数字的信号处理知识点的总结
数字信号处理方法及技巧总结
![数字信号处理方法及技巧总结](https://img.taocdn.com/s3/m/b7126b48bb1aa8114431b90d6c85ec3a86c28b5d.png)
数字信号处理方法及技巧总结数字信号处理(Digital Signal Processing,简称DSP)是指对离散信号进行一系列算法和技术处理的过程。
本文总结了数字信号处理的一些常见方法和技巧,供参考使用。
傅里叶变换傅里叶变换是一种广泛应用于数字信号处理中的重要方法。
它可以将时域信号转换为频域信号,从而揭示信号的频率特征。
常见的傅里叶变换包括离散傅里叶变换(Discrete Fourier Transform,DFT)和快速傅里叶变换(Fast Fourier Transform,FFT)。
在信号的频谱分析、滤波和相关性分析中,傅里叶变换是一种不可或缺的工具。
滤波技术滤波是数字信号处理中常用的技术之一。
它可以去除信号中的噪声或不需要的频率成分,以提取感兴趣的信号信息。
常见的滤波方法包括低通滤波、高通滤波、带通滤波和带阻滤波。
根据信号的特点和需求,选择适当的滤波技术可以有效改善信号质量。
采样与重构数字信号的采样与重构是数字信号处理中一个重要的环节。
采样是将连续时间域信号转换为离散形式的过程,而重构则是根据离散信号重新生成连续信号。
采样定理(Nyquist定理)指出,为了完全还原原始信号,采样频率需满足一定条件。
在实际应用中,合理选择采样频率可以平衡信号质量与计算复杂度。
时域与频域分析时域分析和频域分析是数字信号处理中常用的分析方法。
时域分析关注信号在时间上的变化,常见的时域分析方法有自相关函数和互相关函数等。
而频域分析则关注信号在频率上的特性。
通过频域分析,我们可以得到信号的频谱信息,来研究信号的频率分布和频率成分之间的关系。
数字滤波器设计数字滤波器是数字信号处理中的重要组成部分。
根据滤波器的结构和响应特性,可以将其分为滤波器与无限脉冲响应(FIR)滤波器等。
设计数字滤波器的关键是确定滤波器的参数,如截止频率、通带和阻带的波动范围等。
选择合适的滤波器类型和参数可以实现对信号的有效滤波和增强。
运算速度与算法优化在数字信号处理中,运算速度和算法优化是需要考虑的重要问题。
数字信号处理知识点汇总
![数字信号处理知识点汇总](https://img.taocdn.com/s3/m/25954f839a89680203d8ce2f0066f5335a816721.png)
数字信号处理知识点汇总数字信号处理是一门涉及多个领域的重要学科,在通信、音频处理、图像处理、控制系统等众多领域都有着广泛的应用。
接下来,让我们一同深入了解数字信号处理的主要知识点。
一、数字信号的基本概念数字信号是在时间和幅度上都离散的信号。
与模拟信号相比,数字信号具有更强的抗干扰能力和便于处理、存储等优点。
在数字信号中,我们需要了解采样定理。
采样定理指出,为了能够从采样后的信号中完全恢复原始的连续信号,采样频率必须至少是原始信号最高频率的两倍。
这是保证数字信号处理准确性的关键原则。
二、离散时间信号与系统离散时间信号可以通过序列来表示,常见的有单位脉冲序列、单位阶跃序列等。
离散时间系统则是对输入的离散时间信号进行运算和处理,产生输出信号。
系统的特性可以通过线性、时不变性、因果性和稳定性等方面来描述。
线性系统满足叠加原理,即多个输入的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合。
时不变系统的特性不随时间变化,输入的时移会导致输出的相同时移。
因果系统的输出只取决于当前和过去的输入,而稳定系统对于有界的输入会产生有界的输出。
三、Z 变换Z 变换是分析离散时间系统的重要工具。
它将离散时间信号从时域转换到复频域。
通过 Z 变换,可以方便地求解系统的差分方程,分析系统的频率特性和稳定性。
Z 变换的收敛域决定了其特性和应用范围。
逆 Z 变换则可以将复频域的函数转换回时域信号。
四、离散傅里叶变换(DFT)DFT 是数字信号处理中的核心算法之一。
它将有限长的离散时间信号转换到频域。
DFT 的快速算法——快速傅里叶变换(FFT)大大提高了计算效率,使得在实际应用中能够快速处理大量的数据。
通过 DFT,可以对信号进行频谱分析,了解信号的频率成分和能量分布。
五、数字滤波器数字滤波器用于对数字信号进行滤波处理,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。
FIR 滤波器具有线性相位特性,稳定性好,但设计相对复杂。
数字信号处理知识点总结
![数字信号处理知识点总结](https://img.taocdn.com/s3/m/b4469a5bcc17552706220812.png)
数字信号处理知识点总结《数字信号处理》辅导一、离散时间信号和系统的时域分析 (一) 离散时间信号(1)基本概念信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。
连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。
模拟信号:是连续信号的特例。
时间和幅度均连续。
离散信号:时间上不连续,幅度连续。
常见离散信号——序列。
数字信号:幅度量化,时间和幅度均不连续。
(2)基本序列(课本第7——10页)1)单位脉冲序列 1,0()0,0n n n δ=⎧=⎨≠⎩2)单位阶跃序列 1,0()0,0n u n n ≥⎧=⎨≤⎩3)矩形序列 1,01()0,0,N n N R n n n N ≤≤-⎧=⎨<≥⎩ 4)实指数序列 ()n a u n5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。
注意正弦周期序列周期性的判定(课本第10页)2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即()()i x n x n iL ∞=-∞=-∑当L N ≥时,()()()N x n x n R n =当L N <时,()()()N x n x n R n ≠(4)序列的分解序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即()()(),e o x n x n x n n =+-∞<<∞并且1()[()()]2e x n x n x M n *=+-1()[()()]2o x n x n x M n *=--(4)序列的运算 1)基本运算2)线性卷积:将序列()x n 以y 轴为中心做翻转,然后做m 点移位,最后与()x n 对应点相乘求和——翻转、移位、相乘、求和定义式:1212()()()()()m y n x m x n m x n x n ∞=-∞=-=*∑线性卷积的计算:A 、图解B 、解析法C 、不进位乘法(必须掌握)3)单位复指数序列求和(必须掌握)/2/2/2/2/2/21/2/2/2/2/2/2(1)/21()()/(2)1()()/(2)sin(/2)sin(/2)j N j N j N j N j N j N j N N j nj j j j j j j n j N e e e e e e e j ee e e e e e e j N e ωωωωωωωωωωωωωωωωωω------------=-----===---=∑如果2/k N ωπ=,那么根据洛比达法则有sin(/2)(0)(0)(()())sin(/2)N N k N N k N ωδδω===或可以结合作业题3.22进行练习(5)序列的功率和能量能量:2|()|n E x n ∞=-∞=∑功率:21lim |()|21NN n NP x n N →∞=-=+∑(6)相关函数——与随机信号的定义运算相同(二) 离散时间系统1.系统性质 (1)线性性质定义:设系统的输入分别为1()x n 和2()x n ,输出分别为1()y n 和2()y n ,即1122()[()],()[()]y n T x n y n T x n ==统的输对于任意给定的常数a、b ,下式成立1212()[()()]()()y n T ax n bx n a y n by n =+=+则该系统服从线性叠加原理,为线性系统,否则为非线性系统。
数字信号处理常用知识点
![数字信号处理常用知识点](https://img.taocdn.com/s3/m/28c028eb998fcc22bcd10de6.png)
z 实信号具有双边频谱的特性,复信号则具有单边频谱的特性。
z 列出三种关于数字信号处理的实现方法通用计算机软件实现、特殊专用集成电路ASIC实现以及可编程器件如FPGA 硬件实现和通用DSP 器件实现等。
z 设系统用差分方程y(n)=x(n)sin(wn)描述,x(n)与y(n)分别表示系统的输入和输出,则这个系统是线性且时变。
z 由于IIR 数字滤波器的冲激响应无限长,故不能采用时域卷积(或频域卷积)的方法实现,只能通过差分方程的形式来实现。
z 第二类线性相位FIR 数字滤波器的相频特点是具有-90o 初相,因此常被用作移相器等非选频特性之应用。
z FIR 数字滤波器常采用窗函数法、频率采样法和最佳等纹波逼近法等直接数字域设计方法,不能采用模拟滤波器的经典设计理论。
z 实信号具有双边频谱的特性,复信号则具有单边频谱的特性。
z 当采用基于DFT 的方法(可使用FFT 算法)对模拟实信号进行谱分析时,会存在四种主要的、无法避免的、或难以减轻的误差,它们是:时域采样时产生的频谱混叠现象,DFT(频率采样)造成的栅栏效应,信号截断(有限长度)导致的频谱(或频率)泄漏和谱间干扰。
z 设系统用差分方程y(n)=x(n)+2x(n-1)+3x(n-2)描述,x(n)与y(n)分别表示系统的输入和输出,则这个系统是线性且时不变。
(注:从线性和时变性回答)z 数字滤波器均可通过差分方程的形式来实现。
对于FIR 数字滤波器,由于冲激响应有限长,故也可用时域卷积(或频域卷积)的方法实现。
z 第一类线性相位FIR 数字滤波器的相频特点是初相为0。
z IIR 数字滤波器设计常采用模拟滤波器设计的经典理论,从模拟滤波器到数字滤波器的过渡通常采用脉冲响应不变法或双线性变换法。
z 模拟信号和数字信号的描述与分析域分别采用s 域与z 域。
z 如果一个数字因果系统是不稳定的,输出幅度随时间呈发散状,那么它的极点至少有一个在z 平面的单位圆外。
数字信号处理知识点总结
![数字信号处理知识点总结](https://img.taocdn.com/s3/m/62b26265e3bd960590c69ec3d5bbfd0a7956d5f7.png)
N
1
x(n)
1 N
N 1
X
(k
)W
Nkn,0k0nN
1
2024/1/22
7
Discrete Fourier Transform
DFT Transform Pair
DFT的物理意义
X
(k
)
N 1
n0
x(n)W
k N
n,0
k
N
1
x(n)
1 N
N 1
X
(k
)W
N
k
n,0
k0
n
N
1
N 1
X (z) x(n)zn 1. z-Transform n0
将模拟信号转换为数字信号,并且保证采样前后信息部丢失—采样定理。
xa(t)
采样
量化
编码
x(n)
A/D转换器
xa t sin4 t
2024/1/22
4
采样频率
s
2
Ts
xa( t )|tnT x( n ) sin( nTs ) x( n ) sin(n )
时域离散 幅度量化
3
数字信号处理 Digital signal processing
复加次数: Nlog2N;
2024/1/22
11
FFT computation cost
Comparison between FFT and DFT in complex multiplication
N 16 512 2048
N2 (DFT) 256
262144 4194304
Nlog2N/2(FFT) 32
卷积
(3)
N
数字信号处理知识点总结
![数字信号处理知识点总结](https://img.taocdn.com/s3/m/81112ce1ba0d4a7303763a11.png)
数字信号处理第0章绪论1.数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。
2.DSP系统构成输入抗混叠滤波A/DDSP芯片D/A平滑滤波输出输入信号首先进行带限滤波和抽样,然后进行A/D(Analog to Digital)变换将信号变换成数字比特流。
根据奈奎斯特抽样定理,为保证信息不丢失,抽样频率至少必须是输入带限信号最高频率的2倍。
DSP芯片的输入是A/D变换后得到的以抽样形式表示的数字信号。
3.信号的形式(1)连续信号在连续的时间范围内有定义的信号。
连续--时间连续。
(2)离散信号在一些离散的瞬间才有定义的信号。
离散--时间离散。
4.数字信号处理主要包括如下几个部分(1)离散时间信号与系统的基本理论、信号的频谱分析(2)离散傅立叶变换、快速傅立叶变换(3)数字滤波器的设计第一章离散时间信号一、典型离散信号定义1.离散时间信号与数字信号时间为离散变量的信号称作离散时间信号;而时间和幅值都离散化的信号称作为数字信号。
2.序列离散时间信号-时间上不连续上的一个序列。
通常定义为一个序列值的集合{x(n)},n 为整型数,x(n)表示序列中第n 个样值,{·}表示全部样本值的集合。
离散时间信号可以是通过采样得到的采样序列x(n)=x a (nT),也可以不是采样信号得到。
二.常用离散信号1.单位抽样序列(也称单位冲激序列))(n δ⎩⎨⎧≠==0,00,1)(n n n δδ(n):在n=0时取值为12.单位阶跃序列)(n u ,⎩⎨⎧<≥=0,00,1)(n n n u 3.矩形序列,⎩⎨⎧=-≤≤=其它n N n n R N ,010,1)(4.实指数序列,)()(n u a n x n =,a 为实数5.正弦型序列)sin()(φω+=n A n x 式中,ω为数字域频率,单位为弧度。
15On 1-10()0sin nω()t 0sin Ω16.复指数序列nj e n x )(0)(ωσ+=7.周期序列如果对所有n 存在一个最小的正整数N ,使下面等式成立:)()(N n x n x +=,则称x(n)为周期序列,最小周期为N 。
数字信号处理主要知识点整理复习总结
![数字信号处理主要知识点整理复习总结](https://img.taocdn.com/s3/m/ff81fc5f2379168884868762caaedd3383c4b5ce.png)
求出对应
的各种可能的序列的表达式。
解: 有两个极点,因为收敛域总是以极点为界,因此收敛域有以下三种情况: 三种收敛域对应三种不同的原序列。
时,
(1)当收敛域
令
,因为c内无极点,x(n)=0;
,C内有极点0,但z=0是一个n阶极点,改为求圆外极点留数,圆外极点有
数字信号处理课程 知识点概要
第1章 数字信号处理概念知识点
1、掌握连续信号、模拟信号、离散时间信号、数字信号的特点及相互关系(时间和幅度的连续性考量) 2、数字信号的产生; 3、典型数字信号处理系统的主要构成。
量化、编码 ——————
采样 ————
模拟信号
离散时间信号
数字信号
5、部分分式法进行逆Z变换 求极点 将X(z)分解成部分分式形式 通过查表,对每个分式分别进行逆Z变换 注:左边序列、右边序列对应不同收敛域 将部分分式逆Z变换结果相加得到完整的x(n)序列 6、Z变换的性质 移位、反向、乘指数序列、卷积
常用序列z变换(可直接使用)
7、DTFT与Z变换的关系
(a) 边界条件 时,是线性的但不是移不变的。
(b) 边界条件 时,是线性移不变的。
令
….
所以:
….
所以:
可见 是移一位的关系, 亦是移一位的关系。因此是移不变系统。
代入差分方程,得:
……..
所以:
因此为线性系统。
3. 判断系统是否是因果稳定系统。
Causal and Noncausal System(因果系统) causal system: (1) 响应不出现于激励之前 (2) h(n)=0, n<0 (线性、时不变系统) Stable System (稳定系统) (1) 有界输入导致有界输出 (2) (线性、时不变系统) (3) H(z)的极点均位于Z平面单位圆内(因果系统)
数字信号处理知识点
![数字信号处理知识点](https://img.taocdn.com/s3/m/6642fd783069a45177232f60ddccda38376be120.png)
数字信号处理知识点1. 引言数字信号处理(Digital Signal Processing,DSP)是应用数字计算技术来过滤、压缩、存储、生成、识别和其他方式处理信号的科学领域。
本文旨在概述数字信号处理的核心技术和知识点,为学习和应用DSP提供明确的指导。
2. 信号的基本概念2.1 模拟信号与数字信号2.2 信号的时域和频域特性2.3 采样定理(奈奎斯特定理)2.4 量化和编码2.5 信号重构3. 离散时间信号与系统3.1 离散时间信号的定义3.2 线性时不变(LTI)系统3.3 卷积和系统响应3.4 Z变换及其应用3.5 差分方程4. 傅里叶分析4.1 傅里叶级数4.2 傅里叶变换4.3 快速傅里叶变换(FFT)4.4 频谱分析5. 滤波器设计5.1 滤波器的基本概念5.2 理想滤波器5.3 窗函数法5.4 IIR滤波器设计5.5 FIR滤波器设计6. 信号的检测与估计6.1 信号检测理论6.2 最小二乘估计6.3 卡尔曼滤波6.4 信号的自适应滤波7. 语音与图像处理7.1 语音信号的特性7.2 语音编码技术7.3 图像信号的基本概念7.4 图像压缩技术7.5 图像增强技术8. 实时数字信号处理系统8.1 DSP芯片的特性8.2 实时操作系统8.3 硬件与软件协同设计8.4 系统性能评估9. 应用实例9.1 通信系统中的DSP应用9.2 生物医学信号处理9.3 音频和视频处理9.4 雷达和声纳系统10. 结论数字信号处理是一个多学科交叉的领域,涉及信号理论、数学、计算机科学和电子工程。
掌握DSP的基础知识对于理解和设计现代通信系统、音频和视频处理系统以及其他相关应用至关重要。
请注意,本文仅为数字信号处理知识点的概述,每个部分都需要深入学习才能完全理解和应用。
读者应参考相关教材、课程和实践项目,以获得更全面和深入的知识。
数字信号知识点总结
![数字信号知识点总结](https://img.taocdn.com/s3/m/9a88f2416d85ec3a87c24028915f804d2a168757.png)
数字信号知识点总结数字信号是一种离散的信号,它由一系列的离散数值组成,可以用二进制数字表示。
数字信号在信息传输、通信、控制系统等领域中得到了广泛的应用,因此对数字信号的了解和掌握是非常重要的。
数字信号的特点1. 离散性:数字信号是由一系列的离散数值组成的,其取值在某一范围内离散分布。
2. 数字化:数字信号是经过数字化处理得到的信号,可以用数字编码表示。
3. 可编程性:数字信号在数字处理器中可以进行数值的运算和处理,可以方便地进行数字信号处理。
4. 抗干扰能力强:数字信号可以通过错误编码和纠错技术来提高传输的可靠性,具有较好的抗干扰能力。
数字信号的生成与表示数字信号的生成通常通过模数转换器(ADC)来实现,将模拟信号转换为数字信号。
数字信号可以用二进制数码表示,其中0和1分别代表低电平和高电平。
在电子设备中,数字信号通常用高低电平的变化来表示信号的信息。
数字信号的种类1. 周期信号:周期信号是指在一定时间间隔内重复的信号。
周期信号具有周期性和频率性,如正弦信号、方波信号、三角波信号等。
2. 非周期信号:非周期信号是指不在一定时间间隔内重复的信号。
非周期信号通常是一次性的事件,如脉冲信号、随机信号等。
3. 离散信号:离散信号是指在一段时间内只取有限个数值的信号。
离散信号在时域上呈现为点的形式,可以通过采样来获取。
4. 连续信号:连续信号是指在一段时间内可以取任意数值的信号。
连续信号在时域上呈现为连续的曲线,通过模拟信号来表示。
数字信号的处理与分析1. 采样:采样是将连续信号转换为离散信号的过程,通过一定的时间间隔对信号进行采样。
采样频率越高,采样精度越高,可以更好地重构原始信号。
2. 量化:量化是将采样得到的离散信号转换为数字信号的过程,通过对离散信号的幅度进行近似描述。
量化精度越高,数字信号的表示越精确。
3. 编码:编码是将量化得到的数值用二进制编码表示的过程,常用的编码方式有二进制编码、格雷码、汉明码等。
DSP重点知识点总结
![DSP重点知识点总结](https://img.taocdn.com/s3/m/896092fec67da26925c52cc58bd63186bceb92b8.png)
DSP重点知识点总结DSP(数字信号处理)是一门涉及数字信号获取、处理和分析的学科。
DSP技术被广泛应用于通信、音频和视频处理、雷达和图像处理等领域。
下面是DSP的重点知识点总结。
1.信号与系统理论:信号可以理解为一种函数或者波形,可以用数学模型表示。
系统是根据输入信号产生输出信号的过程。
信号与系统理论研究信号和系统之间的关系,如卷积、频谱分析等。
2.时域和频域分析:时域分析是指对信号在时间上的特征进行分析,如幅度、相位、周期等。
频域分析则是将信号在频率上进行分析,如频谱、谐波成分等。
3.Z变换和离散时间系统:Z变换是一种离散信号处理的分析工具,它可以将离散时间信号转换成复变量的函数。
离散时间系统是一种对离散时间信号进行处理的系统,可以用系统函数来描述其输入输出关系。
4.数字滤波器设计:数字滤波器是一种对数字信号进行滤波处理的系统。
低通滤波器可以通过去除高频成分来平滑信号,高通滤波器则可以去除低频成分,带通滤波器可以只保留一些频段的信号。
5.快速傅里叶变换(FFT):FFT是一种将时域信号转换成频域信号的算法,它可以高效地计算信号的频谱。
FFT广泛应用于频谱分析、滤波器设计、信号压缩等领域。
6.语音信号处理:语音信号处理是DSP的一个重要应用领域。
它包括语音信号的获取、去噪、压缩、识别等技术。
常用的算法包括线性预测编码(LPC)、梅尔倒谱系数(MFCC)等。
7.图像处理:图像处理是DSP的另一个重要应用领域。
它包括图像的获取、增强、压缩、分割、识别等技术。
常用的算法包括离散余弦变换(DCT)、小波变换等。
8.数字信号处理芯片:数字信号处理芯片是一种集成了数字信号处理功能的专用芯片。
它可以高效地进行信号处理和计算,并广泛应用于通信设备、音频设备等领域。
9.数字信号处理应用:DSP技术在通信、音频、视频、雷达、图像等领域有广泛的应用。
例如,DSP可以用于音频信号的压缩、通信系统的调制解调、雷达信号的处理等。
数字信号处理知识点
![数字信号处理知识点](https://img.taocdn.com/s3/m/6866508f18e8b8f67c1cfad6195f312b3069eb14.png)
数字信号处理知识点数字信号处理,听起来是不是有点高大上?其实啊,就像咱们平常做菜一样。
你看啊,原始的食材就好比是原始信号,而我们要把这些食材加工成美味的菜肴,就像把原始信号处理成我们想要的信号形式。
咱先说说啥是数字信号。
数字信号啊,就像是用数字代码表示的信息。
这就好比是我们用特定的符号来表示某种东西。
比如说,咱们在玩猜数字的游戏,你心里想一个数字,然后用一些提示来告诉我这个数字是大了还是小了,这个数字就是一种简单的“信号”,只不过数字信号要复杂得多啦。
那数字信号处理呢?这就是对这些数字表示的信号进行各种各样的操作。
这操作啊,就像厨师做菜时的切、炒、炖等工序。
比如说滤波,这就像是把菜里的杂质给挑出去。
你想啊,如果菜里有沙子或者坏叶子,那这道菜肯定不好吃。
同样的道理,在信号里如果有一些干扰或者噪声,就会影响信号的质量,滤波就是把这些“沙子”和“坏叶子”去掉,让信号变得更“纯净”。
再说说采样。
采样就像是我们从一大锅菜里舀出一勺来尝尝味道。
你不可能把整锅菜都吃光了才知道味道对不对吧?采样就是从连续的信号里取出一些离散的点来代表这个信号。
这就要求我们采样得合理啊,要是采样的点太少了,就好比你只尝了一小口菜,可能就尝不出这道菜真正的味道。
要是采样太多呢,又有点浪费资源,就像你为了尝个菜,把整锅菜都快舀光了,多不划算呀!离散傅里叶变换这个概念也挺有趣的。
它就像是把一道菜的各种味道成分给分析出来。
一道菜可能有酸甜苦辣咸各种味道,离散傅里叶变换就能把一个信号分解成不同频率成分,就像把菜的味道分解成各种单一的味道元素。
这样我们就能知道这个信号主要由哪些频率组成,就像知道这道菜主要是哪些味道占主导一样。
在数字信号处理里,还有一个重要的概念是量化。
量化就像是给菜打分。
比如说一道菜满分是10分,你根据菜的色香味等方面给出一个分数。
在信号里呢,就是把信号的取值范围划分成一些区间,然后给每个区间一个确定的值。
这就好像把菜的好坏程度用一个确定的分数表示出来一样。
数字信号处理复习总结-汤巧治
![数字信号处理复习总结-汤巧治](https://img.taocdn.com/s3/m/974e75c7767f5acfa1c7cde7.png)
数字信号处理复习要点引言 数字信号处理主要包括如下几个部分1、离散时间信号与系统的基本理论、信号的频谱分析2、离散傅立叶变换、快速傅立叶变换3、数字滤波器的设计一、离散时间信号与系统的基本理论、信号的频谱分析1、离散时间信号:1)离散时间信号:时间是离散变量的信号,即独立变量时间被量化了。
信号的幅值可以是连续数值,也可以是离散数值。
2)数字信号:时间和幅值都离散化的信号。
(本课程主要讲解的实际上是离散时间信号的处理) 3)离散时间信号可用序列来描述 4)序列的卷积和(线性卷积)∑∞-∞==-=m n h n x m n h m x n y )(*)()()()(5)几种常用序列a)单位抽(采、取)样序列(也称单位冲激序列))(n δ,⎩⎨⎧≠==0,00,1)(n n n δb)单位阶跃序列)(n u ,⎩⎨⎧<≥=0,00,1)(n n n uc)矩形序列,⎩⎨⎧=-≤≤=其它n N n n R N ,010,1)(d)实指数序列,)()(n u a n x n =6)序列的周期性所有n 存在一个最小的正整数N ,满足:)()(N n x n x +=,则称序列)(n x 是周期序列,周期为N 。
正弦序列)sin()(0ϕω+=n A n x 的周期性取决于0ω,()n x 是周期序列。
7)时域抽样定理:一个限带模拟信号()a x t ,若其频谱的最高频率为0F ,对它进行等间隔抽样而得()x n ,抽样周期为T ,或抽样频率为1/s F T =;只有在抽样频率02s F F ≥时,才可由()x n 准确恢复()a x t 。
2、离散时间信号的频域表示(时域离散信号的傅里叶变换;序列的傅立叶变换)∑∞-∞=-==n nj j e)n (x )e(X )j (X ωωω,((2))()X j X j ωπω+=ωωπωππd e j X n x n j ⎰-=)(21)(3、离散时间信号的复频域分析(时域离散信号的Z 变换,序列的Z 变换)∑∞-∞=-==n nzn x n x z X )()]([)(Z ;1)Z 变换与傅立叶变换的关系,ωωj e z z X j X ==)()(2) Z 变换的收敛域收敛区域要依据序列的性质而定。
数字信号处理第一章知识总结
![数字信号处理第一章知识总结](https://img.taocdn.com/s3/m/bf4877eaaff8941ea76e58fafab069dc50224730.png)
数字信号处理第⼀章知识总结数字信号处理第⼀章总结1.1 引⾔ (3)1.2 时域离散信号 (3)1)离散信号: (3)2)常⽤序列: .................................................................... 错误!未定义书签。
3)正弦序列: (3)4)周期序列: (4)1.3 时域离散系统 (4)1.3.1 线性系统 (4)1.3.2 时不变系统 (5)1.3.3 线性时不变系统输⼊与输出之间的关系 (5)1.3.4 系统的因果性和稳定性 (5)1.4 时域离散系统的输⼊输出描述法——线性常系数差分⽅程 (6)1.4.1线性常系数差分⽅程: (6)1.4.2线性常系数差分⽅程的求解 (6)1.5 模拟信号数字处理⽅法 (7)摘要:信号通常是⼀个⾃变量或⼏个⾃变量的函数。
如果仅有⼀个⾃变量,则称为以维信号;如果有两个以上的⾃变量,则称为多维信号。
通常把信号看做时间的函数。
实际中遇到的信号⼀般是模拟信号,对它进⾏等间隔采样便可以得到时域离散信号。
关键词:模拟信号;等间隔采样;时域离散信号1.1 引⾔信号分为三类:1)模拟信号:⾃变量和函数值都是连续的。
2)时域离散信号:⾃变量离散,函数值连续。
它来源于对数字信号的采样。
3)数字信号:⾃变量和函数值都是离散的。
它是幅度化的时域离散信号。
1.2 时域离散信号离散信号:模拟信号(时域连续)经过“采样”变成时域离散信号,公式是:x(n)=x a (nT),-∞<n <∞这⾥,x(n)称为时域离散信号,式中的n 取整数,显然,x (n )是⼀串有序的数字的集合,因此时域离散信号也可以称为序列。
时域离散信号有三种表⽰⽅法:(1)⽤集合符号表⽰序列(2)⽤图形表⽰序列(3)⽤公式表⽰序列常⽤典型序列(时域离散信号):1)单位采样信号:0001n ≠==n n )(δ 2)单位阶跃信号:0001n u <≥?=n n )(3)(n R N =u )(n -u )(N n -:(N 是矩形序列的长度)实指数序列:a n x =)(n )(n u ,a 为实数。
数字信号处理知识点汇总pdf
![数字信号处理知识点汇总pdf](https://img.taocdn.com/s3/m/4809ccfeb04e852458fb770bf78a6529657d3557.png)
数字信号处理知识点汇总pdf1 概述数字信号处理(Digital Signal Processing,简称DSP)是一种用于处理、分析和转换数字信号的技术。
它利用各种算法和数字芯片,同时兼顾数字信号的时间和频率特性,将诸如声音、图像和视频等信号处理成有用的数字形式。
DSP技术被广泛应用在数字音频、自动控制、通信、信号分析、图像处理、视频处理等领域,对信号的采集、处理、变换、转换和分析,都能起到极大的作用。
2 基本概念数字信号处理一般包括一切关于用数字系统模拟或处理音频、图像或视频的研究方法。
DSP的基本概念包括:采样率、量化精度、编解码器、可编程处理器等;其中,采样率是指转换连续信号为数字信号所作记录时间间隔,量化精度是指记录信号时用来表述信号的位数;编解码器则是用来将信号进行编码和解码,使信号能由一种格式转换为另一种格式,而可编程处理器以及算法则是用来实现DSP处理的核心。
3 数字信号处理系统数字信号处理系统大致可以分为四大部分:数据采集、信号预处理、DSP处理和系统控制。
数据采集是指用于采集、存储、传输或必要话在实时和传统数字信号处理设备上经常使用的各种硬件设备。
信号预处理器主要用于对原始信号进行滤波、幅值检测、转换等预处理操作,以提高信号的品质。
DSP处理器一般是涵盖了原始信号的采样、量化、滤波处理等操作,用于获得有效的信号;而系统控制则是将处理后的信号传至后续处理系统,以及控制这些系统的运行状态。
4 应用数字信号处理技术在音频和视频领域的应用最为广泛,它可以实现信号的压缩、去噪、可视化和回放等功能。
在通信领域,它可以实现信号的激励、检测和序列处理。
在机器视觉方面,它可以实现图像处理,从而在机器中获取更多信息。
总之,数字信号处理技术为数字信号正确采集、表示、处理和转换提供了有效的技术手段,在日趋发达的信息社会中,已广泛应用于各行各业。
数字信号处理复习总结_最终版
![数字信号处理复习总结_最终版](https://img.taocdn.com/s3/m/4c21893a55270722192ef757.png)
绪论:本章介绍数字信号处理课程的基本概念。
0.1信号、系统与信号处理1.信号及其分类信号是信息的载体,以某种函数的形式传递信息。
这个函数可以是时间域、频率域或其它域,但最基础的域是时域。
分类:周期信号/非周期信号确定信号/随机信号能量信号/功率信号连续时间信号/离散时间信号/数字信号按自变量与函数值的取值形式不同分类:2.系统系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。
3.信号处理信号处理即是用系统对信号进行某种加工。
包括:滤波、分析、变换、综合、压缩、估计、识别等等。
所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。
0.2 数字信号处理系统的基本组成数字信号处理就是用数值计算的方法对信号进行变换和处理。
不仅应用于数字化信号的处理,而且也可应用于模拟信号的处理。
以下讨论模拟信号数字化处理系统框图。
(1)前置滤波器将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。
(2)A/D变换器在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。
在A/D 变换器中的保持电路中进一步变换为若干位码。
(3)数字信号处理器(DSP)(4)D/A变换器按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。
由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。
(5)模拟滤波器把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。
0.3 数字信号处理的特点(1)灵活性。
(2)高精度和高稳定性。
(3)便于大规模集成。
(4)对数字信号可以存储、运算、系统可以获得高性能指标。
0.4 数字信号处理基本学科分支数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。
数字信号处理实验总结
![数字信号处理实验总结](https://img.taocdn.com/s3/m/29e7ed51974bcf84b9d528ea81c758f5f61f29a2.png)
数字信号处理实验总结本次数字信号处理实验内容包括了数字信号的产生、采样、量化、编码、滤波、变换等多个方面,通过实验的学习,我对数字信号处理有了更深入的理解和掌握。
在此,我将对实验内容进行总结和归纳,以便更好地掌握数字信号处理的相关知识。
首先,数字信号的产生是数字信号处理的基础,我们通过正弦波发生器产生了不同频率和幅值的数字信号,并通过示波器观察了信号的波形和频谱。
在产生数字信号的过程中,我们了解了数字信号的特点和频谱分析的方法,这为后续实验打下了基础。
其次,采样和量化是数字信号处理中非常重要的环节,我们通过示波器进行了模拟信号的采样和量化,并通过MATLAB对数字信号进行了仿真分析。
在实验中,我们深入理解了采样定理和量化误差对信号重建的影响,以及如何选择合适的采样频率和量化位数。
接着,编码和解码是数字信号传输和存储中必不可少的环节,我们学习了PCM编码和解码的原理,并通过实验掌握了编码器和解码器的设计和应用。
在实验中,我们发现了编码器和解码器之间的关系,以及不同编码方式对信号质量的影响,这对我们理解数字信号传输和存储起到了重要作用。
此外,滤波和变换是数字信号处理中的重要内容,我们学习了数字滤波器的设计和应用,以及傅里叶变换和离散傅里叶变换的原理和实现。
通过实验,我们深入理解了滤波器的频率响应和频率特性,以及信号在时域和频域之间的转换关系,这对我们分析和处理数字信号起到了重要作用。
综上所述,通过本次实验,我对数字信号处理的相关知识有了更深入的理解和掌握,同时也掌握了数字信号处理的基本方法和技术。
在今后的学习和工作中,我将继续加强对数字信号处理的学习和实践,不断提升自己的专业能力和实际应用能力,为将来的发展打下坚实的基础。
总之,数字信号处理是现代通信、控制和信息处理领域中的重要技术和工具,通过本次实验的学习,我对数字信号处理有了更加深入的理解和掌握,相信在今后的学习和工作中,我能够更好地应用数字信号处理的知识和技术,为实际问题的分析和解决提供更加有效的方法和手段。
数字信号处理知识点总结
![数字信号处理知识点总结](https://img.taocdn.com/s3/m/7ee6e95349d7c1c708a1284ac850ad02de8007e6.png)
数字信号处理知识点总结
x
《数字信号处理知识点总结》
一、概述
数字信号处理(Digital Signal Processing, DSP)是一门独特的计算机科学,它旨在把频率和时域特征集中处理一组数据,以提高信号处理和分析的效率。
它也是一个数学分析工具,用于从连续的频率,时域,或空间域中提取信号的特征。
它允许处理有限的数据点,来识别,拟合,和处理一系列信号。
二、核心概念
1、频域分析
频域分析是指将信号分析成各个频率成分的过程。
这是通过调用快速傅里叶变换(FFT)的数学函数来完成的,FFT可以将连续信号调制到带宽。
通过FFT变换,我们可以提取各个频带中的信号模式,这是数字信号处理的基本概念。
2、时域分析
时域分析是指将信号从时域上拆分出来,以便更好地理解。
它可以让我们把信号的表示放大,以及提取其中的时间特征。
这可以通过使用数学变换,如傅里叶变换,傅里叶反变换,低通滤波器来完成。
3、空间域分析
空域分析涉及将图像或声音的空间分布从特定的比较模式中提
取出来。
这通常是通过两种方式完成的:频率域分析和纹理分析。
例
如,通过运用彩色空域调整(CSA)和空域合成(DSS),可以把颜色空间和纹理的信息从图像中提取出来。
三、应用
数字信号处理有多种应用,广泛应用于科学,工程和商业领域,如声学,图像处理,信号处理,通信,控制系统,生物医学,信息素养,自动控制,移动和汽车,以及航空航天等。
它是用来分析,处理和控制信号的,例如语音,图像,视频,音乐,信号检测,通信,检测,仪器和探测等。
数字信号处理知识点
![数字信号处理知识点](https://img.taocdn.com/s3/m/5c321ef5700abb68a982fb3c.png)
数字信号处理知识点1、数字信号处理是把信号用数字或符号表示的序列,通过计算机或通用(专用)信号处理设备,用数字的数值计算方法处理,以达到提取有用信息便于应用的目的。
2、信号与信息的关系:信号是信息的物理表现形式(或传递信息的函数),信息是信号的具体内容。
3、一维信号:信号是一个变量的函数;二维信号:信号是两个变量的函数;多维信号:信号是多个(M 2)变量的函数.4、确定信号:信号在任意时刻的取值能精确确定;随机信号:信号在任意时刻的取值不能精确确定或取值随机。
5、周期信号:若信号满足,K为整数;或N为正整数,k,n+kN为任意整数,则都是周期信号。
6、周期信号及随机信号一定是功率信号,而非周期的绝对可积(和)信号一定是能量信号。
7、连续时间信号:时间是连续的,幅值是连续或离散(量化)的;模拟信号:时间是连续的,幅值是连续的;离散时间信号(序列):时间是离散的,幅值是连续的;数字信号:时间是离散的,幅值是量化的8、系统:处理(或变换)信号的物理设备;模拟系统:处理模拟信号,系统输入、输出均为连续时间连续幅度的模拟信号;连续时间系统:处理连续时间信号,系统输入、输出均为连续时间信号;离散时间系统:处理离散时间信号——序列,系统输入、输出为离散时间信号。
9、信号处理:是研究用系统对含有信息的信号进行处理(变换),以获得人们所希望的信号,从而达到提取信息,便于应用的一门学科。
信号处理的内容包括:滤波、变换、检测、谱分析、估计、压缩、识别等一系列的加工处理。
10、量化误差:用有限位二进制表示序列值形成的误差分析数字滤波器系数量化误差的目的在于选择合适的字长,以满足频率响应指标的要求,分析A/D变量器量化效应目的在于选择合适的字长,以满足信噪比指标11、窗函数设计法也称为傅里叶级数法12、矩形窗、三角形窗、汉宁窗/升余弦、海明窗/改进升余弦、凯泽窗、布拉克曼窗13、最小阻带只由窗形状决定,不受N的影响,而过渡带的宽度则随窗宽的增加而减少14、滤波器的性能要求以频率响应的幅度特性的允许误差来表征15、数字滤波器的系统函数,在Z平面单位圆上的值为滤波器频率响应,表征数字滤波器频率响应的三个参变量是幅度平方响应、相位响应和群延时响应16、全通系统是指系统频率响应的幅度在所有频率W下均1或某一常数的系统17、从模拟滤波器映射成数字滤波器映射方法:冲激响应不变法、阶跃响应不变法、双线性变换法分析题|简答题1、数字信号处理的特点?答:精度高。
数字信号处理知识点整理
![数字信号处理知识点整理](https://img.taocdn.com/s3/m/0a140c5b90c69ec3d4bb750d.png)
第一章 时域离散随机信号的分析1.1. 引言实际信号的四种形式:连续随机信号、时域离散随机信号、幅度离散随机信号和离散随机序列。
本书讨论的是离散随机序列()X n ,即幅度和时域都是离散的情况。
随机信号相比随机变量多了时间因素,时间固定即为随机变量。
随机序列就是随时间n 变化的随机变量序列。
1.2. 时域离散随机信号的统计描述 1.2.1概率描述1. 概率分布函数(离散情况)随机变量n X ,概率分布函数: ()()n X n n n F x ,n P X x =≤ (1)2. 概率密度函数(连续情况)若n X 连续,概率密度函数: ()()n n X X n nF x,n p x ,n x ∂=∂ (2)注意,以上两个表达式都是在固定时刻n 讨论,因此对于随机序列而言,其概率分布函数和概率密度函数都是关于n 的函数。
当讨论随机序列时,应当用二维及多维统计特性。
()()()()121212,,,121122,,,12,,,1212,1,,2,,,,,,,1,,2,,,,1,,2,,,NNNx XX N N N N x XX N x XX N NF x x x N P X x X x X x F x x x N p x x x N x x x =≤≤≤∂=∂∂∂1.2.2 数字特征1. 数学期望 ()()()()n xx n n m n E x n x n p x ,n dx ∞-∞==⎡⎤⎣⎦⎰ (3)2. 均方值与方差均方值: ()()22n n x n n E X x n p x ,n dx ∞-∞⎡⎤=⎣⎦⎰ (4)方差: ()()()2222xn x n x n E X m n E X m n σ⎡⎤⎡⎤=-=-⎣⎦⎣⎦(5)3. 相关函数和协方差函数自相关函数:()()n m**xxn m n m X,X n m n m r n,m E X X x x p x ,n,x ,m dx dx ∞∞-∞-∞⎡⎤==⎣⎦⎰⎰ (6)自协方差函数:()()()()**cov ,,n m nmn m n XmX xx XXX X E X m Xm r n m m m ⎡⎤=--⎢⎥⎣⎦=- (7)由此可进一步推出互相关函数和互协方差函数。
数字信号处理知识点
![数字信号处理知识点](https://img.taocdn.com/s3/m/e7db732a31126edb6f1a10ee.png)
第1章 时域离散信号和时域离散系统1.常用典型序列间的关系:(1)单位采样序列)(n δ可用单位阶跃序列)(n u 表示,即)(n δ=)1()(--n u n u 。
(2)单位阶跃序列)(n u 可用单位采样序列)(n δ表示,即)(n u =∑∑-∞=∞==-nm k m k n )()(0δδ。
(3)矩形序列)(n R N 可用单位阶跃序列)(n u 表示,即=)(n R N )()(N n u n u --。
(4)对任意序列)(n x ,可用单位采样序列)(n δ表示,即)(n x =∑∞-∞=-m m n m x )()(δ。
2.正弦序列和复指数序列周期性的判定(1)关于序列)(n x =cos(n 73π-8π)的周期性的判定,以下说法正确的是( C )。
A. )(n x 是周期序列,周期为3 B. )(n x 是周期序列,周期为7 C. )(n x 是周期序列,周期为14D. )(n x 不是周期序列(2) 关于序列)53sin()(ππ-=n n x 的周期性的判定,以下说法正确的是( C )。
A. )(n x 是周期序列,周期为3 B. )(n x 是周期序列,周期为5 C. )(n x 是周期序列,周期为10D. )(n x 不是周期序列(3)关于序列)81()(π-=n j e n x 的周期性的判定,以下说法正确的是( D )A. )(n x 是周期序列,周期为1B. )(n x 是周期序列,周期为8C. )(n x 是周期序列,周期为1/8D. )(n x 不是周期序列3.序列运算给定信号⎪⎩⎪⎨⎧≤≤-≤≤-+=其它 03031332)(n n n n x (1)画出)(n x 及)1(2-n x 的波形图; (2)画出)(n x 及)1(2+n x 的波形图;(3) 画出)(n x 及)1(2n x -的波形图; (4) 画出)(n x 及)2/(2n x 的波形图; (5) 画出)(n x 及)2(2n x 的波形图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数字信号处理》辅导一、离散时间信号和系统的时域分析 (一) 离散时间信号(1)基本概念信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。
连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。
模拟信号:是连续信号的特例。
时间和幅度均连续。
离散信号:时间上不连续,幅度连续。
常见离散信号——序列。
数字信号:幅度量化,时间和幅度均不连续。
(2)基本序列(课本第7——10页)1)单位脉冲序列 1,0()0,0n n n δ=⎧=⎨≠⎩ 2)单位阶跃序列 1,0()0,0n u n n ≥⎧=⎨≤⎩3)矩形序列 1,01()0,0,N n N R n n n N ≤≤-⎧=⎨<≥⎩ 4)实指数序列 ()n a u n5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞则称()x n 为周期序列,记为()x n %,N 为其周期。
注意正弦周期序列周期性的判定(课本第10页)2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()xn %,即()()i x n x n iL ∞=-∞=-∑%当L N ≥时,()()()N x n xn R n =% 当L N <时,()()()N x n x n R n ≠%(4)序列的分解序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即()()(),e o x n x n x n n =+-∞<<∞并且1()[()()]2e x n x n x M n *=+- 1()[()()]2o x n x n x M n *=--(4)序列的运算 1)基本运算2)线性卷积:将序列()x n 以y 轴为中心做翻转,然后做m 点移位,最后与()x n 对应点相乘求和——翻转、移位、相乘、求和定义式: 1212()()()()()m y n x m x n m x n x n ∞=-∞=-=*∑线性卷积的计算:A 、图解 B 、解析法C 、不进位乘法(必须掌握)3)单位复指数序列求和(必须掌握)/2/2/2/2/2/21/2/2/2/2/2/2(1)/21()()/(2)1()()/(2)sin(/2)sin(/2)j N j N j N j N j N j N j N N j nj j j j j j j n j N e e e e e e e j ee e e e e e e j N e ωωωωωωωωωωωωωωωωωω------------=-----===---=∑如果2/k N ωπ=,那么根据洛比达法则有sin(/2)(0)(0)(()())sin(/2)N N k N N k N ωδδω===或可以结合作业题3.22进行练习(5)序列的功率和能量能量:2|()|n E x n ∞=-∞=∑功率:21lim |()|21NN n NP x n N →∞=-=+∑ (6)相关函数——与随机信号的定义运算相同(二) 离散时间系统1.系统性质 (1)线性性质定义:设系统的输入分别为1()x n 和2()x n ,输出分别为1()y n 和2()y n ,即1122()[()],()[()]y n T x n y n T x n ==统的输对于任意给定的常数a 、b ,下式成立1212()[()()]()()y n T ax n bx n a y n by n =+=+则该系统服从线性叠加原理,为线性系统,否则为非线性系统。
判定系统的线性性质时,直接用定义 (2)时不变性质统的如果系统对输入信号的运算关系在整个运算过程中不随时间变化,则称该系统是时不变系统。
即对任意给定的整数i ,若下式成立:()[()]y n i T x n i -=-则称该系统为时不变系统,否则为时变系统。
判定系统的时不变性质时,直接用定义 (3)系统的因果性定义:如果系统n 时刻的输出序列只取决于n 时刻及以前的输入序列,而与n 时刻以后的输入序列无关,则称该系统具有因果性质,即系统是因果系统,否则是非因果系统。
离散时间LTI 系统具有因果性的充要条件是:系统的单位脉冲响应()h n 满足()0,0h n n =<(4)系统的稳定性定义:对任意有界的输入,系统的输出都有界,则该系统是稳定的,否则是不稳定的。
离散时间LTI 系统具有因果性的充要条件是:系统的单位脉冲响应()h n 满足绝对可和,即|()|i h i ∞=-∞<∞∑(5)对离散时间LTI 系统的描述 (1)时域:差分方程(2)Z 域:系统函数()H z 2.信号过系统()()()y n h n x n =*用线性卷积的相关知识计算,信号系统学的基本性质可以套用二、离散时间信号和系统的频域分析 (一) 离散时间信号1.序列傅里叶变换(Sequence Fourier Transform )(即本书中的离散时间信号的傅里叶变换) (1)定义SFT :()[()](),j j nn X e SFT x n x n eωωω∞-=-∞==-∞<<∞∑ISFT :1()[()](),2j j j n x n ISFT X e X e e d n πωωωπωπ-==-∞<<∞⎰说明:1、物理意义:序列傅里叶变换本质上是序列的一种分解,它将一般序列分解为无穷多个数字角频率[,]ππ-中的复指数序列。
称()j X e ω为序列()x n 的频谱,其模|()|j X e ω称为幅频特性,其幅角arg[()]()j X e ωθω=称为相频特性。
2、尽管序列()x n 是离散时间信号,但它的序列傅里叶变换对数字角频率ω而言却是连续函数,因此,序列()x n 的傅里叶变换是连续的。
3、(2)(2)()()()j j nj n X ex n eX e ωπωπω∞+-+=-∞==∑由上式可知,序列傅里叶变换()j X e ω是以2π为周期的周期函数,其原因正是由于j n e ω对ω而言以2π为周期,即数字角频率相差2π的所有单位复指数序列等价。
因此,对ω-∞<<∞的所有单位复指数序列只有一个周期。
对于离散时间信号,由于的周期性,使得02ωπ=或的整数倍都表示信号的直流分量,而π的奇数倍表示信号的最高频率。
(2)性质(3)基本序列的傅里叶变换2.Z 变换(不熟悉的复习信号系统相关内容,或本书2.3相关内容) (1)定义ZT :()[()]()||nx x n X z ZT x n x n zR z R ∞--+=-∞===<<∑IZT :11()[()]()||2n x x cx n IZT X z X z z dzR z R j π--+==<<⎰Ñ(2)性质——课本49页表2.3.3(3)收敛域与基本序列Z 变换——课本45页表2.3.1、表2.3.2 3. 离散时间信号Z 变换与SFT 的关系Z 变换是由SFT 推广得到的,反过来,如果某序列的Z 变换的收敛域包括j z e ω=,则也可以通过ZT 求得序列的SFT 。
即()|()()j j nj z e n X z x n eX e ωωω∞-==-∞==∑上式表明,SFT 正是序列的ZT 在j z e ω=的值(二) 离散时间系统1.系统函数的收敛域与系统因果性和稳定性当且仅当系统函数H(z)的收敛域为小于单位圆的某个圆的园外时,系统是因果稳定的。
2.系统函数的零极点分布与系统因果性和稳定性若系统是因果稳定的,则H(z)的极点必定在单位圆内。
3.系统函数的零极点分布对系统频率响应特性的影响1、对极点而言:当单位圆上的点转到某个极点附近时,|()|j H e ω在这附近出现峰值。
极点越靠近单位圆,振幅特性的峰值越大,当极点出现在单位圆上时,振幅特性将出现无穷大,系统不稳定。
2、对零点而言:当单位圆上的点转到某个零点附近时,|()|j H e ω在这附近出现谷点。
当零点出现在单位圆上时,振幅特性为零。
零点可以位于单位圆外,不影响稳定性。
两个概念——1、最小相位系统:系统H(z)的全部零极点都在单位圆内,某点在单位圆上逆时针旋转一周时,系统的相位变化最小。
2、最大相位系统:H(z)的全部零点在单位圆外,系统的相位变化最大。
说明:处于坐标原点的零极点不影响系统的幅频响应;利用零极点分析系统的幅频响应,仅对低阶系统有效。
(三) 离散时间信号与模拟(连续)时间信号1.时域关系设连续时间信号()a x t ,离散时间信号()x n ,则()()()|a a t nT x n x nT x t ===2.频域关系1()|[()]j T a s m X e X j m T ωω∞=Ω=-∞=Ω-Ω∑在时域对信号抽样,其频域的特征就是频谱以采样频率s Ω为周期进行周期延拓。
一个域的离散必然导致另一个域的周期延拓 一个域的周期延拓必然导致另一个域的离散对应变量的关系:ω-Ω-单位:rad 单位:HzT ω=Ω由于s Ω≤Ω,所以max 2s T ωπ=Ω=三、离散傅里叶变换(DFT )(一) 离散傅里叶级数变换(DFST )说明:周期序列不满足绝对可和的条件,不适用于序列傅里叶变换的定义式,但是它可以展开成离散傅里叶级数(Discrete Fourier Series ,DFS ),利用离散傅里叶级数可以得到周期序列的离散傅里叶变换表示式。
1.定义DFST :10()(),N nk N n Xk x n W k -==-∞<<∞∑%% IDFST :101()(),N nk Nn xn Xk W n N--==-∞<<∞∑%%注:1、周期单位复指数序列22,j nk j nk nk nk NNNNWe We ππ--==周期单位复指数序列对n 、k 而言都是以N 为周期的,即(),,n N k nk N N W W n k +=-∞<<∞ (),,n k N nk N N W W n k +=-∞<<∞ (),,nk N nk N N W W n k +=-∞<<∞2、周期为N 的周期序列()x n %可以分解成N 个周期复指数序列的和,这些周期复指数序列的数字角频率为2(0,1,2,,1)kk N Nπ=⋅⋅⋅-周,它们的幅度和相位由离散傅里叶级数()X k N%决定。