化学平衡移动基础学习知识原理情况总结
高中化学平衡移动知识点总结
高中化学平衡移动知识点总结:
1. 平衡常数(Kc)和平衡表达式:
-平衡常数是表示在平衡时各物质浓度的关系,通常用Kc表示。
-平衡表达式根据反应物和生成物的摩尔比例关系写出,每个物质的浓度用方括号表示。
2. 影响平衡的因素:
-反应物浓度:增加反应物浓度会驱使反应向生成物方向移动,减少反应物浓度则会导致反应向反应物方向移动。
-生成物浓度:增加生成物浓度会导致反应向反应物方向移动,减少生成物浓度则会促使反应向生成物方向移动。
-温度:温度升高通常会使反应向吸热方向移动,降低温度则使反应向放热方向移动。
-压力(对于气体反应):增加压力会使反应向分子数较少的方向移动,减小压力则会促使反应向分子数较多的方向移动。
3. Le Chatelier原理:
-当系统处于平衡状态下,当外界对系统进行扰动时,系统会通过移动平衡来减小扰动。
- Le Chatelier原理指出,当系统受到温度、浓度或压力等因素
的改变时,系统会通过移动平衡来抵消这种改变。
4. 平衡移动的影响:
-加热反应体系:增加温度会使平衡向吸热方向移动,即吸热反应向前进。
-压缩气体反应体系:增加压强会使平衡向分子数较少的方向移动,减小压强则促使平衡向分子数较多的方向移动。
-改变浓度:增加某个物质的浓度会使平衡向相应生成物的方向移动,减小浓度则导致平衡向反应物的方向移动。
5. 平衡移动的时间:
-平衡移动并不是瞬间发生的,它需要一定的时间。
具体时间取决于反应速率和反应机制。
理解平衡移动知识点对于理解化学反应的平衡态及其变化非常重要,帮助我们预测和解释实验结果,并在实际应用中优化反应条件。
化学平衡知识点总归纳
化学平衡知识点总归纳化学平衡是指在封闭系统中,反应物相互转化为生成物的反应过程达到一种稳定状态,反应物和生成物的浓度或压力不再发生明显变化的状态。
化学平衡是化学反应达到动态平衡的特殊情况,它具有以下几个重要的特点:1.正向反应速率和反向反应速率相等:在化学平衡状态下,正向反应和反向反应之间的速率相等,意味着反应物转化为生成物的速率等于生成物转化为反应物的速率。
这是化学平衡得以维持的必要条件。
2.可逆反应:化学平衡是可逆反应的一种特殊情况。
反应物和生成物之间会发生正向反应和反向反应,反应可以在正向和反向之间自由进行。
3.守恒性:在化学平衡状态下,反应物和生成物的总物质量、总电荷量和总物质的摩尔数都保持不变。
这是因为在平衡状态下,反应物和生成物之间的正向和反向反应同时进行,并且速度相等,使得总物质量、总电荷量和总物质的摩尔数保持不变。
4.平衡常数:平衡常数是反应物浓度或气体压力的函数,用于描述反应物和生成物之间的相对浓度或压力关系。
在化学平衡状态下,平衡常数保持不变,反应物和生成物浓度或压力的比例也不再发生变化。
化学平衡的知识点可以总结为以下几个方面:1.平衡常数和平衡表达式:化学平衡可以用平衡常数表示。
平衡常数K是在给定温度下,在平衡状态下反应物和生成物浓度的比值的一个固定值。
平衡常数的表达式可以根据反应方程式得到。
2. 影响平衡位置的因素:平衡位置可以受到温度、压力(或摩尔浓度)、物质的添加和去除等因素的影响。
根据Le Chatelier原理,当平衡系统受到外界扰动时,系统会通过改变平衡位置来减小扰动。
3.平衡常数和平衡位置之间的关系:平衡常数与平衡位置有密切的关系。
随着平衡位置向正向或反向移动,平衡常数的值也会改变。
当平衡常数大于1时,平衡位置偏向生成物一侧;当平衡常数小于1时,平衡位置偏向反应物一侧。
4.涉及平衡的反应类型:包括气体的平衡反应、溶液的平衡反应和固体的平衡反应。
不同类型的反应对于平衡的影响机制有所不同,但基本的原则和定律是相同的。
高中化学平衡移动的超全知识点总结
高中化学平衡移动的超全知识点总结一、化学平衡的移动1.化学平衡的移动(1)定义达到平衡状态的反应体系,条件改变,引起平衡状态被破坏的过程。
(2)化学平衡移动的过程2.影响化学平衡移动的因素(1)温度:在其他条件不变的情况下,升高温度,化学平衡向吸热反应方向移动;降低温度,化学平衡向放热反应方向移动。
(2)浓度:在其他条件不变的情况下,增大反应物浓度或减小生成物浓度,化学平衡向正反应方向移动;减小反应物浓度或增大生成物浓度,化学平衡向逆反应方向移动。
(3)压强:对于反应前后总体积发生变化的化学反应,在其他条件不变的情况下,增大压强,化学平衡向气体体积减小的方向移动;减小压强,化学平衡向气体体积增大的方向移动。
(4)催化剂:由于催化剂能同时同等程度地增大或减小正反应速率和逆反应速率,故其对化学平衡的移动无影响。
3.勒夏特列原理在密闭体系中,如果改变影响化学平衡的一个条件(如温度、压强或浓度等),平衡就向能够减弱这种改变的方向移动。
对于反应mA(g)+nB(g)pC(g)+qD(g),分析如下:2.浓度、压强和温度对平衡移动影响的几种特殊情况(1)改变固体或纯液体的量,对平衡无影响。
(2)当反应混合物中不存在气态物质时,压强的改变对平衡无影响。
(3)对于反应前后气体体积无变化的反应,如H2(g)+I2(g)2HI(g),压强的改变对平衡无影响。
但增大(或减小)压强会使各物质的浓度增大(或减小),混合气体的颜色变深(或浅)。
(4)恒容时,同等程度地改变反应混合物中各物质的浓度时,应视为压强的影响,增大(减小)浓度相当于增大(减小)压强。
(5)在恒容容器中,当改变其中一种气态物质的浓度时,必然会引起压强的改变,在判断平衡移动的方向和物质的转化率、体积分数变化时,应灵活分析浓度和压强对化学平衡的影响。
若用α表示物质的转化率,φ表示气体的体积分数,则:①对于A(g)+B(g)C(g)类反应,达到平衡后,保持温度、容积不变,加入一定量的A,则平衡向正反应方向移动,α(B)增大而α(A)减小,φ(B)减小而φ(A)增大。
大学化学化学平衡知识点归纳总结
大学化学化学平衡知识点归纳总结近代化学的发展离不开平衡的研究,而化学平衡则是化学反应中的一种动态平衡状态。
在大学化学课程中,学生需要掌握并理解化学平衡的相关知识,以便更好地理解化学反应的进行。
本文将对大学化学中的化学平衡知识点进行归纳总结,帮助读者更好地掌握这一重要概念。
一、化学平衡的基本概念化学平衡是指在封闭系统中,化学反应的正反应速率相等时达到的一种状态。
在化学平衡下,反应物和生成物的浓度保持不变,但反应仍在进行。
1. 平衡常数(K)平衡常数是描述化学平衡位置的一个指标。
对于一般的反应aA +bB ⇌ cC + dD,平衡常数K的表达式为K = [C]^c [D]^d / [A]^a [B]^b,其中[ ]表示物质的浓度。
平衡常数越大,说明系统向生成物的方向偏离;平衡常数越小,说明系统向反应物的方向偏离;平衡常数等于1,则表示反应物和生成物处于平衡状态。
2. 平衡位置与平衡常数大小的关系当平衡常数K远大于1时,表示生成物浓度大于反应物浓度,平衡位置偏向生成物;当K远小于1时,表示反应物浓度大于生成物浓度,平衡位置偏向反应物;当K接近1时,表示反应物和生成物浓度接近,平衡位置处于中间状态,相对不偏向任何一方。
3. 平衡条件化学平衡的达成需要满足以下条件:封闭系统、恒温、等压以及非孤立系统。
其中,尤为关键的是封闭系统和非孤立系统的条件,只有在这两种情况下,反应物与生成物之间的转化才能达到平衡。
二、平衡常数与反应系数之间的关系1. 平衡常数与反应方程式平衡常数与反应方程式中的反应系数有关。
例如,对于反应aA + bB ⇌ cC + dD,平衡常数K的表达式中的指数就与反应方程式中的反应系数一一对应。
平衡常数是根据反应方程式推导出来的。
2. 平衡常数的改变与反应方向当改变反应方程式的方向时,平衡常数也会相应改变。
例如,对于反应aA + bB ⇌ cC + dD,反向反应是将反应物A和B转化为生成物C 和D,此时平衡常数的倒数即为正向反应的平衡常数。
初中化学化学平衡知识点梳理
初中化学化学平衡知识点梳理化学平衡知识点梳理化学平衡是化学反应中生成物与反应物浓度达到平衡状态的过程。
在初中化学课程中,学生会接触到一些与化学平衡相关的知识点。
以下是一些初中化学平衡的重要知识点的梳理。
1. 反应速率与平衡化学反应可以分为快速反应和缓慢反应,而反应速率与平衡状态存在一定的关系。
当一个反应处于平衡状态时,并不意味着反应速率为零,而是前后反应速率相等。
平衡状态下的反应仍然会进行,只是反应速率很小,看起来好像没有进行反应。
2. 平衡位置化学反应在平衡态时,生成物与反应物的浓度不再发生变化。
平衡位置指的是生成物和反应物浓度的相对大小。
当平衡位置偏向生成物一侧时,说明生成物浓度较高;而平衡位置偏向反应物一侧时,说明反应物浓度较高。
平衡位置的偏移受到许多因素的影响,包括温度、压力和浓度等。
3. 移动平衡位置的方法平衡位置可以通过改变温度、压力和浓度等因素来移动。
当改变温度时,一些反应是放热反应,即放出热量,此时增加温度会使反应向生成物方向移动。
而一些反应是吸热反应,即吸收热量,此时增加温度会使反应向反应物方向移动。
改变压力和浓度也可以影响平衡位置。
根据Le Chatelier原理,当压力升高时,平衡位置会移动到分压较小的一侧以减小压力;当浓度增加时,平衡位置也会移动到浓度较小的一侧。
4. 平衡常数平衡常数是用来描述化学反应平衡条件的指标。
对于任何平衡反应,其平衡常数都有一个固定的值。
平衡常数记作K,可根据反应方程式中生成物和反应物的摩尔数来计算。
平衡常数越大,生成物浓度越高,反之则反应物浓度较高。
平衡常数可以用来预测平衡位置的移动。
当平衡常数大于1时,平衡位置偏向生成物一侧;当平衡常数小于1时,平衡位置偏向反应物一侧。
5. 平衡常数与反应式平衡常数与反应式之间有着密切的关系。
平衡常数的值取决于反应式中生成物和反应物的摩尔数。
在化学平衡中,平衡常数的值不受反应物和生成物初始浓度的影响。
只有当反应系统达到平衡状态时,平衡常数才会出现。
化学平衡移动规律总结
化学平衡移动规律总结化学反应是物质转化的过程,而化学平衡则是在反应物和生成物浓度达到一定比例时的状态。
化学平衡的移动规律是指在一定条件下,平衡位置如何随着外界条件的改变而发生变化的规律。
下面将从温度、压力、浓度和催化剂四个方面来总结化学平衡的移动规律。
一、温度影响在化学反应中,温度的改变会影响反应物和生成物的速率以及平衡位置。
根据Le Chatelier定律,当温度升高时,反应速率会增加。
对于吸热反应,升高温度会使平衡位置向右移动,生成物浓度增加;而对于放热反应,升高温度会使平衡位置向左移动,生成物浓度减少。
二、压力影响在气相反应中,压力的改变对平衡位置有一定影响。
根据Le Chatelier定律,当压力增加时,平衡位置会向反应物浓度较小的一侧移动,以减少压力。
对于反应物和生成物摩尔数相等的反应,压力的改变不会影响平衡位置。
而对于摩尔数不相等的反应,压力的增加会使平衡位置向摩尔数较小的一侧移动。
三、浓度影响在溶液中的反应中,溶液浓度的改变会导致平衡位置的移动。
根据Le Chatelier定律,当浓度增加时,平衡位置会向生成物浓度较小的一侧移动,以减少浓度差。
而当浓度减少时,平衡位置会向生成物浓度较大的一侧移动,以增加浓度差。
四、催化剂影响催化剂可以加速化学反应的速率,但不参与反应。
催化剂的加入不会改变平衡位置,因为它同样影响反应物和生成物的速率。
催化剂提供了一个更低的活化能路径,使反应更容易进行,但并不改变反应的平衡位置。
化学平衡的移动规律可以通过调节温度、压力和浓度来实现。
根据Le Chatelier定律,当这些条件发生改变时,平衡位置会向着减少影响的一侧移动,以达到新的平衡状态。
催化剂的加入可以提高反应速率,但不会改变平衡位置。
这些规律的理解和应用对于理解和控制化学反应过程具有重要意义。
知识点总结3 化学平衡的移动
一、化学平衡状态1. 定义:在 下的可逆反应,正反应速率和逆反应速率 ,各物质的浓度保持 的状态。
2. 特征:“动”—— “等”—— “逆”——“定”—— “变”——3. 化学平衡状态的判断二、化学平衡的移动1. 化学平衡移动的概念:改变外界条件,破坏原有的平衡状态,建立起新的平衡状态的过程。
2. 化学平衡移动的本质:正、逆反应速率发生不同程度的改变。
3. 化学平衡移动的标志:(1)反应速率从V 正 = V 逆 → V ’正 ≠ V ’逆→V ’’正 = V ’’逆;(2)各组分的浓度、质量分数、体积分数等由保持一定 → 发生改变 → 再次保持一定。
4. 化学平衡移动的方向:(1)若改变外界条件,引起V 正 > V 逆,则化学平衡向 反应方向移动; (2)若改变外界条件,引起V 正 < V 逆,则化学平衡向 反应方向移动;(3)若改变外界条件,引起V 正和V 逆 都同等程度发生变化,则化学平衡向 移动。
三、影响化学平衡移动的因素(一)浓度变化对化学平衡的影响速率变化V逆瞬间不变,后增大V逆瞬间不变,后减小V正瞬间不变,后增大V正瞬间不变,后减小v-t图像规律总结在其它条件不变的情况下,增大反应物的浓度或减小生成物的浓度,都可以使平衡向正反应方向移动;增大生成物的浓度或减小反应物的浓度,都可以使平衡向逆反应方向移动。
(二)压强变化对化学平衡的影响1. 压强变化对化学平衡的影响规律化学平衡aA(g) + bB(g) ⇌ cC(g) + dD(g)a +b >c+daA(g) + bB(g) ⇌ cC(g) + dD(g)a +b <c+daA(g) + bB(g) ⇌ cC(g) + dD(g)a +b = c+d体系压强变化增大压强减小压强增大压强减小压强增大压强减小压强反应速率变化V正、V逆同时增大;且V’正>V’逆V正、V逆同时减小;且V’正<V’逆V正、V逆同时增大;且V’正<V’逆V正、V逆同时减小;且V’正>V’逆V正、V逆同时增大;且V’正=V’逆V正、V逆同时减小;且V’正=V’逆平衡移动方向正反应方向移动逆反应方向移动逆反应方向移动正反应方向移动不移动不移动v-t 图像规律总结对于有气体参加或生成的化学反应,在其他条件不变的情况下,增大压强,化学平衡向着气体分子数目减小的方向移动;减小压强,化学平衡向着气体分子数目增大的方向移动。
化学平衡移动的总结
化学平衡移动的总结化学平衡是化学反应过程中,反应物与生成物浓度达到一定比例时的一种状态。
在这种状态下,反应物与生成物的浓度之间的比值保持不变,称为平衡常数。
化学平衡的移动是指改变化学平衡条件,使得反应物与生成物的浓度发生变化。
本文将对化学平衡移动进行总结,包括影响化学平衡移动的因素以及如何通过改变这些因素来移动平衡。
一、影响化学平衡移动的因素1. 温度:温度是影响化学平衡移动的重要因素之一。
根据Le Chatelier原理,当反应放热时,提高温度会使平衡向反应物一侧移动,反之则向生成物一侧移动。
这是因为提高温度会增加反应物的动能,促使反应向吸热方向进行,从而使平衡移动。
2. 压力(或浓度):对于气体反应,压力的改变会影响化学平衡的移动方向。
当压力增加时,平衡会向压力较小的一侧移动,以减小压力。
而对于溶液反应,则可以通过改变浓度来移动平衡。
增加反应物浓度会使平衡向生成物一侧移动,反之亦然。
3. 物质的添加或去除:向平衡体系中添加或去除某种物质,会导致平衡移动。
当某种物质被添加到平衡体系中时,平衡会向减少该物质的一侧移动,以恢复平衡。
而当某种物质被去除时,平衡会向补充该物质的一侧移动。
二、移动化学平衡的方法1. 温度控制:通过改变温度,可以移动化学平衡。
例如,对于放热反应,可以通过提高温度来向生成物一侧移动平衡;对于吸热反应,则可以通过降低温度来移动平衡。
2. 压力(或浓度)控制:对于气体反应,可以通过改变压力来移动平衡。
增加压力会使平衡向压力较小的一侧移动,减小压力则相反。
对于溶液反应,可以通过改变浓度来移动平衡。
增加反应物浓度会使平衡向生成物一侧移动,减小反应物浓度则相反。
3. 物质的添加或去除:通过向平衡体系中添加或去除物质,可以移动平衡。
添加某种物质会使平衡向减少该物质的一侧移动,去除某种物质则相反。
三、案例分析1. 铵氨水的制备:铵氨水(氨水和铵盐的混合物)可以通过以下反应制备:NH3(g) + H2O(l) ⇌ NH4OH(aq)在该反应中,平衡向生成物一侧移动。
(完整版)化学平衡知识点总结,推荐文档
“”建议收藏下载本文,以便随时学习!+ O22H O2HmA(g) + nB(g) pC(g) + qD(g)nB(g) pC(g)我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙mA(g) + nB(g) pc(g) + qD(g) + (【总结】增大反应物浓度或减小生成物浓度,化学平衡向正反应方向移动;减小反应物浓度或增大生成物浓度,化学平衡向逆反应方向移动。
增大压强,化学平衡向系数减小的方向移动;减小压强,平衡会向系数增大的方向移动。
升高温度,平衡向着吸热反应的方向移动;降低温度,平衡向放热反应的方向移动。
催化剂不改变平衡移动的方向移动。
平衡移动原理对所有的动态平衡都适用,如对后面将要学习的电离平衡,水解平衡也适用。
五、有关化学平衡的计算1、主要类型有:①求起始浓度、转化浓度、平衡浓度。
②求某反应物的转化率、平衡气体混合物中各成分的体积分数等。
2、化学平衡的计算模式—三段式法设a(mol·L-1)、b(mol·L-1)分别为A、B两物质的起始浓度,mx(mol·L-1)为反应物A的转化浓度,nx(mol·L-1)为反应物B的转化浓度,则mA(g) + nB(g) pC(g) + qD(g)c始(mol·L-1) a b 0 0Δc(mol·L-1)mx nx px qxC平(mol·L-1)a-mx b-nx px qx物质浓度的变化关系反应物:平衡浓度=起始浓度-转化浓度生成物:平衡浓度=起始浓度+转化浓度以上三种浓度中,只有转化浓度之比等于化学方程式中计量数之比六化学平衡常数1.概念:对于一定条件下的可逆反应(aA+bB cC+dD),达到化学平衡时,生成物浓度的乘幂的乘积与反应物浓度的乘幂的乘积之比为一常数,记作Kc,称为化学平衡常数(浓度平衡常数)。
2.平衡常数的意义平衡常数的大小反映了化学反应进行的程度(也叫反应的限度)。
化学平衡知识点归纳高三网
化学平衡知识点归纳高三网化学平衡是高中化学中的重要内容,是指在化学反应中,反应物与生成物浓度达到一定比例的状态。
在高三学习中,化学平衡是一个不可忽视的知识点。
本文将对高三化学学习中的化学平衡知识点进行归纳总结。
1. 平衡常数(K)平衡常数是描述化学平衡状态的数值,用K表示。
它是在一定温度下,反应物浓度与生成物浓度之间的比值的乘积。
平衡常数越大,表示生成物浓度较高,反应偏向生成物;平衡常数越小,表示反应物浓度较高,反应偏向反应物。
2. 反应商(Q)反应商是在任意时刻,反应物浓度与生成物浓度之间的比值的乘积,用Q表示。
与平衡常数K相比,反应商能够描述任意时刻反应物与生成物浓度的比例关系。
当Q=K时,反应处于平衡状态;当Q>K时,反应偏向反应物;当Q<K时,反应偏向生成物。
3. 影响化学平衡的因素(1)浓度:增加或减少某个物质的浓度,会导致平衡位置的变化。
根据Le Chatelier原理,浓度增加,平衡位置会移到生成物一侧;浓度减少,平衡位置会移到反应物一侧。
(2)温度:温度改变会影响平衡常数K的数值。
对于吸热反应,加热会使平衡常数增大;对于放热反应,加热会使平衡常数减小。
(3)压力(气相反应):对于气相反应,改变压力会导致平衡位置的变化。
增加压力,平衡位置会移到摩尔数较小的那一侧;减少压力,平衡位置会移到摩尔数较大的那一侧。
4. 平衡常数的计算平衡常数的计算需要根据给定的反应物和生成物浓度,利用化学方程式进行计算。
平衡常数的数值与温度有关,因此计算平衡常数时需要确定温度。
5. 平衡常数的应用平衡常数在化学平衡反应的研究和实际应用中有着重要的作用。
它可以用来判断反应的偏向性、预测平衡位置的变化、设计反应工艺等。
6. 化学平衡的移动方法根据Le Chatelier原理,可以通过改变温度、浓度、压力等因素来移动化学平衡。
例如,对于气相反应,增加压力可以通过减小体积或增加摩尔数较多的气体来实现;对于溶液反应,可以通过加入或减少某个溶质来改变浓度。
化学平衡移动的总结
化学平衡移动的总结化学平衡是指在一个封闭系统中,反应物和生成物在反应过程中达到一定比例的状态。
这个比例是由反应物的浓度和生成物的浓度决定的,称为平衡常数。
当平衡常数的值大于1时,反应偏向生成物的生成;当平衡常数的值小于1时,反应偏向反应物的生成。
化学平衡是化学反应中的一个重要概念,它可以帮助我们理解反应的趋势和速率。
在化学平衡中,反应物和生成物之间存在着动态平衡,即反应物和生成物的浓度在一定条件下保持不变。
这种平衡是由反应物和生成物之间的反应速率相等所决定的。
化学平衡的移动是指改变反应条件,使反应偏向反应物或生成物的生成。
这可以通过改变温度、压力、浓度和催化剂等因素来实现。
温度是影响化学平衡移动的重要因素之一。
根据Le Chatelier原理,当增加温度时,反应平衡会偏向吸热反应,即反应物的生成。
相反,当降低温度时,反应平衡会偏向放热反应,即生成物的生成。
这是因为在吸热反应中,增加温度可以提供所需的能量,促使反应向生成物方向进行;而在放热反应中,降低温度可以减少能量释放,使反应趋向于反应物的生成。
压力也可以影响化学平衡的移动。
对于气相反应来说,增加压力可以促使反应平衡偏向生成物的生成,因为增加压力会使分子间的碰撞频率增加,从而增加生成物的生成速率。
相反,降低压力会减少碰撞频率,使反应偏向反应物的生成。
需要注意的是,对于液相和固相反应来说,压力的变化对反应平衡几乎没有影响。
浓度也是影响化学平衡移动的重要因素之一。
增加反应物的浓度可以促使反应平衡偏向生成物的生成,因为增加反应物的浓度会增加反应物之间的碰撞频率,从而增加生成物的生成速率。
相反,增加生成物的浓度会减少生成物之间的碰撞频率,使反应偏向反应物的生成。
需要注意的是,对于液相和固相反应来说,浓度的变化对反应平衡几乎没有影响。
催化剂是一种可以影响化学平衡移动的物质。
催化剂可以降低反应的活化能,从而加快反应速率。
通过提供新的反应途径,催化剂可以使反应偏向生成物的生成,而不改变反应平衡的位置。
化学平衡移动原理总结
化学平衡 系列问题总结化学平衡移动影响条件(一)在反应速率(v )-时间(t )图象中,在保持平衡的某时刻t 1改变某一条件前后,V 正、V 逆的变化有两种:V 正、V 逆同时突变——温度、压强、催化剂的影响 V 正、V 逆之一渐变——一种成分浓度的改变 对于可逆反应:mA(g) + nB(g)pc(g) + qD(g) + (正反应放热)【总结】(1)增大反应物浓度或减小生成物浓度,化学平衡向正反应方向移动;减小反应物浓度或增大生成物浓度,化学平衡向逆反应方向移动。
(2)增大压强,化学平衡向系数减小的方向移动;减小压强,平衡会向系数增大的方向移动。
(3)升高温度,平衡向着吸热反应的方向移动;降低温度,平衡向放热反应的方向移动。
(4)催化剂不改变平衡移动(二)勒夏特列原理(平衡移动原理)如果改变影响平衡的一个条件,平衡就会向着减弱这种改变的方向移动。
具体地说就是:增大浓度,平衡就会向着浓度减小的方向移动;减小浓度,平衡就会向着浓度增大的方向移动。
增大压强,平衡就会向着压强减小的方向移动;减小压强,平衡就会向着压强增大的方向移动。
升高温度,平衡就会向着吸热反应的方向移动;降低温度,平衡就会向着放热反应的方向移动。
平衡移动原理对所有的动态平衡都适用,如对后面将要学习的电离平衡,水解平衡也适用。
(讲述:“减弱”“改变”不是“消除”,更不能使之“逆转”。
例如,当原平衡体系中气体压强为P时,若其它条件不变,将体系压强增大到2P,当达到新的平衡时,体系压强不会减弱至P甚至小于P,而将介于P~2P之间。
)化学平衡小结——等效平衡问题一、概念:在一定条件(恒温恒容或恒温恒压)下,同一可逆反应体系,不管是从正反应开始,还是从逆反应开始,在达到化学平衡状态时,任何相同组分的百.分含量...(体积分数、物质的量分数等)均相同,这样的化学平衡互称等效平衡(包括“全等等效和相似等效”)。
概念的理解:(1)只要是等效平衡,平衡时同一物质的百分含量....(体积分数、物质的量分数等)一定相同(2)外界条件相同:通常可以是①恒温、恒容,②恒温、恒压。
化学平衡的移动(知识点总结)
化学平衡的移动【学习目标】1、通过实验探究温度、浓度和压强对化学平衡的影响;2、能利用相关理论解释外界条件对平衡移动的影响。
【要点梳理】要点一、化学平衡移动1.定义。
化学平衡研究的对象是可逆反应,化学平衡是有条件的动态平衡,在一定条件下才能保持平衡状态,当影响化学平衡的条件(浓度、压强、温度)改变时,原平衡就会被破坏,反应混合物里各组分的含量会随之改变,引起v 正≠v 逆,然后在新条件下重新建立平衡。
这种可逆反应中旧化学平衡的破坏、新化学平衡的建立过程叫做化学平衡的移动。
2.原因。
化学平衡移动的原因是反应条件的改变,移动的结果是正、逆反应速率发生变化,平衡混合物中各组分的含量发生相应的变化。
3.标志。
(1)从反应速率来看:如有v 正=v 逆,到v 正≠v 逆,再到v 正'=v 逆',有这样的过程表明化学平衡发生了移动。
(2)从混合物组成来看:各组分的含量从保持一定到条件改变时含量发生变化,最后在新条件下各组分的含量保持新的一定,同样表明化学平衡发生了移动。
4.方向。
平衡移动的方向由v (正)、v (逆)的相对大小来决定:(1)若外界条件的改变引起v (正)>v (逆),则化学平衡将向正反应方向(或向右)移动。
(2)若外界条件的改变引起v ((正)<v (逆),则化学平衡将向逆反应方向(或向左)移动。
(3)若外界条件的改变虽引起v (正)和v (逆)的变化,但v (正)和v (逆)仍保持相等,则称化学平衡不发生移动(或没有被破坏)。
要点诠释:平衡移动过程可表示为:一定条件下的化学平衡−−−−→条件改变平衡被破坏−−−−−→一定时间后新条件下的新化学平衡 V (正)=v (逆) v (正)≠v (逆) v '(正)=v '(逆)各组分的含量保持不变→各组分的含量不断变化→各组分的含量又保持不变要点二、外界条件对化学平衡的影响1.浓度对化学平衡的影响。
(1)规律:其他条件不变的情况下,增大反应物的浓度或减小生成物的浓度都可以使化学平衡向着正反应的方向移动;增大生成物的浓度或减小反应物的浓度,都可以使化学平衡向着逆反应的方向移动。
高中化学平衡知识点总结
高中化学平衡知识点总结平衡是化学反应中重要的概念之一,平衡反应中各种物质的浓度、速率、物质转化等都很重要。
在高中化学中,平衡反应是一个重要的内容,下面将对高中化学平衡知识点进行总结。
一、平衡常数和平衡定律1. 平衡常数(Kc):在一个平衡反应中,当反应达到平衡时,各种物质的浓度不再发生变化,这时所定义的浓度的乘积的比值称为平衡常数Kc。
2. 平衡定律:平衡定律又称为平衡原理,它是描述化学反应在达到平衡状态时,反应物与生成物之间的关系规律。
二、影响平衡位置的因素1. 浓度的变化:如果平衡系统中某些物质的浓度发生变化,平衡位置将会移动以抵消这种变化。
2. 温度的变化:在反应的平衡状态下,改变温度会影响平衡位置的移动方向,符合热力学第一定律。
3. 压强的变化:对于气态反应来说,改变压强也会影响平衡位置的移动,符合路易斯-亨利定律。
三、平衡常数的计算1. 对于一般的平衡反应aA + bB ⇌ cC + dD,可以根据反应物和生成物的摩尔数,以及反应物和生成物的浓度,计算出平衡常数。
2. 平衡常数的大小与反应物浓度的大小有关系,并不是所有反应的平衡常数都是一个固定的值。
四、平衡反应的求解1. 平衡反应中,根据不同的条件可以用反应物和生成物的浓度来计算平衡常数Kc。
2. 也可以根据平衡常数的大小来判断某种反应是偏向反应物还是生成物,并确定平衡位置的移动方向。
五、平衡反应的应用1. 化学平衡是化学反应的基础,对于理解和应用化学知识都非常重要。
2. 在工业生产、环境保护、生物化学等领域都有着重要的应用价值。
综上所述,高中化学平衡知识点涉及到平衡常数、平衡定律、影响平衡位置的因素、平衡常数的计算、平衡反应的求解和平衡反应的应用等内容,是高中化学学习的重要内容之一。
通过对这些知识点的深入理解和实践应用,可以更好地掌握化学平衡反应的原理和规律,为将来的学习和工作打下坚实的基础。
高一化学知识点化学平衡的移动规律和平衡常数的应用原理
高一化学知识点化学平衡的移动规律和平衡常数的应用原理高一化学知识点:化学平衡的移动规律和平衡常数的应用原理化学平衡是化学反应达到动态平衡状态的时候,反应物和生成物的浓度保持在一定比例下不再变化。
在化学平衡中,物质的转化虽然停止,但是反应仍然在继续进行。
化学平衡的移动规律以及平衡常数的应用原理是我们理解和研究化学反应平衡的重要内容。
一、化学平衡的移动规律在化学平衡中,当外界条件发生改变时,平衡系统会产生一定的移动以重新建立新的平衡状态。
化学平衡的移动规律包括 Le Chatelier 原理和浓度-时间关系。
1. Le Chatelier 原理Le Chatelier 原理是指在一个达到平衡状态的反应系统中,当外界条件发生变化时,系统会调整自身以减小对外界变化的影响。
具体来说,当平衡系统的温度、压力、浓度等发生变化时,系统会向以减小变化影响为目标的方向进行移动。
- 温度的影响:在反应热是吸放热的情况下,温度升高会使平衡位置向吸热的方向移动,降低会使平衡位置向放热的方向移动。
反应热是放热的情况与上述相反。
- 压力的影响:压力的增加会使平衡系统向分子数少的方向移动,压力的降低会使平衡系统向分子数多的方向移动。
此处需注意,只有当反应物和生成物的摩尔数之和不相等的情况下,改变压力才会对平衡位置产生影响。
- 浓度的影响:增加某一反应物的浓度会使平衡系统向生成物的方向移动,增加某一生成物的浓度会使平衡系统向反应物的方向移动。
而当浓度只增加一个无关物质时,平衡位置不会发生改变。
2. 浓度-时间关系当反应物浓度逐渐增加或减少时,反应速率会相应改变。
在开始反应时,反应物浓度较高,反应速率较快,但随着反应进行,浓度逐渐减小,反应速率也会变慢。
最终,当反应物浓度减小至一定水平时,反应速率趋于稳定,达到平衡。
二、平衡常数的应用原理平衡常数是用于描述化学平衡中反应物和生成物浓度之间的相对关系的数值。
平衡常数的大小可用于预测平衡位置的偏向,以及影响平衡位置的外界因素。
化学反应中的平衡移动与影响因素总结知识点总结
化学反应中的平衡移动与影响因素总结知识点总结在化学反应中,平衡移动是指反应物与生成物浓度之间的变化。
平衡移动的方向和速率受多种因素的影响。
本文将总结几个与平衡移动相关的重要知识点,并探讨影响平衡移动的因素。
一、平衡移动的基本原理平衡移动是指在化学反应中,当达到化学平衡后,反应物和生成物的浓度发生变化的过程。
平衡移动的方向可以是向前移动(反应物浓度减小、生成物浓度增加),也可以是向后移动(反应物浓度增加、生成物浓度减小),或者不发生移动(反应物和生成物浓度不变)。
平衡移动的方向取决于反应的平衡常数(Keq)。
当Keq大于1时,反应偏向生成物。
反之,当Keq小于1时,反应偏向反应物。
当Keq等于1时,反应物和生成物的浓度保持不变。
二、影响平衡移动的因素1. 温度温度是影响平衡移动的重要因素之一。
根据Le Chatelier原理,当温度升高时,平衡反应偏向吸热反应,即吸热反应的反应物浓度减小,生成物浓度增加;当温度降低时,平衡反应偏向放热反应,即放热反应的反应物浓度增加,生成物浓度减小。
2. 压力/浓度压力或浓度的改变也会影响平衡移动的方向。
对于气体反应而言,增加总压力(或者减小体积)会导致平衡反应移动到摩尔数较少的一侧,以减小总摩尔数。
相反,减小总压力(或者增大体积)会导致平衡反应移动到摩尔数较多的一侧。
对于溶液反应而言,增加溶质浓度会导致平衡反应移动到生成物的方向,以达到稀释溶液中的溶质的目的。
降低溶质浓度则会导致平衡反应移动到反应物的方向。
3. 催化剂催化剂是能够加快反应速率但不参与反应的物质。
催化剂对平衡移动的影响主要是加快反应达到平衡的速度,而并没有改变反应的平衡常数。
因此,催化剂对反应物和生成物浓度的影响很小,不会改变平衡移动的方向。
4. 配位数对于配位化合物的形成反应,配位数是一个重要的影响因素。
在反应过程中,改变配位数可以促进或抑制配位化合物的形成。
例如,增加配位数可以使先前存在的比配位数更低的化合物分解生成更高配位数的化合物。
化学平衡知识归纳总结(总)
化学平衡知识归纳总结一、化学反应速率1、化学反应速率的概念化学反应速率是指在一定条件下,某一化学反应进行的快慢。
2、化学反应速率的表示方法通常用单位时间(每小时、每分钟或每秒等)内反应物浓度的减小或生成物浓度的增加来表示。
其表达式为:对于化学反应速率的理解,要注意以下几点:(1)化学反应速率通常是指某一段时间内的平均反应速率,而不是某一时刻的瞬时反应速率。
实际上,在具体的反应过程中,每一时刻的反应速率都可能不同。
(2)在同一反应中用不同的物质来表示反应速率时,其数值可以不同,但这些数值所表示的都是同一反应速率。
因此,表示化学反应的速率时,必须说明用反应物或生成物中哪种物质做标准。
不同物质的速率的比值一定等于化学方程式中相应的化学计量数之比。
(3)对于固体物质或气态反应中的液态物质,反应在其表面进行的,它们的“浓度”是不变的,因此不用液体或固体表示化学反应速率。
3、影响化学反应速率的因素(1)内因(主导作用)化学反应的实质是旧键的断裂,新键的形成。
即反应物分子中化学键断裂变为原子,原子再重新形成新的化学键而结合成生成物的分子。
若在同样的条件下,反应物分子中的化学键键能越大,断裂就越难,其反应速率就越小。
反之就越大。
(2)外因对于同一个化学反应,外界条件不同,化学反应速率也不同,影响化学反应速率的外界条件主要包括浓度、压强、温度、催化剂等。
①浓度的影响在其他条件不变时,增加反应物的浓度可以增大化学反应速率;减小反应物浓度可以降低反应速率。
注意:改变固体或纯液体的量对化学反应速率无影响。
但改变固体表面积会影响化学反应速率,因为当固体或纯液体参加反应时,反应速率只和接触面积,扩散速率大小有关,所以增大接触面积(将固体粉碎)或增大扩散率(对反应物进行搅拌)可提高反应速率。
②压强的影响在其他条件不变的时,增大压强会加快反应速率,减小压强会降低反应速率。
压强对化学反应速率的影响是通过改变物质浓度实现的。
如向一体积固定的密闭容器中加入不参加反应的气体,只是改变了容器壁的压强,反应物的浓度不变,反应速率不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学平衡系列问题化学平衡移动影响条件(一)在反应速率(v )-时间(t )图象中,在保持平衡的某时刻t 1改变某一条件前后,V 正、V 逆的变化有两种:V 正、V 逆同时突变——温度、压强、催化剂的影响 V 正、V 逆之一渐变——一种成分浓度的改变 对于可逆反应:mA(g) + nB(g)pc(g) + qD(g) + (正反应放热)【总结】增大反应物浓度或减小生成物浓度,化学平衡向正反应方向移动;减小反应物浓度或增大生成物浓度,化学平衡向逆反应方向移动。
增大压强,化学平衡向系数减小的方向移动;减小压强,平衡会向系数增大的方向移动。
升高温度,平衡向着吸热反应的方向移动;降低温度,平衡向放热反应的方向移动。
催化剂不改变平衡移动 (二)勒夏特列原理(平衡移动原理)如果改变影响平衡的一个条件,平衡就会向着减弱这种改变的方向移动。
反应条件条件改变v 正v 逆v 正与v 逆关系平衡移 动方向图示 选项浓 度增大反应物浓度 减小反应物浓度 增大生成物浓度 减小生成物浓度加快 减慢 不变 不变 不变 不变 加快 减慢 v 正>v 逆 v 正<v 逆 v 正<v 逆 v 正>v 逆 正反应方向 逆反应方向 逆反应方向 正反应方向 B C B C 压 强m+n >p+q m+n <p+q m+n =p+q 加压加快 加快 加快 加快 加快 加快 v 正>v 逆 v 正<v 逆 v 正=v 逆 正反应方向 逆反应方向 不移动 A A E m+n >p+q m+n <p+q m+n =p+q 减压 减慢 减慢 减慢 减慢 减慢 减慢 v 正<v 逆 v 正>v 逆 v 正=v 逆 逆反应方向 正反应方向 不移动 D D F温 度 升 温 降 温 加快 减慢 加快 减慢 v 正<v 逆 v 正>v 逆 逆反应方向 正反应方向 A D 催化剂加快 加快加快v 正=v 逆不移动E具体地说就是:增大浓度,平衡就会向着浓度减小的方向移动;减小浓度,平衡就会向着浓度增大的方向移动。
增大压强,平衡就会向着压强减小的方向移动;减小压强,平衡就会向着压强增大的方向移动。
升高温度,平衡就会向着吸热反应的方向移动;降低温度,平衡就会向着放热反应的方向移动。
平衡移动原理对所有的动态平衡都适用,如对后面将要学习的电离平衡,水解平衡也适用。
(讲述:“减弱”“改变”不是“消除”,更不能使之“逆转”。
例如,当原平衡体系中气体压强为P时,若其它条件不变,将体系压强增大到2P,当达到新的平衡时,体系压强不会减弱至P甚至小于P,而将介于P~2P之间。
)化学平衡小结——等效平衡问题一、概念在一定条件(恒温恒容或恒温恒压)下,同一可逆反应体系,不管是从正反应开始,还是从逆反应开始,在达到化学平衡状态时,任何相同组分的百分含量....(体积分数、物质的量分数等)均相同,这样的化学平衡互称等效平衡(包括“全等等效和相似等效”)。
概念的理解:(1)只要是等效平衡,平衡时同一物质的百分含量....(体积分数、物质的量分数等)一定相同(2)外界条件相同:通常可以是①恒温、恒容,②恒温、恒压。
(3)平衡状态只与始态有关,而与途径无关,(如:①无论反应从正反应方向开始,还是从逆反应方向开始②投料是一次还是分成几次③反应容器经过扩大—缩小或缩小—扩大的过程,)比较时都运用“一边倒”倒回到起始的状态.............进行比较。
二、等效平衡的分类在等效平衡中比较常见并且重要的类型主要有以下二种:I类:全等等效——不管是恒温恒容........就是全等等效.....。
只要“一边倒”倒后各反应物起始用量是一致的....还是恒温恒压“全等等效”平衡除了满足等效平衡特征[转化率相同,平衡时百分含量(体积分数、物质的量分数)一定相等]外还有如下特征“.一边倒.............................”.后同物质的起始物质的量相等,平衡物质的量也一定相等。
拓展与延伸:在解题时如果要求起始“物质的量相等”或“平衡物质的量相等”字眼的肯定是等效平衡这此我们只要想办法让起始用量相等就行例1.将6molX和3molY的混合气体置于密闭容器中,发生如下反应:2X (g)+Y(g),反应达到平衡状态A时,测得X、Y、Z气体的物质的量分别为1.2mol、0.6mol和4.8mol。
若X、Y、Z的起始物质的量分别可用a、b、c表示,请回答下列问题:(1)若保持恒温恒容,且起始时a=3.2mol,且达到平衡后各气体的体积分数与平衡状态A相同,则起始时b、c的取值分别为,。
(2)若保持恒温恒压,并要使反应开始时向逆反应方向进行,且达到平衡后各气体的物质的量与平衡A 相同,则起始时c的取值范围是。
答案:(1)b=1.6mol c=2.8mol (2)4.8mol<c<6mol分析:(1)通过题意我们可以看出问题该反应是反应前后气体系数不等的反应,题中给出保持恒温恒容,且达到平衡后各气体的体积分数与平衡状态A相同可以看出该平衡应与原平衡形成全等等效....,故一定要使一边倒后的X的物质的量为6mol而Y的物质的量为3mol。
2X (g) + Y(g)2Z (g)问题(1)的物质的量/mol a=3.2 b=? c=? 从Z 向X 、Y 转化的量/mol x (1/2)x x从上述关系可得:3.2+x=6 x=2.8 ; b+(1/2)x =3 b=1.6 c=2.8(2)通过达到平衡后各气体的物质的量与平衡A 相同,可以知道这是一个全等等效的问题,由于三者平衡时的关系为:2X (g) + Y(g)2Z (g)平衡物质的量/mol 1.2mol 0.6mol 4.8mol从上述平衡时各物质的量可以看出当Z 的物质的量超过4.8mol 时该反应一定向逆方向进行,故c>4.8mol,又由于是一个全等等效的问题,所以其最大值一定是起始是a 、b 等于0,只投入c,即c 等于6mol 值最大. II 类:相似等效——相似等效分两种状态分别讨论1.恒温恒压下对于气体体系通过“一边倒”的办法转化后,只要反应物(或生成物)的物质的量的比例.......与原平衡起始态相同,两平衡等效。
恒温恒压下的相似等效平衡的特征是:平衡时同一物质....转化率相同,百分含量(体积分数、物质的量分数)相同,浓度..相同..2.恒温恒容下对于反应前后气体总物质的量没有变化...........的反应来说,通过“一边倒”的办法转化后,只要反应物(或生成物)的物质的量的比例.......与原平衡起始态相同,两平衡等效。
恒温恒容下的相似等效平衡的特征是:平衡时同一物质....转化率相同,百分含量(体积分数、物质的量分数)相同,浓度..不相同...拓展与延伸:属于相似等效的问题,我们只要想办法让物质的量的比例.......与原平衡起始态相同起始用量相等就行 例2.将6molX 和3molY 的混合气体置于容积可变的密闭容器中,在恒温恒压发生如下反应:2X (g)+Y(g)2Z (g),反应达到平衡状态A 时,测得X 、Y 、Z 气体的物质的量分别为1.2mol 、0.6mol 和4.8mol 。
若X 、Y 、Z 的起始物质的量分别可用a 、b 、c 表示,若起始时a=3.2mol ,且达到平衡后各气体的体积分数与平衡状态A 相同,则起始时b 、c 的取值分别为 , 。
答案: b=1.6mol c 为任意值分析:通过题意达到平衡后各气体的体积分数与平衡状态A 相同,且反应是在恒温恒压下,可以看出二者属于相似等效,故起始加量只要满足物质的量的比例.......与原平衡起始态相同即可,从上述反应我们可以看出生成物只有一种,故c 为任何值时都能满足比例故C 可不看,只要a:b 能满足2:1即可,故b=1.6mol【总结】通过上述分析等效平衡的问题解题的关键是:读题时注意勾画出这些条件,分清类别,用相应的方法(使起始物质量相等或起始物质的量比相等)求解。
我们常采用“一边倒”(又称等价转换)的方法,分析和解决等效平衡问题例3:在一定温度下,把2mol SO 2和1mol O 2通入一定容积的密闭容器中,发生如下反应,22O SO 2 3SO 2,当此反应进行到一定程度时反应混合物就处于化学平衡状态。
现在该容器中维持温度不变,令a 、b 、c 分别代表初始时加入的322SO O SO 、、的物质的量(mol ),如果a 、b 、c 取不同的数值,它们必须满足一定的相互关系,才能保证达到平衡状态时,反应混合物中三种气体的百分含量仍跟上述平衡完全相同。
请填空:(1)若a=0,b=0,则c=___________。
(2)若a=0.5,则b=___________,c=___________。
(3)a 、b 、c 的取值必须满足的一般条件是___________,___________。
(请用两个方程式表示,其中一个只含a 和c ,另一个只含b 和c )解析:通过化学方程式:22O SO 2+3SO 2可以看出,这是一个化学反应前后气体分子数不等的可逆反应,在定温、定容下建立的同一化学平衡状态。
起始时,无论怎样改变322SO O SO 、、的物质的量,使化学反应从正反应开始,还是从逆反应开始,或者从正、逆反应同时开始,但它们所建立起来的化学平衡状态的效果是完全相同的,即它们之间存在等效平衡关系。
我们常采用“等价转换”的方法,分析和解决等效平衡问题。
(1)若a=0,b=0,这说明反应是从逆反应开始,通过化学方程式22O SO 2+3SO 2可以看出,反应从2mol SO 3开始,通过反应的化学计量数之比换算成2SO 和2O 的物质的量(即等价转换),恰好跟反应从2mol SO 2和1mol O 2的混合物开始是等效的,故c=2。
(2)由于a=0.5<2,这表示反应从正、逆反应同时开始,通过化学方程式22O SO 2+3SO 2可以看出,要使0.5mol SO 2反应需要同时加入0.25mol O 2才能进行,通过反应的化学计量数之比换算成SO 3的物质的量(即等价转换)与0.5 mol SO 3是等效的,这时若再加入1.5 mol SO 3就与起始时加入2 mol SO 3是等效的,通过等价转换可知也与起始时加入2 mol SO 2和1mol O 2是等效的。
故b=0.25,c=1.5。
(3)题中要求2mol SO 2和1mol O 2要与 a mol SO 2、b mol O 2和 c mol SO 3建立等效平衡。
由化学方程式22O SO 2+3SO 2可知,c mol SO 3等价转换后与 c mol SO 2和2O mol 2c等效,即是说,2SO mol )c a (+和2O mol )2cb (+与 a mol SO 2、b mol O 2和c mol SO 3等效,那么也就是与2mol SO 2和1mol O 2等效。