高中数学独立重复试验与二项分布综合测试题(附答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学独立重复试验与二项分布综合测试题(附答案)

独立重复试验与二项分布

一、选择题

1.某一试验中事件A发生的概率为p,则在n次这样的试验中,A发生k次的概率为()

A.1-pk

B.(1-p)kpn-k

C.(1-p)k

D.Ckn(1-p)kpn-k

[答案] D

[解析] 在n次独立重复试验中,事件A恰发生k次,符合二项分布,而P(A)=p,则P(A)=1-p,故P(X=k)=Ckn(1-p)kpn-k,故答案选D.

2.在4次独立重复试验中,事件A发生的概率相同,若事件A至少发生1次的概率为6581,则事件A在1次试验中发生的概率为()

A.13

B.25

C.56

D.34

[答案] A

[解析] 事件A在一次试验中发生的概率为p,由题意得1-

C04p0(1-p)4=6581,所以1-p=23,p=13,故答案选页

1 第

A.

3.流星穿过大气层落在地面上的概率为0.002,流星数为10的流星群穿过大气层有4个落在地面上的概率为() A.3.3210-5 B.3.3210-9

C.6.6410-5 D.6.6410-9

[答案] B

[解析] 相当于1个流星独立重复10次,其中落在地面上的有4次的概率P=C4100.0024(1-0.002)63.3210-9,应选B.

4.已知随机变量X服从二项分布,X~B6,13,则P(X=2)等于()

A.316

B.4243

C.13243

D.80243

[答案] D

[解析] 已知X~B6,13,P(X=k)=Cknpk(1-p)n-k,当X =2,n=6,p=13时有P(X=2)=C261321-136-2=

C26132234=80243.

5.某一批花生种子,如果每1粒发芽的概率为45,那么播下4粒种子恰有2粒发芽的概率是()

A.16625

B.96625

C.192625

D.256625

[答案] B

页 2 第

[解析] P=C24452152=96625.

6.某电子管正品率为34,次品率为14,现对该批电子管进行测试,设第次首次测到正品,则P(=3)=()

A.C2314234 B.C2334214

C.14234

D.34214

[答案] C

7.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响.则他恰好击中目标3次的概率为()

A.0.930.1

B.0.93

C.C340.930.1

D.1-0.13

[答案] C

[解析] 由独立重复试验公式可知选C.

8.(2019保定高二期末)位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P移动五次后位于点(2,3)的概率是()

A.(12)5 B.C25(12)5

C.C35(12)3 D.C25C35(12)5

[答案] B

页 3 第

[解析] 由于质点每次移动一个单位,移动的方向向上或向右,移动五次后位于点(2,3),所以质点P必须向右移动二次,向上移动三次,故其概率为C35(12)3(12)2=C35(12)5=C25(12)5.

二、填空题

9.已知随机变量X~B(5,13),则P(X4)=________. [答案] 11243

10.下列例子中随机变量服从二项分布的有________.

①随机变量表示重复抛掷一枚骰子n次中出现点数是3的倍数的次数;

②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数;

③有一批产品共有N件,其中M件为次品,采用有放回抽取方法,表示n次抽取中出现次品的件数(MN);

④有一批产品共有N件,其中M件为次品,采用不放回抽取方法,表示n次抽取中出现次品的件数.

[答案] ①③

[解析] 对于①,设事件A为“抛掷一枚骰子出现的点数是3

的倍数”,P(A)=13.而在n次独立重复试验中事件A恰好发生了k次(k=0,1,2,……,n)的概率P(=k)=Ckn13k23n

-k,符合二项分布的定义,即有~B(n,13).

对于②,的取值是1,2,3,……,P(=k)=0.90.1k-1(k=页4 第

1,2,3,……n),显然不符合二项分布的定义,因此不服从二项分布.

③和④的区别是:③是“有放回”抽取,而④是“无放回”抽取,显然④中n次试验是不独立的,因此不服从二项分布,对于③有~Bn,MN.

故应填①③.

11.(2019湖北文,13)一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为________(用数字作答).

[答案] 0.9477

[解析] 本题主要考查二项分布.

C340.930.1+(0.9)4=0.9477.

12.如果X~B(20,p),当p=12且P(X=k)取得最大值时,k=________.

[答案] 10

[解析] 当p=12时,P(X=k)=Ck2019k1220-k

=1220Ck20,显然当k=10时,P(X=k)取得最大值.

三、解答题

13.在一次测试中,甲、乙两人独立解出一道数学题的概率相同,已知该题被甲或乙解出的概率是0.36,写出解出该题人数X的分布列.

[解析] 设甲、乙独立解出该题的概率为x,由题意1-(1页5 第

-x)2=0.36,解得x=0.2.

所以解出该题人数X的分布列为

X 0 1 2

P 0.64 0.32 0.04

14.已知某种疗法的治愈率是90%,在对10位病人采用这种疗法后,正好有90%被治愈的概率是多少?(精确到0.01) [解析] 10位病人中被治愈的人数X服从二项分布,即X~B(10,0.9),故有9人被治愈的概率为P(X=9)=

C9100.990.110.39.

15.9粒种子分种在3个坑中,每坑3粒,每粒种子发芽的概率为0.5.若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用X表示补种的费用,写出X的分布列.

[解析] 因为一个坑内的3粒种子都不发芽的概率为(1-0.5)3=18,所以一个坑不需要补种的概率为1-18=78.

相关文档
最新文档