=,=()*n N ∈,则15215a = 【答案】AB 【分析】直接利用叠加法可判断选项A ,从而判断,利用构造新数列可求出B,D 中数列的通项公式,可判断,选项C 求出数列的前3项从而可判断. 【详解】选项A. 由11n n a a n +=++,即11n n a a n +-=+ 则()()()()19191818120207121a a a a a a a a a a =-+-+-++-+20191822211=+++++=故A 正确.选项B. 由132n n a a +=+,得()1311n n a a +=++,所以数列{}1n a +是以112a +=为首项,3为公比的等比数列.则1123n n a -+=⨯,即1231n n a -=⨯-,所以672311457a =⨯-=,故B 正确.选项C. 由12nn S =3+,可得当1n =时,11722a =+=3 当2n =时,得2211193622a S S ⎛⎫⎛⎫=-=+-+= ⎪ ⎪⎝⎭⎝⎭, 当3n =时,得332112791822a S S ⎛⎫⎛⎫=-=+-+= ⎪ ⎪⎝⎭⎝⎭, 显然2213a a a ≠,所以数列{}n a 不是等比数列,故C 错误. 选项D. 由122nn n a a a +=+,可得11112n n a a +-= 所以数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,12为公差的等差数列.所以()1111122n n n a +=+-=,则1511826a ==,即1518a =,故D 错误. 故选:AB 【点睛】关键点睛:本题考查利用递推关系求数列的通项公式,解答的关键是掌握求数列通项公式的常见方法,由叠加法可得()()()()19191818120207121a a a a a a a a a a =-+-+-++-+,利用构造新数列()1311n n a a +=++,11112n n a a +-=解决问题,属于中档题.7.(多选)设数列{}n a 是等差数列,公差为d ,n S 是其前n 项和,10a >且69S S =,则( ) A .0d > B .80a =C .7S 或8S 为n S 的最大值D .56S S >【答案】BC 【分析】根据69S S =得到80a =,再根据10a >得到0d <,可得数列{}n a 是单调递减的等差数列,所以7S 或8S 为n S 的最大值,根据6560S S a -=>得65S S >,故BC 正确. 【详解】由69S S =得,960S S -=, 即7890a a a ++=,又7982a a a +=,830a ∴=,80a ∴=,∴B 正确;由8170a a d =+=,得17a d =-,又10a >,0d ∴<, ∴数列{}n a 是单调递减的等差数列,()()0,70,9n n a n N n a n N n **⎧>∈≤⎪∴⎨<∈≥⎪⎩, 7S ∴或8S 为n S 的最大值,∴A 错误,C 正确; 6560S S a -=>,65S S ∴>,所以D 错误.故选:BC . 【点睛】关键点点睛:根据等差中项推出80a =,进而推出0d <是解题关键.8.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,且112n n n S a a +=⋅-,则( )A .12d =B .11a =C .数列{}n a 中可以取出无穷多项构成等比数列D .设(1)nn n b a =-⋅,数列{}n b 的前n 项和为n T ,则2n T n =【答案】AC 【分析】利用已知条件可得11212n n n S a a +++=-与已知条件两式相减,结合{}n a 是等差数列,可求d的值即可判断选项A ,令1n =即可求1a 的值,可判断选项B ,分别计算{}n a 的通项即可判断选项C ,分别讨论两种情况下21212n n b b -+=,即可求2n T 可判断选项D. 【详解】 因为112n n n S a a +=-,所以11212n n n S a a +++=-, 两式相减,得()11212n n n n n a a a a da ++++=-=, 因为0d ≠,所以21d =,12d =,故选项 A 正确; 当1n =时,1111122a a a ⎛⎫=+- ⎪⎝⎭,易解得11a =或112a =-,故选项B 不正确;由选项A 、B 可知,当112a =-,12d =时,()1111222n na n =-+-⨯=-,{}n a 可取遍所有正整数,所以可取出无穷多项成等比数列,同理当()()1111122n a n n =+-⨯=+时也可以取出无穷多项成等比数列,故选项C 正确; 当()112n a n =+时,()221212n n b a n ==+,()212112112n n b a n n --=-=--+=-, 因为21221212n n n n b b a a --+=-+=, 所以()()()212342122n n n n T b b b b b b -=++++++=, 当12n n a =-时,2212112n n b a n n ==⨯-=-,2121213122n n n b a n ---⎛⎫=-=--=-⎪⎝⎭, 所以22131122n n b b n n -+=-+-=, 此时()()()22212223212n n n n n nT b b b b b b ---=++++++=, 所以2n T n ≠,故选项D 不正确. 故选:AC. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.二、平面向量多选题9.如图,A 、B 分别是射线OM 、ON 上的点,下列以O 为起点的向量中,终点落在阴影区域内的向量是( )A .2OA OB + B .1123OA OB +C .3143OA OB + D .3145OA OB + 【答案】AC 【分析】利用向量共线的条件可得:当点P 在直线AB 上时,等价于存在唯一的一对有序实数u ,v ,使得OP uOA vOB =+成立,且u +v =1.可以证明点P 位于阴影区域内等价于:OP uOA vOB =+,且u >0,v >0,u +v >1.据此即可判断出答案. 【详解】由向量共线的条件可得:当点P 在直线AB 上时,存在唯一的一对有序实数u ,v ,使得OP uOA vOB =+成立,且u +v =1.可以证明点P 位于阴影区域内等价于: OP uOA vOB =+,且u >0,v >0,u +v >1. 证明如下:如图所示,点P 是阴影区域内的任意一点,过点P 作PE //ON ,PF //OM ,分别交OM ,ON 于点E ,F ;PE 交AB 于点P ′,过点P ′作P ′F ′//OM 交ON 于点F ′,则存在唯一一对实数(x ,y ),(u ′,v ′),使得OP xOE yOF u OA v OB ''''=+=+,且u ′+v ′=1,u ′,v ′唯一;同理存在唯一一对实数x ′,y ′使得OP x OE y OF uOA vOB =+=+'', 而x ′=x ,y ′>y ,∴u =u ′,v >v ′,∴u +v >u ′+v ′=1,对于A ,∵1+2>1,根据以上结论,∴点P 位于阴影区域内,故A 正确; 对于B ,因为11123+<,所以点P 不位于阴影区域内,故B 不正确; 对于C ,因为311314312+=>,所以点P 位于阴影区域内,故C 正确; 对于D ,因为311914520+=<,所以点P 不位于阴影区域内,故D 不正确; 故选:AC. 【点睛】关键点点睛:利用结论:①点P 在直线AB 上等价于存在唯一的一对有序实数u ,v ,使得OP uOA vOB =+成立,且u +v =1;②点P 位于阴影区域内等价于OP uOA vOB =+,且u >0,v >0,u +v >1求解是解题的关键.10.关于平面向量有下列四个命题,其中正确的命题为( )A .若a b a c ⋅=⋅,则b c =;B .已知(,3)a k =,(2,6)b =-,若//a b ,则1k =-;C .非零向量a 和b ,满足||||||a b a b ==-,则a 与a b +的夹角为30º;D .0||||||||a b a b a b a b ⎛⎫⎛⎫+⋅-= ⎪ ⎪⎝⎭⎝⎭【答案】BCD 【分析】通过举反例知A 不成立,由平行向量的坐标对应成比例知B 正确,由向量加减法的意义知,C 正确,通过化简计算得D 正确.【详解】对A ,当0a = 时,可得到A 不成立;对B ,//a b 时,有326k =-,1k ∴=-,故B 正确. 对C ,当||||||a b a b ==-时,a 、b 、a b -这三个向量平移后构成一个等边三角形, a b + 是这个等边三角形一条角平分线,故C 正确.对D ,22()()()()110||||||||||||a b a b a b a a a b b b +⋅-=-=-=,故D 正确. 故选:BCD .【点睛】本题考查两个向量的数量积公式,两个向量加减法的几何意义,以及共线向量的坐标特点.属于基础题.。
江苏省前黄高级中学、溧阳中学2018-2019学年上学期第二次阶段检测数学试题(含精品解析)
![江苏省前黄高级中学、溧阳中学2018-2019学年上学期第二次阶段检测数学试题(含精品解析)](https://img.taocdn.com/s3/m/71d4e0ed76eeaeaad1f33062.png)
前黄高级中学、溧阳中学2018-2019学年第一学期第二次阶段检测高二数学试卷一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.命题“,”的否定是________命题.(填“真”或“假”)x R "Î20x >【答案】真【解析】【分析】先判断原命题的真假性,再根据原命题与命题的否定真假相反的原则即可判断.【详解】∵ ,x 20恒成立,∴命题“∀x ∈R ,”是假命题,x R "γ20x >∴原命题的否定是真命题.故答案为:真【点睛】有些命题的真假难以判断时,用正难则反的思想解决问题.属于基础题2.在平面直角坐标系中,双曲线的离心率为_______. xOy 22145x y -=【答案】32【解析】【分析】由双曲线的几何性质可得c ,进而由双曲线的离心率公式计算可得答案.【详解】根据题意,双曲线的方程为,则a 2=4,b 2=5,22145x y -=则c =3,则其离心率e ==;c a 32故答案为:.32【点睛】本题考查了双曲线的离心率,熟练应用双曲线标准方程和离心率公式的计算,属于基础题.3.函数的单调减区间为________. 1()ln f x x x =+【答案】()0,1【解析】【分析】求函数的导数,解f′(x )<0,即可求出函数的单调减区间.【详解】 函数f (x )=lnx+的定义域为(0,+∞),函数的导数f′(x )= , 1x 2x-1x 由f′(x )=<0,解得x <1,即函数的单调减区间为(0,1),2x-1x 故答案为:(0,1).【点睛】本题考查函数单调区间的求解,利用函数单调性和导数之间的关系是解决本题的关键,注意定义域,属于基础题.4.在平面直角坐标系中,抛物线的焦点坐标为_________.xOy 28y x =【答案】(2,0)【解析】【分析】利用抛物线的标准方程,可得p,进而可求解焦点坐标.【详解】抛物线y 2=8x 的开口向右,P =4,所以抛物线的焦点坐标(2,0).故答案为:(2,0).【点睛】本题考查抛物线的简单性质的应用,是基本知识的考查,属于基础题.5.设 ,则“ ”是“ ”的______________条件.(从“充分不必要”、“必要不x R Î21x -<220x x +->充分”、“既不充分也不必要”、“充要”中选择).【答案】充分不必要【解析】【分析】由,得1<x <3;由x 2+x﹣2>0得x >1或x <﹣2,再根据充分条件和必要条件的定义进行判断21x -<即可.【详解】由|x ﹣2|<1得﹣1<x ﹣2<1,得1<x <3,由x 2+x﹣2>0得x >1或x <﹣2,(1,3)⊊(﹣∞,﹣2)∪(1,+∞),故“|x﹣2|<1”是“x 2+x﹣2>0”的充分不必要条件,故答案为:充分不必要【点睛】本题主要考查充分条件和必要条件的判断,根据绝对值不等式以及一元二次不等式的解法求出不等式的等价条件是解决本题的关键,属于基础题.6.在平面直角坐标系中,已知双曲线的一条渐近线与直线平行,则xOy 2221(0)y x m m -=>230x y -+=实数____.m =【答案】12【解析】【分析】双曲线的渐近线方程为y=,由渐近线与直线平行,求出m 即可.2221(0)y x m m -=>mx ±230x y -+=【详解】在平面直角坐标系xOy 中,双曲线的渐近线方程为y=2221(0)y x m m -=>mx ±∵渐近线与直线平行,∴.230x y -+=1m=2故答案为: .12【点睛】本题考查双曲线的渐近线方程、双曲线的标准方程和直线平行的性质等基础知识,属于基础题.7.已知函数,则______.()()cos sin 6f x f x x p =+¢()6f p =【答案】1【解析】由题得1()()()()()6666626f x f sinx cosx f f sin cos f p p p p p p =-+\=-¢¢¢¢¢+=-所以,3()()266f f p p ¢¢\所以,故填1.11(sin 166622f pp p +=+=8.在平面直角坐标系中,已知为抛物线上一点,且点纵坐标为,则到抛物线xOy P 2:4C y x =P 4-P 焦点的距离为____.C 【答案】5【解析】【分析】由题意可得点P 的横坐标为4,由抛物线的定义可得点P 到该抛物线焦点的距离等于点P 到准线x =﹣1的距离,由此求得结果.【详解】由抛物线y 2=4x 上一点P 点纵坐标为,故点P 的横坐标为4.4-再由抛物线y 2=4x 的准线为x =﹣1,以及抛物线的定义可得点P 到该抛物线焦点的距离等于点P 到准线的距离,故点P 到该抛物线焦点的距离是4﹣(﹣1)=5,故答案为:5.【点睛】本题主要考查抛物线的定义、标准方程,以及简单性质的应用,属于基础题.9.函数的零点个数为_____.32()395f x x x x =+-+【答案】2【解析】【分析】先利用导数判断函数的单调性,然后求出f (x )的极大值与极小值,再说明f (x )有几个零点.【详解】对函数f (x )进行求导:f'(x )=3x 2+6x﹣9令f'(x )=0,则(x+3)(x﹣1)=0⇒x 1=1,x 2=﹣3当x ∈(﹣∞,﹣3)时,f'(x )>0,f (x )在(﹣∞,-3)上单调递增;当x ∈(﹣3,1)时,f'(x )<0,f (x )在(-3,1)上单调递减;当x ∈(1,+∞)时,f'(x )>0,f (x )在(1,+∞)上单调递增;当x =﹣3时,函数f (x )= f (-3)=32;值大值当x =1时,函数f (x )= f (1)=0,值小值根据零点存在定理,所以f (x )有2个零点.故答案为;2【点睛】本题考查了函数零点存在定理的应用,用导函数判断函数的单调性求出极值是关键,属于中档题.10.在平面直角坐标系中,已知是椭圆的左焦点,为右顶点,是椭圆上xOy F 22221(0)x y a b a b+=>>A P 一点且轴.若,则该椭圆的离心率为_____.PF x ^13PF AF =【答案】23【解析】【分析】由题意得F (﹣c ,0),A (a ,0),把x =﹣c 代入椭圆方程可得:y =±,即得|PF|,再利用|PF|=|AF|,化2b a 13简后可得离心率.【详解】F (﹣c ,0),A (a ,0),把x =﹣c 代入椭圆方程可得:y 2=,解得y =±,42b a 2b a∴|PF|=,AF =a+c ,∵|PF|=|AF|,∴=(a+c ),2b a 132b a 13∴3(a 2﹣c 2)=a 2+ac ,化为:3e 2+e﹣2=0,又0<e <1,解得e =.23故答案为:.23【点睛】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题,考查了推理能力与计算能力,属于基础题.11.若函数在处取得极大值,则实数的取值范围是_____.()()2ln 2f x x ax a x =+-+12x =a 【答案】(,2)-¥【解析】【分析】求出函数的导数,通过讨论a 的范围,求出函数的单调区间,从而求出函数的极值点,结合已知条件,判断即可.【详解】f (x )的定义域是(0,+∞),f′(x )=+2ax﹣(a+2)=,1x2x-1ax-1x ()()①0<a <2时,<,121a令f′(x )>0,解得:x <或x >,121a令f′(x )<0,解得:<x <,121a∴f (x )在(0,)递增,在(,)递减,在(,+∞)递增,12121a 1a∴函数f (x )在x=处取得极大值,符合题意,12②a =2时,f′(x )≥0,f (x )递增,无极值,③a >2时,>,121a 令f′(x )>0,解得:x >或x <,121a令f′(x )<0,解得:<x <,1a 12∴f (x )在(0,)递增,在(,)递减,在(,+∞)递增,1a 1a 1212∴函数f (x )在x =处取得极大值,不符合题意,1a④a <0时,>0>121a令f′(x )>0,解得:0<x<,12令f′(x )<0,解得:x >,12∴f (x )在(0,)递增,在(,+∞)递减,1212∴函数f (x )在x =处取得极大值,符合题意.12⑤a=0时,f′(x )=0的根x=,12∴f (x )在(0,)递增,在(,+∞)递减,1212∴函数f (x )在x =处取得极大值,符合题意.12综上,a ∈(,2),-¥故答案为:(-,2).¥【点睛】本题考查了函数的单调性、极大值问题,考查导数的应用以及分类讨论思想,是一道中档题.12.过点作曲线(其中为自然对数的底数)的切线,切点为,设在轴上的投影()1,0P -:x C y e =e 1T 1T x 是点,过点再作曲线的切线,切点为,设在轴上的投影是点,依次下去,得到第1H 1H C 2T 2T x 2H 个切点,则点的坐标为________.()1*n n N +Î1n T +2019T 【答案】2018(2018,)e【解析】【分析】设T 1(x 1,),可得切线方程代入点P 坐标,可解得x 1=0,即T 1(0,1),可得H 1(0,0),再写切线方程1x e 代入点H 1(0,0),可得T 2(1,e ),H 2(1,0),…由此可推得规律,从而可得的坐标.2019T 【详解】设T 1(x 1,),此处的导数为,1x e 1x e 故切线方程为y﹣=(x﹣x 1),代入点P (﹣1,0)1x e 1x e 可得0﹣=(﹣1﹣x 1),解得x 1=0,即T 1(0,1),H 1(0,0),1x e 1x e 同理可得过点H 1再作曲线C 的切线方程为y﹣=(x﹣x 2),代入点H 1(0,0),2x e 2x e 可得0﹣=(0﹣x 2),可解得x 2=1,故T 2(1,e ),H 2(1,0),2x e 2x e …依次下去,可得T n+1的坐标为(n ,e n ),即得=2019T ()20182018,e 故答案为:.()20182018,e 【点睛】本题考查利用导数研究曲线上某点切线的方程,归纳推理是解决问题的关键,属中档题.13.在平面直角坐标系中,已知椭圆左、右焦点分别为,上顶点为,xOy 22221(0)x y a b a b+=>>12,F F A 离心率为,为椭圆上在第一象限内一点,记的面积为,的面积为.若12P 1PF A D 1PF A S D 12PF F D 12PF F S D ,则直线的斜率为_______.1122PF A PF F S S D D =1PF【解析】【分析】设直线P 的方程,利用,得到A 到直线P 的距离是直线P 的2倍,再由离心率为1F 1122PF A PF F S S D D =1F 2F 1F ,即可求出P 的斜率.121F 【详解】设直线P 的斜率为k ,则直线P 的方程为y=k (x+c ),即kx-y+kc=01F 1F , A 到直线P 的距离是直线P 的2倍.1122PF A PF F S S D D =\1F 2F 1F\2´ 又离心率为 4b kc kc \-+=122214c a \=b Þ=或4k k \-k Þ=-k点P 为第一象限内椭圆上的一点, \k 故答案为【点睛】本题考查椭圆的几何性质,点到直线距离公式的运用,也考查了计算能力,属于基础题.14.若存在正数,使得(其中为自然对数的底数),则实数的取值范,x y ()()2ln ln 0y exy x z x --+=e z 围是___________.【答案】1(,0)[,)e-¥È+¥【解析】【分析】由变量分离得﹣=(﹣2e )ln =(t﹣2e )lnt ,(令t =>0),令h(t)=(t﹣2e )lnt ,(t >0),利用h(t)的范围求1z y x y x y x出实数z 的取值范围.【详解】由变量分离得﹣=(﹣2e )ln =(t﹣2e )lnt ,(令t =>0),1z y x y x y x 令h(t)=(t﹣2e )lnt ,(t >0),则h (t)=lnt+,h (t)=+ >0,'t-2e t ''1t 22e t 所以h (t)在t 递增,且h′(e )=0'(0,)Î+¥h(t)在(0,e )上递减,在(e ,+)上递增¥∴h(t)≥h (e )=﹣e ,∴﹣≥﹣e ,解得z <0或z≥.1z 1e∴实数z 的取值范围是(﹣∞,0)∪[,+∞).1e故答案为:(﹣∞,0)∪[,+∞)1e 【点睛】本题考查实数的取值范围,变量分离求新函数的范围是关键,也考查了不等式的运算,属于中档题.二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)15.设实数满足,其中;实数满足.:p x 22430x ax a -+<0a >:q x 302x x -<-(1)若,且为真,求实数的取值范围;1a =p q Úx (2)若是的必要不充分条件,求实数的取值范围.p q a 【答案】(1)实数的取值范围是;(2)实数的取值范围是.x 13x <<a 12a ££【解析】试题分析:(1)利用一元二次不等式的解法可化简命题p ,q ,若p ∨q 为真,则p ,q 至少有1个为真,即可得出;(2)根据p 是q 的必要不充分条件,即可得出.试题解析:(1)由x 2﹣4ax+3a 2<0,得(x﹣3a)(x﹣a)<0,又a >0,所以a <x <3a ,当a=1时,1<x <3,即p 为真时实数x 的取值范围是1<x <3.q 为真时等价于(x﹣2)(x﹣3)<0,得2<x <3,即q 为真时实数x 的取值范围是2<x <3.若p ∨q 为真,则实数x 的取值范围是1<x <3.(2)p 是q 的必要不充分条件,等价于q ⇒p 且p 推不出q ,设A={x|a <x <3a},B={x|2<x <3},则B ⇐A ;则,所以实数a 的取值范围是1≤a≤2。
江苏省常州市前黄高级中学2023-2024学年高一下学期3月自主练习数学试卷
![江苏省常州市前黄高级中学2023-2024学年高一下学期3月自主练习数学试卷](https://img.taocdn.com/s3/m/8adf6e01842458fb770bf78a6529647d2728340a.png)
π 4
+
x
ö ÷ø
-
k
× cos
2x
.
(1)若 k = 0 ,求关于 x 的方程 f ( x) = 1 在[0,π ] 上的解;
(2)若 k = 3 ,求函数 y = f ( x) , x Î R 的单调减区间;
(3)已知 a 为实数且 k =
3 ,若关于 x 的不等式
f
( x) - a
<
2
在
x
Î
é êë
r b
D.
1 3
r a
-
5 6
r b
5.将函数
y
=
sin
x
的图象上所有的点的横坐标缩短到原来的
1 2
倍(纵坐标不变),再
把所得图象上所有点向左平移 p 个单位,得到的图象的函数解析式是 6
A.
y
=
sin(2x
+
p 3
)
B.
y
=
sin(
1 2
x
+
p 12
)
试卷第11 页,共33 页
C.
y
=
sin(
1 2
点 P 的坐标;若不存在,说明理由.
试卷第51 页,共33 页
1.A
参考答案:
【分析】根据平面向量共线的充要条件计算即可判断.
【详解】向量
r a
=
(1,
2)
,
r b
//
r a
,则存在
l
Î
R
,使得
r b =l
ar
=
(l
,
2l
)
故只有向量 (-1, -2) 符合.
江苏省前黄高级中学三角函数与解三角形多选题试题含答案
![江苏省前黄高级中学三角函数与解三角形多选题试题含答案](https://img.taocdn.com/s3/m/f5a1599da26925c52cc5bffa.png)
江苏省前黄高级中学三角函数与解三角形多选题试题含答案一、三角函数与解三角形多选题1.设函数()2sin sin 2cos2f x x x =++,给出下列四个结论:则正确结论的序号为( ) A .()20f >B .()f x 在53,2ππ⎛⎫--⎪⎝⎭上单调递增 C .()f x 的值域为[]12cos2,32cos2-++ D .()f x 在[]0,2π上的所有零点之和为4π 【答案】ABD 【分析】由()23sin 22cos2f =+,结合3224ππ<<,可判定A 正确;作出函数2sin sin y x x =+的图象,可得函数()f x 的值域及单调性,可判定B 正确,C 不正确;结合函数的图象,可得()f x 在[]0,2π上的所有零点之和,可判定D 正确. 【详解】由题意,函数()2sin sin 2cos2f x x x =++, 可得()22sin 2sin 22cos23sin 22cos2f =++=+ 因为3224ππ<<,所以sin 2cos20>->,所以()20f >,所以A 正确; 由3sin ,222sin sin ,sin ,222x k x k y x x k Z x k x k πππππππ≤≤+⎧=+=∈⎨-+≤≤+⎩,作出函数2sin sin y x x =+的图象,如图所示, 可得函数()f x 是以2π为周期的周期函数,由函数2sin sin y x x =+的图象可知,函数()f x 在3(,)2ππ上单调递增, 又由()f x 是以2π为周期的周期函数,可得函数()f x 在5(3,)2ππ--上单调递增, 所以B 是正确的;由由函数2sin sin y x x =+的图象可知,函数()f x 的值域为[2cos 2,32cos 2]+, 所以C 不正确; 又由2223ππ<<,所以1cos 202-<<,则02cos21<-<, 令()0f x =,可得2sin sin 2cos2x x +=-,由图象可知,函数()f x 在[]0,2π上的所有零点之和为4π,所以D 正确. 故选:ABD.【点睛】本题主要考查了三角函数的图象与性质的综合应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查转化思想,以及数形结合思想的应用,以及推理与运算能力,属于中档试题.2.ABC 中,2BC =,BC 边上的中线2AD =,则下列说法正确的有( ) A .AB AC →→⋅为定值B .2210AC AB += C .co 415s A << D .BAD ∠的最大值为30【答案】ABD 【分析】A 利用向量的加减法及向量的数量积公式运算即可,B 根据余弦定理及角的互补运算即可求值,C 利用余弦定理及基本不等式求出cos A 范围即可,D 根据余弦定理及基本不等式求出cos BAD ∠的最小值即可. 【详解】 对于A ,22413AB AC AD DB AD DB AD DB →→→→→→→→⎛⎫⎛⎫⋅=+-=-=-= ⎪⎪⎝⎭⎝⎭,AB AC →→∴⋅为定值,A 正确; 对于B ,cos cos ADC ADB∠=-∠2222222cos 2cos AC AB AD DC AD DC ADC AD DB AD DB ADB ∴+=+-⋅⋅∠++-⋅⋅∠2222AD DB DC =++ 2221110=⨯++=,故B 正确;对于C ,由余弦定理及基本不等式得224242122b c bc cosA bc bc bc+--=≥=-(当且仅当b c =时,等号成立),由A 选项知cos 3bc A =,22cos cos 1133cos AA A∴≥-=-, 解得3cos 5A ≥,故C 错误;对于D ,2222213233cos 4442c c c BAD c c c +-+∠==≥=(当且仅当3c =时,等号成立),因为BAD ABD ∠<∠, 所以(0,)2BAD π∠∈,又3cos 2BAD ∠≥,所以BAD ∠的最大值30,D 选项正确. 故选:ABD 【点睛】本题主要考查了向量的数量积运算,余弦定理,基本不等式,考查了推理能力,属于难题.3.(多选题)如图,设ABC 的内角、、A B C 所对的边分别为a b c 、、,若a b c 、、成等比数列,、、A B C 成等差数列,D 是ABC 外一点,1,3DC DA ==,下列说法中,正确的是( )A .3B π=B .ABC 是等边三角形C .若A B CD 、、、四点共圆,则13AC =D .四边形ABCD 面积无最大值 【答案】ABC 【分析】根据等差数列的性质和三角形内角和可得3B π=,根据等比中项和余弦定理可得a c =,即ABC 是等边三角形,若A B C D 、、、四点共圆,根据圆内接四边形的性质可得23D π=,再利用余弦定理可求13AC =211sin sin 223ACD ABC S S S AD CD D AC π∆∆=+=⋅+和2222cos AC AD CD AD CD D 可得3335353sin 3sin()23S D D D π=-+=-+. 【详解】由、、A B C 成等差数列可得,2A+C =B ,又A B C π++=, 则3B π=,故A 正确;由a b c 、、成等比数列可得,2b ac =,根据余弦定理,2222cos b a c ac B =+-,两式相减整理得,2()0a c -=,即a c =,又3B π=,所以,ABC 是等边三角形,故B 正确;若A B C D 、、、四点共圆,则B D π+=,所以,23D π=, ADC 中,根据余弦定理,2222cos AC AD CD AD CD D ,解得AC =C 正确; 四边形ABCD 面积为:211sin sin 223ACD ABC S S S AD CD D AC π∆∆=+=⋅+23sin 24D AC =+ 又2222cos 106cos AC AD CD AD CD D D =+-⋅=-,所以,3sin 3sin()23S D D D π==-+因为(0,)D π∈,当四边形面积最大时,sin()13D π-=,此时max 32S =+,故D 错误. 故选:ABC 【点睛】本题考查解三角形和平面几何的一些性质,同时考查了等差等比数列的基本知识,综合性强,尤其是求面积的最大值需要一定的运算,属难题.4.已知函数()()sin f x x ωϕ=+(其中,0>ω,||2ϕπ<),08f π⎛⎫-= ⎪⎝⎭,3()8f x f π⎛⎫≤ ⎪⎝⎭恒成立,且()f x 在区间,1224ππ⎛⎫- ⎪⎝⎭上单调,则下列说法正确的是( )A .存在ϕ,使得()f x 是偶函数B .3(0)4f f π⎛⎫=⎪⎝⎭C .ω是奇数D .ω的最大值为3【答案】BCD 【分析】根据3()8f x f π⎛⎫≤ ⎪⎝⎭得到21k ω=+,根据单调区间得到3ω≤,得到1ω=或3ω=,故CD 正确,代入验证知()f x 不可能为偶函数,A 错误,计算得到B 正确,得到答案. 【详解】08f π⎛⎫-= ⎪⎝⎭,3()8f x f π⎛⎫≤ ⎪⎝⎭,则3188242k T πππ⎛⎫⎛⎫--==+ ⎪ ⎪⎝⎭⎝⎭,k ∈N ,故221T k π=+,21k ω=+,k ∈N , 08f π⎛⎫-= ⎪⎝⎭,则()s n 08i f x πωϕ⎛⎫=+= ⎪⎭-⎝,故8k πωϕπ+=-,8k ϕπωπ=+,k Z ∈,当,1224x ππ⎛⎫∈-⎪⎝⎭时,,246x k k ωπωπωϕππ⎛⎫+∈++ ⎪⎝⎭,k Z ∈,()f x 在区间,1224ππ⎛⎫-⎪⎝⎭上单调,故241282T πππ⎛⎫--=≤ ⎪⎝⎭,故4T π≥,即8ω≤,0243ωππ<≤,故62ωππ≤,故3ω≤,综上所述:1ω=或3ω=,故CD 正确;1ω=或3ω=,故8k ϕππ=+或38k ϕππ=+,k Z ∈,()f x 不可能为偶函数,A 错误;当1ω=时,(0)sin sin 8f k πϕπ⎛⎫==+⎪⎝⎭,33sin sin 4488f k k ππππππ⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故3(0)4f f π⎛⎫= ⎪⎝⎭; 当3ω=时,3(0)sin sin 8f k πϕπ⎛⎫==+⎪⎝⎭, 393sin sin 4488f k k ππππππ⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故3(0)4f f π⎛⎫= ⎪⎝⎭, 综上所述:3(0)4f f π⎛⎫= ⎪⎝⎭,B 正确; 故选:BCD. 【点睛】本题考查了三角函数的性质和参数的计算,难度较大,意在考查学生的计算能力和综合应用能力.5.在ABC 中,a ,b ,c 分别为A ∠,B ,C ∠的对边,下列叙述正确的是( ) A .若sin sin a bB A=,则ABC 为等腰三角形 B .若cos cos a bB A=,则ABC 为等腰三角形 C .若tan A tan tan 0B C ++<,则ABC 为钝角三角形 D .若sin cos a b C c B =+,则4C π∠=【答案】ACD 【分析】多项选择题,一个一个选项验证:对于A :利用正弦定理判断sin sin A B =,在三角形中只能A=B ,即可判断; 对于B :∵由正弦定理得 sin 2sin 2A B =,可以判断∴ABC 为等腰三角形或直角三角形;对于C :利用三角函数化简得tan A tan tan B C ++sin sin sin =cos cos cos A B CA B C,利用sin 0,sin 0,sin 0,A B C >>>判断cos cos cos A B C 、、必有一个小于0,即可判断; 对于D :利用正弦定理判断得cos sin C C =求出角C . 【详解】对于A :∵由正弦定理得:sin sin a bA B=,而sin sin a b B A =,∴sin sin A B =, ∵A+B+C=π,∴只能A=B ,即ABC 为等腰三角形,故A 正确;对于B :∵由正弦定理得:sin sin a bA B=, ∴若cos cos a bB A=可化为sin cos sin cos A A B B =,即sin 2sin 2A B =, ∴22A B =或22A B π+=∴ABC 为等腰三角形或直角三角形,故B 错误; 对于C :∵A+B+C=π,∴()()()()sin sin sin cos cos cos A B C C A B C C ππ+=-=+=-=,, ∴tan A tan tan B C ++sin sin sin =cos cos cos A B CA B C++ sin cos sin cos sin =cos cos cos A B B A CA B C ++sin sin =cos cos cos C CA B C+11=sin cos cos cos C A B C ⎛⎫+ ⎪⎝⎭cos cos cos =sin cos cos cos C A B C A B C +⎛⎫ ⎪⎝⎭ sin sin sin =cos cos cos A B CA B C.∵tan A tan tan 0B C ++<而sin 0,sin 0,sin 0,A B C >>> ∴cos cos cos A B C 、、必有一个小于0, ∴ABC 为钝角三角形.故C 正确;对于D :∵sin cos a b C c B =+,∴由正弦定理得:sin sin sin sin cos A B A C B =+, 即sin cos sin cos sin sin sin cos B C C B B C C B +=+ ∴cos sin C C = ∵()0,C π∈∴4C π.故D 正确. 故选:ACD 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.6.已知函数()()cos 2f x A x b ϕ=++(0A >,0ϕπ<<)的部分图像如图所示,则( )A .2A =B .点7,112π⎛⎫⎪⎝⎭是()f x 图像的一个对称中心 C .6π=ϕ D .直线3x π=是()f x 图像的一条对称轴【答案】ABD 【分析】由图知函数最大值为3,最小值为1-,且函数图像与y 轴的交点为()0,2,进而待定系数得()2cos 213f x x π⎛⎫=++ ⎪⎝⎭,再整体换元讨论B,D 选项即可.【详解】因为0A >,所以31A b A b +=⎧⎨-+=-⎩,解得21A b =⎧⎨=⎩,故A 正确;()02cos 12f ϕ=+=,则1cos 2ϕ=.又0ϕπ<<,所以3πϕ=,故C 错误;()2cos 213f x x π⎛⎫=++ ⎪⎝⎭,令23x k ππ+=,k ∈Z ,解得62πk πx =-+,k ∈Z , 所以()f x 图像的对称轴方程为62πk πx =-+, 令1k =,则3x π=,D 正确;令232x k πππ+=+,k ∈Z ,解得122k x ππ=+,k ∈Z , 令1k =,则712x π=且7112f π⎛⎫= ⎪⎝⎭,故B 正确.故选:ABD 【点睛】本题考查三角函数图像求解析式,三角函数的对称轴,对称中心等,考查运算求解能力,是中档题.解题的过程中,需要注意形如()()sin 0y A x B A ωϕ=++>,()()cos 0y A x B A ωϕ=++>,max min ,y A B y A B =+=-+,ϕ的求解通常采用待定系数法求解.7.已知函数()()()2sin 0,0f x x ωϕωϕπ=+><<的部分图象如图所示,则下列说法正确的是( )A .23ϕπ=B .()f x 的最小正周期为πC .()f x 的图象关于直线12x π=对称D .()f x 的图象关于点5,06π⎛⎫⎪⎝⎭对称【答案】BCD 【分析】利用图象,把(代入求ϕ,利用周期求出2ω=,从而2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,研究对称轴和对称中心. 【详解】由图可知2sin ϕ=sin ϕ=,根据图象可知0x =在()f x 的单调递增区间上,又0ϕπ<<,所以3πϕ=,A 项错误;因为()2sin 3f x x πω⎛⎫=+ ⎪⎝⎭,所以结合图像,由五点法得33ωπππ+=,解得2ω=,则()f x 的最小正周期2T ππω==,B 项正确;将12x π=代入2n 2)3(si f x x π⎛⎫=+⎪⎝⎭,得2sin 21263f πππ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象关于直线12x π=对称,C 项正确﹔将56x π=代入可得552sin 0633f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以点5,06π⎛⎫⎪⎝⎭是()f x 图象的一个对称中心,D 项正确. 故选:BCD. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.8.已知函数()cos f x x x =-,则下列说法正确的是( ) A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭中心对称B .()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减 C .()f x 在()0,2π上有且仅有1个最小值点 D .()f x 的值域为[]1,2- 【答案】BC 【分析】利用特殊值法可判断A 选项的正误;化简函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上的解析式,利用正弦型函数的单调性可判断B 选项的正误;由()()f x f x π+=可得()f x 的周期为π,再在[]0,π上讨论函数()f x 的单调性、最值,可判断CD 选项的正误.【详解】对于A 选项,因为06f π⎛⎫-= ⎪⎝⎭,2f π⎛⎫= ⎪⎝⎭62f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭, 所以()f x 的图象不关于点,06π⎛⎫⎪⎝⎭中心对称,故A 错误;对于B 选项,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,()cos 2sin 6f x x x x π⎛⎫=+=+ ⎪⎝⎭,27,636x πππ⎡⎤+∈⎢⎥⎣⎦,所以,函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,B 选项正确; 对于C 选项,()()()cos sin cos f x x x x x πππ+=+-+=--()cos x x f x =-=,所以π为函数()f x 的周期.当0,2x π⎡⎤∈⎢⎥⎣⎦时,()cos 2sin 6f x x x x π⎛⎫=-=- ⎪⎝⎭,,663x πππ⎡⎤-∈-⎢⎥⎣⎦,所以()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,()()min01f x f ==-,()max 2f x f π⎛⎫== ⎪⎝⎭ 由B 选项可知,函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,()max 2f x f π⎛⎫== ⎪⎝⎭()()min1f x f π==-.所以,函数()f x 在()0,2π上有且只有1个最小值点,C 选项正确;对于D 选项,由C 选项可知,函数()f x 的值域为⎡-⎣,D 选项错误.故选:BC. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).二、数列多选题9.已知数列{}n a 满足11a =,()111n n na n a +-+=,*n N ∈,其前n 项和为n S ,则下列选项中正确的是( )A .数列{}n a 是公差为2的等差数列B .满足100n S <的n 的最大值是9C .n S 除以4的余数只能为0或1D .2n n S na =【答案】ABC【分析】根据题意对()111n n na n a +-+=变形得()1111111n n a a n n n n n n +=-+-=++,进而根据累加法求得()*21n a n n N=-∈,再依次讨论各选项即可得答案.【详解】解:因为()111n n na n a +-+=, 故等式两边同除以()1n n +得:()1111111n n a a n n n n n n +=-+-=++, 所以()1111111n n a a n n n n n n -=-----=,()()12111221211n n a a n n n n n n --=------=--,,2111121122a a =-⨯-= 故根据累加法得:()11121n a a n n n =-≥-, 由于11a =,故()212n a n n =-≥,检验11a =满足,故()*21n a n n N =-∈所以数列{}n a 是公差为2的等差数列,故A 选项正确; 由等差数列前n 项和公式得:()21212n n n S n +-==, 故2100n n S =<,解得:10n <,故满足100n S <的n 的最大值是9,故B 选项正确;对于C 选项,当*21,n k k N =-∈时,22441n n k S k ==-+,此时n S 除以4的余数只能为1;当*2,n k k N =∈时,224n n k S ==,此时n S 除以4的余数只能0,故C 选项正确;对于D 选项,222n S n =,()2212n n n n n n a =-=-,显然2n n S na ≠,故D 选项错误.故选:ABC【点睛】本题考查累加法求通项公式,裂项求和法,等差数列的相关公式应用,考查运算求解能力,是中档题.本题解题的关键在于整理变形已知表达式得()1111111n n a a n n n n n n +=-+-=++,进而根据累加法求得通项公式.10.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列 【答案】BCD【分析】利用等差等比数列的定义及性质对选项判断得解.【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错;选项B: 2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11n n S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对;故选:BCD【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018高中自主招生必做试卷(数学)(满分150分 时间120分钟)一、选择题(每题4分,共40分)1、在-|-3|3,-(-3)3,(-3)3,-33中,最大的是 ( ) A 、-|-3|3 B 、-(-3)3 C 、(-3)3 D 、-332、已知114a b -=,则2227a ab ba b ab ---+的值等于 ( ) A 、215 B 、27- C 、6- D 、63、如图,在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是 ( ) A 、b a c =+ B 、b ac = C 、222b ac =+ D 、22b a c ==4、a 、b 是有理数,如果,b a b a +=-那么对于结论:(1)a 一定不是负数;(2)b 可能是负数,其中 ( ) A 、只有(1)正确 B 、只有(2)正确 C 、(1),(2)都正确 D 、(1),(2)都不正确5、已知关于x 的不等式组⎪⎩⎪⎨⎧<≥-203bx a x 的整数解有且仅有4个:-1,0,1,2,那么适合这个不等式组的所 有可能的整数对(a,b)的个数有 ( )A 、1B 、2C 、4D 、66、如图,表示阴影区域的不等式组为 ( ) 2x +.y ≥5, 2x + y ≤5, 2x +.y ≥5, 2x + y ≤5, A 、 3x + 4y ≥9, B 、 3x + 4y ≥9, C 、 3x + 4y ≥9, D 、 3x + 4y ≤9, y ≥0 x ≥0 x ≥0 y ≥07、如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCD S S 矩形四边形等于 ( )A 、43 B 、54 C 、32 D 、658、若b x ax x x +++-732234能被22-+x x 整除则a :b 的值是 ( ) A 、-2 B 、-12 C 、6 D 、49、在矩形ABCD 中,AB =8,BC =9,点E 、F 分别在BC 、AD 上,且BE =6,DF =4,AE 、FC 相交于点G ,GH ⊥AD ,交AD 的延长线于点H ,则GH 的长为 ( ) A 、16 B 、20 C 、24 D 、28AB C DEF G第3题图第9题图 第7题图第6题图学校 姓名 考号装 订 线 外 请 不 要 答 题10、若a 与b 为相异实数,且满足:21010=+++a b b a b a ,则ba= ( )A 、0.6B 、0.7C 、0.8D 、0.9二、填空题(每题5分,共20分)11、已知,αβ是方程2210x x +-=的两根,则3510αβ++的值为12、在平面直角坐标系xOy 中,满足不等式2222x y x y +≤+的整数点坐标(,x y )的个数为 13、今年参加考试的人数比去年增加了30%,其中男生增加了20%,女生增加了50%。
设今年参加考试的总人数为a ,其中女生人数为b ,则ba= 14、在等腰直角△ABC 中,AB =BC =5,P 是△ABC 内一点,且P APC =5,则PB = .三、解答题(共90分)15、(12分)因式分解:224443x x y y --+-16、(14分)如图,抛物线y =ax 2-5ax +4(a <0)经过△ABC 的三个顶点,已知BC ∥x 轴,点A 在x 轴上,点C 在y 轴上,且AC =BC . (1)求抛物线的解析式.(2)在抛物线的对称轴上是否存在点M ,使|MA -MB |最大?若存在,求出点M 的坐标;若不存在,请说明理由.17、(15分)如图所示,有一张长为3、宽为1的长方形纸片,现要在这张纸片上画两个小长方形,使小长方形的每条边都与大长方形的一边平行,并且每个小长方形的长与宽之比也都为3:1,然后把它们剪下,这时,所剪得的两张小长方形纸片的周长之和有最大值.求这个最大值.18、(15分)如图,在以O为圆心的圆中,弦CD垂直于直径AB,垂足为H,弦BE与半径OC相交于点F,且OF=FC,弦DE与弦AC相交于点G.(1)求证:AG=GC;(2)若AG=3,AH:AB=1:3,求△CDG的面积与△BOF的面积.19、(16分)已知直角三角形ABC和ADC有公共斜边AC,M、N分别是AC,BD中点,且M、N不重合.(1)线段MN与BD是否垂直?请说明理由.(2)若∠BAC = 30°,∠CAD = 45°,AC =4,求MN的长.20、(18分)已知实数,,a b c abc++==。
a b c满足:2,4(1)求,,a b c中最大者的最小值;(2)求a b c++的最小值。
参考答案二、填空题(每题5分,共20分)11、2- 12、9 13、51314三、解答题(本题6小题,共90分)15、224443x x y y --+-22(441)(44)x x y y =-+--+ …………6分122= (2x-)-(y-2)= (2x+y-3)(2x-y+1) …………12分设直线AC 的解析式为y kx b =+,则304k b b -+=⎧⎨=⎩,解得434k b ⎧=⎪⎨⎪=⎩,∴443y x =+ ……………13分 令52x =,则223y =,∴M (52,223) ……………14分17、要考虑的不同画线方案,可归纳为如下4类:(1)如图(1),其周长和=112(212)5.33⨯⨯+⨯= …………3分(2)如图(2),其周长和=[]2(3)2(1)3(1)8.x x x x ++-+-= …………6分 (3)如图(3),其周长和=8. …………9分(4)如图(4),其周长和=3162(3)2(3)8.33x x x x x -⎡⎤++-+=+⎢⎥⎣⎦∵031x <≤,10.3x <≤∴当13x =时,周长和有最大值79.9…………14分综上所述,剪得的两个小长方形周长之和的最大值为79.9…………15分18、(1)证明:连接AD ,BC ,BD ∵AB 是直径,AB ⊥CD ,∴BC =BD ,∠CAB =∠DAB , ∴∠DAG =2∠CAB , ∵∠BOF =2∠CAB , ∴∠BOF =∠DAG ,又∵∠OBF =∠ADG , ∴△BOF ∽△DAG , ∴OB DAOF AG=, ∵OB =OC =2OF ,∴2DAAG=, 又∵AC =DA ,∴AC =2AG , ∴AG =GC ; …………7分 (2)解:连接BC ,则∠BCA =90°, 又∵CH ⊥AB ,∴2AC AH AB =,∵222,:1:3AC AG AH AB ===∴21(23),3AB AB =∴AB =6,∴AH =2,∴CH =22,∴S △ACD =1124242,22CD AH =⨯⨯=又∵AG =CG ,∴S △CDG = S △DAG =12S △ACD =22, …………11分 ∵△BOF ∽△DAG , ∴23(),4BOF DAG S OB S AD == ∴S △BOF =32.2…………15分 19、(1)证明:如图(1)当B ,D 在AC 异侧时,连接BM ,DM901224M AC ADC BM DM ACBDM N MN BD∠∠=∴==∴∴⊥为中点,ABC=分为等腰三角形又为BD 中点分如图(2)当B ,D 在AC 同侧时同理可证MN BD ⊥ …………6分 (2)如图三:连接BM 、MD ,延长DM ,过B 作DM 延长线的垂线段BE , 则可知在Rt △BEM 中,∠EMB =30°, ∵AC =4,∴BM =2,∴BE =1,EM =3,MD =2,从而可知 BD =1223+=+2(2+3),∴BN =23+ 由Rt △BMN 可得:MN =2622232--=-=2(2+3)(不化简不扣分) …………11分 如图四:连接BM 、MD ,延长AD ,过B 作垂线BE ,∵M 、N 分别是AC 、BD 中点,∴MD =12AC ,MB =12AC , ∴MD =MB ∵∠BAC =30°,∠CAD =45°, ∴∠BMC =60°,∠DMC =90°,∴∠BMD =30°,∴∠BDM =18030752-= ∵∠MDA =45°,∴∠EDB =180°-∠BDM -∠MDA =60°令ED =x ,则BE =3x ,AD =22,AB =23 ∴由Rt △ABE 可得:222(23)(3)(22)x x =++, 解得23x =-,则BD =223- ∵M 、N 分别是AC 、BD 中点∴MD =2,DN由Rt △MND 可得:MN=(不化简不扣分) …………16分20、解:(1)由题意不妨设a 最大,即,,0.a b a c a ≥≥>且42,.b c a bc a+=-=∴ b 、c 是方程24(2)0x a x a--+=的两实根 △24(2)40a a=--⨯≥∴2(4)(4)0a a +-≥∴4a ≥(当4a =时,1b c ==-满足题意) ……………9分 (2)∵0abc > ∴,,a b c 全大于0,或一正二负若,,a b c 均大于0,由(1)知,,,a b c 最大者不小于4,这与2a b c ++=矛盾,故此情况不存在 故,,a b c 为一正二负,不妨设0,0,0a b c ><<(2)226a b c a b c a a a ++=--=--=-≥(当4a =时成立)所以a b c ++最小值为6 …………18分 15注:本题也可以用75或三角函数解答,答案对就给分。