第29章投影与视图单元测试与答案.doc

合集下载

(完整)人教版九年级数学上册第29章投影与视图单元测试题含答案,推荐文档

(完整)人教版九年级数学上册第29章投影与视图单元测试题含答案,推荐文档

一、选择题单元测试卷1.小明从正面观察如图所示的物体,看到的是()A .B .C .D . 2.把一个正六棱柱如图 1 摆放,光线由上向下照射此正六棱柱时的正投影是( )A .B .C .D .3. 如果用□表示 1 个立方体,用 表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由 7 个立方体叠成的几何体,从正前方观察,可画出的平面图形是()A .B .C .D .4. 小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是( )A .三角形B .线段C .矩形D .平行四边形5.由下列光线形成的投影不是中心投影的是()A.手电筒B.探照灯C.太阳D.电灯6.平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的7.下列命题正确的是()A.三视图是中心投影B.小华观察牡丹花,牡丹花就是视点C.球的三视图均是半径相等的圆D.阳光从矩形窗子里照射到地面上得到的光区仍是矩形8.圆形的物体在太阳光的投影下是()A.圆形B.椭圆形C.以上都有可能D.以上都不可能9.如图,从左面看圆柱,则图中圆柱的投影是()A.圆B.矩形C.梯形D.圆柱10.一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是()A.B.C.D.二.填空题11.我们常说的三种视图分别是指、、.12.请写出三种视图都相同的两种几何体是.13.如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称.14.一张桌子摆放若干碟子,从三个方向上看,三种视图如图所示,则这张桌子上共有个碟子.15.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小.16.棱长是1cm 的小立方体组成如图所示的几何体,那么这个几何体的表面积是 cm2.三、作图题17.画出如图组合体的三种视图.18.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.四、解答题19.已知,如图,AB 和DE 是直立在地面上的两根立柱,AB=5m,某一时刻AB 在阳光下的投影BC=3m.(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m,请你计算DE 的长.20.已知,如图,AB 和DE 是直立在地面上的两根立柱,AB=5m,某一时刻AB 在阳光下的投影BC=3m.(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m,请你计算DE 的长.21.解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40 米,中午12 时不能挡光.如图,某旧楼的一楼窗台高1 米,要在此楼正南方40 米处再建一幢新楼.已知该地区冬天中午12 时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?一、选择题答案解析1. 小明从正面观察如图所示的物体,看到的是()A .B .C .D .【考点】简单几何体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看所得到的图形,圆柱从正面看是长方形,正方体从正面看是正方形,所以从左往右摆放一个圆柱体和一个正方体,它们的主视图是左边一个长方形, 右边一个正方形. 故选 C .【点评】此题主要考查了三视图的知识,主视图是从物体的正面看得到的视图.2. 把一个正六棱柱如图 1 摆放,光线由上向下照射此正六棱柱时的正投影是()A . B.C .D .【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.如果用□表示1 个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7 个立方体叠成的几何体,从正前方观察,可画出的平面图形是()A.B.C.D.【考点】简单几何体的三视图.【专题】压轴题.【分析】找到从正面看所得到的图形即可,注意所有看到的棱都应表现在主视图中.【解答】解:从正前方观察,应看到长有三个立方体,且中间的为三个立方体叠加;高为两个立方体,在中间且有两个立方体叠加.故选B.【点评】此题主要考查三视图的知识、学生的观察能力和空间想象能力.4.小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.平行四边形【考点】平行投影.【分析】根据平行投影的性质进行分析即可得出答案.【解答】解:将长方形硬纸的板面与投影线平行时,形成的影子为线段;将长方形硬纸板与地面平行放置时,形成的影子为矩形;将长方形硬纸板倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且长方形对边相等,故得到的投影不可能是三角形.故选:A.【点评】本题考查了投影与视图的有关知识,是一道与实际生活密切相关的热点试题,灵活运用平行投影的性质是解题的关键.5.由下列光线形成的投影不是中心投影的是()A.手电筒B.探照灯C.太阳D.电灯【考点】中心投影.【分析】利用中心投影和平行投影的定义判断即可.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有C 选项得到的投影为平行投影.故选C.【点评】本题考查了中心投影的定义,解题的关键是理解中心投影的形成光源是灯光.6.平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的【考点】平行投影.【分析】解答本题关键是要理解平行投影,平行投影中的光线是平行的,如阳光等.【解答】解:平行投影中的光线是平行的.故选A.【点评】本题考查平行投影的定义,需注意与中心投影定义的区别.A.三视图是中心投影B.小华观察牡丹花,牡丹花就是视点C.球的三视图均是半径相等的圆D.阳光从矩形窗子里照射到地面上得到的光区仍是矩形【考点】平行投影与三视图.【分析】根据球的三视图即可作出判断.【解答】解:A,错误,三视图是平行投影;B,错误,小华是视点;C,正确;D,错误,也可以是平行四边形;故选C.【点评】本题考查了三视图,投影,视点的概念.8.圆形的物体在太阳光的投影下是()A.圆形B.椭圆形C.以上都有可能D.以上都不可能【考点】平行投影.【分析】根据圆形的物体与太阳光线的位置关系进行判断.【解答】解:圆形的物体在太阳光的投影下可能为圆形,也可能为椭圆形.故选C.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.9.如图,从左面看圆柱,则图中圆柱的投影是()A.圆B.矩形C.梯形D.圆柱【考点】平行投影.【分析】根据圆柱的左视图的定义直接进行解答即可.【解答】解:如图所示圆柱从左面看是矩形,故选:B.【点评】本题主要考查了简单几何体的三视图,关键是根据三视图的概念得出是解题关键.10.一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是()A.B.C.D.【考点】平行投影.【分析】根据看等边三角形木框的方向即可得出答案.【解答】解:竖直向下看可得到线段,沿与平面平行的方向看可得到C,沿与平面不平行的方向看可得到D,不论如何看都得不到一点.故选B.【点评】本题主要考查对平行投影的理解和掌握,能熟练地观察图形得出正确结论是解此题的关键二.填空题11.我们常说的三种视图分别是指主视图、俯视图、左视图.【考点】平行投影.【分析】根据三视图的定义求解.【解答】解:我们常说的三种视图分别是指主视图、俯视图、左视图.故答案为主视图、俯视图、左视图.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.记住三视图的定义.12.请写出三种视图都相同的两种几何体是球,正方体(答案不唯一).【考点】根据视图描述几何体.【专题】开放型.【分析】球的三视图是 3 个全等的圆;正方体的三视图是 3 个全等的正方形.【解答】解:球的三视图是3 个全等的圆;正方体的三视图是3 个全等的正方形,故答案为球,正方体(答案不唯一).【点评】考查由三视图判断几何体;常见的三视图相同的几何体如球,正方体等应熟记.13.如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称圆锥.【考点】根据视图描述几何体.【分析】从主视图以及左视图都为一个三角形,俯视图为一个圆形看,可以确定这个几何体为一个圆锥.【解答】解:根据三视图可以得出立体图形是圆锥,故答案为:圆锥.【点评】本题考查了由几何体的三种视图判断出几何体的形状,应从所给几何体入手分析得出是解题关键.14.一张桌子摆放若干碟子,从三个方向上看,三种视图如图所示,则这张桌子上共有12 个碟子.【考点】根据视图描述几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:易得三摞碟子数分别为3,4,5 则这个桌子上共有12 个碟子.故答案为:12.【点评】本题考查对三视图的理解应用及空间想象能力.15.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小相同.【考点】平行投影.【专题】压轴题.【分析】根据平行投影特点,当物体的某个面平行于投影面时,即光线垂直这个面;这个面的正投影与这个面的形状、大小相同.【解答】解:根据平行投影特点得:这个面的正投影与这个面的形状、大小相同.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.16.棱长是1cm 的小立方体组成如图所示的几何体,那么这个几何体的表面积是36 cm2.【考点】复杂几何体的三视图.【专题】计算题.【分析】解此类题应利用视图的原理从不同角度去观察分析以进行解答.【解答】解:从上面看到的面积为6×(1×1),从正面看面积为6×2×(1×1),从两个侧后面看面积为2×6×(1×1),底面看到的面积为6×(1×1),故这个几何体的表面积为36cm2.故答案为36cm2.【点评】几何体的表面积是所有围成几何体的表面面积之和.三、作图题(按要求画出图形并写出名称)17.画出如图组合体的三种视图.【考点】复杂几何体的三视图.【分析】由已知条件可知,主视图有3 列,每列小正方数形数目分别为1,3,1,左视图有2 列,每列小正方形数目分别为2,3,2.俯视图有3 列,每一列的正方形个数为3,3,3 据此可画出图形.【解答】解:如图所示:.【点评】此题主要考查了画三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.18.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.【考点】中心投影.【专题】作图题.【分析】根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源.所以分别把已知影长的两个人的顶端和影子的顶端连接并延长可交于一点,即点光源的位置,再由点光源出发连接小赵顶部的直线与地面相交即可找到小赵影子的顶端.【解答】解:【点评】本题考查平行投影和中心投影的作图,解题的关键是要知道:连接物体和它影子的顶端所形成的直线必定经过点光源.四、解答题19.已知,如图,AB 和DE 是直立在地面上的两根立柱,AB=5m,某一时刻AB 在阳光下的投影BC=3m.(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m,请你计算DE 的长.【考点】平行投影.【专题】计算题;作图题.【分析】(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10(m).【解答】解:(1)连接AC,过点D 作DF∥AC,交直线BC 于点F,线段EF 即为DE 的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC 和DF,再连接EF 即可.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合图形解题.20.已知,如图,AB 和DE 是直立在地面上的两根立柱,AB=5m,某一时刻AB 在阳光下的投影BC=3m.(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m,请你计算DE 的长.【考点】平行投影.【专题】计算题;作图题.【分析】(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10(m).【解答】解:(1)连接AC,过点D 作DF∥AC,交直线BC 于点F,线段EF 即为DE 的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC 和DF,再连接EF 即可.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合图形解题.21.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40 米,中午12 时不能挡光.如图,某旧楼的一楼窗台高 1 米,要在此楼正南方40 米处再建一幢新楼.已知该地区冬天中午12 时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?【考点】平行投影.【专题】应用题;压轴题.【分析】在不违反规定的情况下,需使阳光能照到旧楼的一楼;据此构造Rt△ DCE,其中有CE=30 米,∠DCE=30°,解三角形可得DE 的高度,再由DB=BE+ED 可计算出新建楼房的最高高度.【解答】解:过点 C 作CE⊥BD 于E.∵AB=40 米,∴CE=40 米,∵阳光入射角为30°,∴∠DCE=30°,在Rt△DCE 中tan∠DCE= .∴,∴DE=40×= 米,∵AC=BE=1 米,∴DB=BE+ED=1+ = 米.答:新建楼房最高为米.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.需注意通过投影的知识结合图形相似的性质巧妙地求解或解直角三角形.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

人教版初中数学九年级下册单元测试 第29章 投影与视图 (含答案)

人教版初中数学九年级下册单元测试 第29章  投影与视图  (含答案)

第二十九章投影与视图全章测试一、选择题1.平行投影中的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散2.正方形在太阳光下的投影不可能是( )A.正方形B.一条线段C.矩形D.三角形3.如图1,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是( )4.由一些完全相同的小立方块搭成的几何体的三视图如图所示,那么搭成这个几何体所用的小立方块的个数是( )第4题图A.8 B.7 C.6 D.5 5.如图是某几何体的三视图及相关数据,则判断正确的是( )第5题图A.a>c B.b>cC.4a2+b2=c2D.a2+b2=c26.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是( )A.2 B.3C.4 D.5二、填空题7.一个圆柱的俯视图是______,左视图是______.8.如果某物体的三视图如图所示,那么该物体的形状是______.第8题图9.一空间几何体的三视图如图所示,则这个几何体的表面积是______cm2.第9题图10.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于______.三、解答题11.楼房、旗杆在路灯下的影子如图所示.试确定路灯灯炮的位置,再作出小树在路灯下的影子.(不写作法,保留作图痕迹)12.画出图中的九块小立方块搭成几何体的主视图、左视图和俯视图.13.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请画出这个几何体的主视图和左视图.14.如图是一个几何体的主视图和俯视图,求该几何体的体积( 取3.14).图形并求这两种圆柱的表面积.答案与提示第二十九章 投影与视图全章测试1.A . 2.D . 3.A . 4.A . 5.D . 6.B .7.圆;矩形. 8.三棱柱. 9.48π. 10.24.11.如图:12.如图:13.如图:14.体积为π×102×32+30×25×40≈40 048(cm 3). 15.第一种:高为a ,表面积为;π221b ab S +=第二种:高为b ,表面积为⋅+=π222a ab S。

人教版-九下数学第二十九章《投影与视图》单元测试及答案【2】

人教版-九下数学第二十九章《投影与视图》单元测试及答案【2】

DC B A 九下数学第二十九章《投影与视图》单元测试及答案(时限:100分钟 满分:100分)班级 姓名 总分 一、填空题:(本大题共12小题,每小题2分,共24分)1.平行投影中光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散的 2.木棒长为1.2m ,则它的正投影的长一定( )A.大于1.2mB.小于1.2mC.等于1.2mD.小于或等于1.2m 3.如图是一根电线杆在一天中不同时刻的影长图,试按一天中时间先后顺序排列,正确的是( )A.①②③④B.④①③②C.④②③①D.④③②① 4.下图是一个立体图形的二视图,根据图示的数据求出这个立体图形的体积是( )A.24cmB.48cmC.72cmD.192cm 5.下面立方体的左视图应为( )俯视图左视图主视图俯视图左视图主视图6.如图是某几何体的三视图及相关数据,则判断正确的是( )A. a >cB. b >cC. 4a 2+b 2=c 2D. a 2+b 2=c 2 7.如图是由一些相同的小正方体构成的几何体的三视图,则这个几何体的小正方体的个数是( )主视图 左视图 俯视图A. 4个B. 5个C. 6个D. 7个 8.将一个几何体放在桌子上,它的三视图如下,这个几何体是( )俯视图 左视图 主视图 A.三棱体 B.长方体 C.正方体 D.球体9.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底边长分别为( )A.3,2B. 2,2C. 3,2D. 2,310.下列投影一定不会改变△ABC的形状和大小的是()A.中心投影B.平行投影C.正投影D.当△ABC平行投影面时的平行投影11.已知一个物体由x个相同的正方体堆成,它的主视图和左视图如图,那么x的最大值是()主视图左视图A.13B. 12C. 11D. 1012.下面左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示位置上小立方块的个数,则该几何体的主视图为()34 2 11 2二、填空题:(本大题共8小题,每小题3分,共24分)13.在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是.(填序号)14.由一些大小相同的小正方体组成的几何体三视图如图所示,那么,组成这个几何体的小正方体有块.主视图左视图俯视图4215.正方形ABCD 的边长为3,以直线AB 为轴旋转一周,所得几何体的左视图的周长是 .16.如图是一个几何体的三视图,其中主视图、左视图、都是腰为13cm ,底为10cm 的等腰三角形,则这个几何体的表面积为 .主视图 左视图 俯视图17.一个圆锥的轴截面平行于投影面,已知圆锥的正投影是边长为a 的等边三角形,则圆锥的体积是 .18.某一时刻,身高为165cm 的小丽影长是55cm ,此时,小玲在同一地点测得旗杆的影长为5m ,则该旗杆的高度为 m.19.如图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是 (把下图中正确和立体图形的序号都填在横线上)①② ③ ④20.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于 .俯视图左视图主视图三、解答题:(本大题共52分)21.(7分) 圆形餐桌正上方有一个灯泡A ,灯泡A 照射到餐桌后在地面上形成阴影.已知餐桌的半径为0.4m 、高为1m ,灯泡距地面2.5m,求地面上阴影部分的面积.22.(7分)一个几何体的三视图如图所示,它的俯视图为菱形,请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.23.(8分)某班一位学生要过生日了,为了筹备生日聚会,班主任准备让学生自己动手制作生日礼帽.如图所示,是礼帽的三视图,计算制作一个这样的生日礼帽需要纸板的面积为多24.(8分)求证:一个人在两个高度相同的路灯之间行走,他前后的两个影子的长度之和是一个定值.25.(8分)如图,花丛中有一路灯杆AB,在灯光下,小丽在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小丽的影长GH=5米.如果小丽的身高为1.7米,求路灯杆AB的高度(精确到0.1米)26.(7分)八年级美术老师在课堂上进行立体模型素描教学时,把14个棱长为10的正方体摆成如图所示的形式,然后他把露出的表面都涂上不同的颜色,求被他涂上颜色部分的面积.27.(7分)观察下列由棱长为1的小立方体摆成的图形.寻找规律,如图①中共有1个小立方体,其中1个看得见,0个看不见;如图②共有8个立方体,其中7个看得见,1个看不见;如图③中,共有278个看不见……①②③照此规律,请你判断第⑥个图中有多少个小立方块,有多少个看不见?0.4x FE DCB A1030DO CBAbb a N MF E DCBA 参考答案 一、选择题:1.A ;2.D ;3.B ;4.B ;5.B ;6.D ;7.B ;8.A ;9.C ;10.D ;11.C ;12.C ; 二、填空题:13.②;14.5;15.18π;16.90π㎝2;17.a 3π;18.15;19.①、②、④;20.24; 三、解答题:21.解:如图所示,设底面半径为x mDE ∥BC 可得= 解得 x =∴底面面积为:π=πm 222.解:该几何体的形状是直四棱柱.由三视图可知:棱柱底面菱形的对角线长分别为4cm 、3cm , ∴菱形的边长为 cm∴棱柱的测面积=×8×4=80(cm 2) 23.解:由三视图可知,该几何体是圆锥体. 其中,底面直径是20cm ,高为30cm. 则圆锥的母线长为 =10cm 圆锥的表面积为 S =×20π×10 =100 (cm 2) ∴制作生日礼帽需要纸板100π (cm 2). 24.解:如图所示,CD 、EF 为路灯高度,AB 为该人高度, BM 、BN 为该人前后的两个影子. ∵AB ∥CD ∴= ∴= 即 MB =DB. 同理 BN =FB.1.75231.7xHGF E D C BA∴MB +BN = =常数(定值).25.解:如图所示, ∵CD ∥AB ∴= ∴= ① 同理 == ②由①②得 = ∴BD =∴= ∴x ≈6. 答 略.26.解:从前、后、左、右看该物体均为6个正方形,从上面看有9个正方形, 所以被涂上颜色部分的面积为 6×100×4+900=3300.27.解:照此规律,第⑥个图形中有216个小立方块,有125个小立方块看不见.。

人教版九年级下册《第29章投影与视图》单元测试卷(有答案)

人教版九年级下册《第29章投影与视图》单元测试卷(有答案)

人教版九年级数学下册第29章投影与视图单元测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 在阳光下摆弄一个矩形,它的影子不可能是()A.线段B.矩形C.等腰梯形D.平行四边形2. 如图,晚上小亮在路灯下散步,他从A处向着路灯灯柱方向径直走到B处,这一过程中他在该路灯灯光下的影子()A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短3. 在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长4. 电影院座位号呈阶梯状或下坡状的原因是()A.减小盲区B.增大盲区C.盲区不变D.为了美观5. 由几个相同的小立方块组成一个立体图形,如图是从不同方向看到它的图形,小立方块的个数是()A.3个B.4个C.5个D.6个6. 如图是某几何体的三视图及相关数据,则判断正确的是()A.a2+b2=c2B.a2+b2=4c2C.a2+c2=b2D.a2+4c2=b27. 下面四个立体图形中,三视图完全相同的是()A. B.C. D.8. 电影院呈阶梯或下坡形状的主要原因是()A.为了美观B.减小盲区C.增大盲区D.盲区不变9. 如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A. B.C. D.10. 桌面上放置的几何体中,主视图与左视图可能不同的是()A.圆柱B.正方体C.球D.直立圆锥二、填空题(本题共计 10 小题,每题 3 分,共计30分)11. 如图,一几何体的三视图如右:那么这个几何体是________.12. 由6个大小相同的正方体搭成的几何体如图所示,则它的三种视图中,面积最大的是________(A、主视图B、左视图C、俯视图)13. 在①长方体、②球、③圆锥、④圆柱、⑤正方体、⑥三棱柱这六种几何体中,其主视图、左视图、俯视图都完全相同的是________(填上序号即可).14. ________是画三视图必须遵循的法则.15.如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是________.16. 请将六棱柱的三视图名称依次填在横线上________.17. 如图,一位同学身高1.6米,晚上站在路灯下,他在地面上的影长是2米,若他沿着影长的方向移动2米站立时,影长增加了0.5米,则路灯的高度是________米.18. 学校的阶梯教室做成阶梯形的原因是________.19. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”把此诗句用在视图上,说明的现象是________.20. 由视点发出的线称为________,看不到的地方称为________.三、解答题(本题共计 6 小题,每题 10 分,共计60分,)21. 请你画出如图几何体的三视图.22. 画出此实物图的三种视图.三种视图.23. 5个棱长为1的正方体组成如图所示的几何体,画出该几何体的主视图和左视图.24. 从三个方向看某一几何体,得到图形如图所示,请描述这个几何体是由几个正方体怎样摆放而成的.25. 由一些大小相同的小正方形搭成的几何体的俯视图,如图所示,其中正方形中的数字表示该位置上的小正方形的个数,请画出该几何体的主视图和左视图.26. 如图所示,观察左图,并在右边的三视图中标出几何体中的相应字母的位置.答案1. C2. A3. D4. A5. B6. C7. B8. B9. B10. A11. 空心圆柱12. C13. ②⑤14. 长对正,高平齐,宽相等15. 5或6或7或8或9或1016. 主视图,俯视图,左视图17. 818. 减少学生的盲区(看不见的地方),使得每人都能看到黑板19. 从不同的角度看得到的视图不同20. 视线盲区21. 解:如图所示:22. 解:23. 解:所画图形如下所示:24. 解:由三个方向看到的图形可以描述这个几何体:下层是由四个小正方体按正方形摆放,上层由一个小正方体摆放在正中央.25. 解:如图所示:26. 解:根据题意如图:。

人教版九年级下《第29章投影与视图》单元测试题含答案解析

人教版九年级下《第29章投影与视图》单元测试题含答案解析

春人教版九年级数学下册第29章投影与视图单元测试题一.选择题(共10小题)1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③2.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.3.小红和小花在路灯下的影子一样长,则她们的身高关系是()A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定4.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m5.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为()A.汽车开的很快B.盲区减小C.盲区增大D.无法确定6.如图所示的四棱柱的主视图为()A.B.C.D.7.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.8.如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是()A.B.C.D.9.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D10.如图是从三个方向看某个几何体得出的平面图形,该几何体是()A.棱柱体B.圆柱体C.圆锥体D.球体二.填空题(共8小题)11.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为.12.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.13.从正面看、从上面看、从左面看都是正方形的几何体是.14.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有.15.用硬纸壳做一个如图所示的几何体,其底面是圆心角为300°的扇形,则该几何体的表面积为cm2.16.如图是一个几何体的三个视图,若这个几何体的体积是24,则它的主视图的面积是.17.如图,是由10个完全相同的小正方体堆成的几何体.若现在你还有若干个相同的小正方体,在保证该几何体的从上面、从正面、从左面看到的图形都不变的情况下,最多还能放个小正方体.18.由一些完全相同的小正方体搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是.三.解答题(共7小题)19.一个几何体的三视图如图所示,根据图示的数据计算该几何体的侧面积.20.如图是从上面看到一个由小正方体搭建的几何体的图形,其中方框内的数字为该处小立方块的个数.请你画出从正面和左面看到这个几何体的图形.21.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.22.某个几何体由若干个相同的小立方体组成,从正面和左面看到的形状图如图1所示:(1)这个几何体可以是图2甲、乙、丙中的;(2)这个几何体最多由个小立方块堆成:(3)当堆成这个几何体的小立方块个数最少时,画出从上面看到的形状图.23.李明和同学们一起研究“从三个不同方向看问题的形状”.(1)图1是由几个大小相同的小立方体搭成的几何体,请画出从正面看到的这个几何体的形状图;(2)图2是由几个大小相同的小立方体搭成的几何体,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小立方体的个数.请画出从左面看到的这个几何体的形状图.24.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,一摞碟子的层数与累积高度的关系如下表:碟子层数累积高度(cm)1222+1.532+342+4.5……(1)当一摞碟子有x层时,请写出此时的累积高度(用含x的式子表示);(2)桌子上有一些碟子,如图分别是从正面、左面和上面看到的形状图,厨房师傅想把这些碟子全部叠成一摞,求叠成一摞后的累积高度.25.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是、、;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.春人教版九年级数学下册第29章投影与视图单元测试题参考答案与试题解析一.选择题(共10小题)1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③【分析】太阳光可以看做平行光线,从而可求出答案.【解答】解:太阳从东边升起,西边落下,所以先后顺序为:③④①②故选:C.【点评】本题考查平行投影,解题的关键是熟练知道太阳光是平行光线,本题属于基础题型.2.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.【分析】根据题意:水杯的杯口与投影面平行,即与光线垂直;则它的正投影图是应是D.【解答】解:依题意,光线是垂直照下的,故只有D符合.故选:D.【点评】本题考查正投影的定义及正投影形状的确定.3.小红和小花在路灯下的影子一样长,则她们的身高关系是()A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定【分析】根据中心投影的特点,小红和小花在同一路灯下的影长与他们到路灯的距离有关,虽然他们的身高一样,也不能判断谁的身高的高与矮.【解答】解:小红和小花在路灯下的影子一样长,在同一路灯下他们的影长与他们到路灯的距离有关,所以无法判断谁的身高的高与矮.故选:D.【点评】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.4.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m【分析】小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x,AO长为a,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴,,则,∴x=;,∴y=,∴x﹣y=3.5,故变短了3.5米.故选:C.【点评】此题考查相似三角形对应边成比例,应注意题中三角形的变化.5.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为()A.汽车开的很快B.盲区减小C.盲区增大D.无法确定【分析】前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了,说明看到的范围减少,即盲区增大.【解答】解:根据题意我们很明显的可以看出“沉”下去的建筑物实际上是到了自己的盲区的范围内.故选:C.【点评】本题结合了实际问题考查了对视点,视角和盲区的认识和理解.6.如图所示的四棱柱的主视图为()A.B.C.D.【分析】依据从该几何体的正面看到的图形,即可得到主视图.【解答】解:由图可得,几何体的主视图是:故选:B.【点评】本题主要考查了三视图,解题时注意:视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.7.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.【分析】根据图中的主视图解答即可.【解答】解:A、图中的主视图是2,1;B、图中的主视图是2,1;C、图中的主视图是2,1;D、图中的主视图是2,2;故选:D.【点评】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置.8.如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是()A.B.C.D.【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可得到答案.【解答】解:如图,左视图如下:故选:D.【点评】本题考查了作图﹣﹣三视图、由三视图判断几何体,本题画几何体的三视图时应注意小正方形的数目及位置.9.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D【分析】主视图是从几何体的正面看所得到的视图,俯视图是从几何体的上面看所得到的图形.【解答】解:主视图是矩形且中间有两道竖杠,俯视图是两个同心圆,故选:D.【点评】此题主要考查了三视图,关键是掌握主视图和俯视图所看的位置.10.如图是从三个方向看某个几何体得出的平面图形,该几何体是()A.棱柱体B.圆柱体C.圆锥体D.球体【分析】由主视图和俯视图可得此几何体为柱体,根据左视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和俯视图都是长方形,∴此几何体为柱体,∵左视图是一个圆,∴此几何体为平放的圆柱体.故选:B.【点评】本题考查了由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.二.填空题(共8小题)11.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为 2.16m2.【分析】根据平行投影,篮板在地面上的阴影部分为矩形,此矩形的长等于篮板长,为1.8m,由于太阳光与地面成45°角,根据等腰直角三角形的性质得矩形的宽等于篮板宽,为1.2m,然后根据矩形得面积公式求解.【解答】解:因为太阳光线是平行光线,所以篮板在地面上的阴影部分为矩形,此矩形的长等于篮板长,为1.8m,由于太阳光与地面成45°角,则矩形的宽等于篮板宽,为1.2m,所以篮板长留在地面上的阴影部分面积=1.8×1.2=2.16(m2).故答案为2.16m2.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.太阳光线是平行光线.12.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为4m.【分析】利用中心投影的性质可判断△CDE∽△CBA,再根据相似三角形的性质求出BC的长,然后计算BC﹣CD即可.【解答】解:∵DE∥AB,∴△CDE∽△CBA,∴=,即=,∴CB=6,∴BD=BC﹣CD=6﹣2=4(m).故答案为4.【点评】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.13.从正面看、从上面看、从左面看都是正方形的几何体是正方体.【分析】正方体从三个方向看到的形状图都是正方形,即三视图都是正方形.【解答】解:一个几何体从三个方向看到的形状图都是正方形,即三视图均为正方形,这样的几何体是正方体.故答案为:正方体.【点评】本题考查由三视图确定几何体的形状,关键是根据对几何体的认识解答.14.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有③俯视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,主视图是1,2,1,不是中心对称图形,左视图是1,2,1,不是中心对称图形,故答案为:③俯视图【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.15.用硬纸壳做一个如图所示的几何体,其底面是圆心角为300°的扇形,则该几何体的表面积为(60+75π)cm2.【分析】求得该几何体的侧面积以及底面积,相加即可得到表面积.【解答】解:侧面积为10×(6+)=60+50π,底面积之和为:2×=15π,∴该几何体的表面积为60+50π+15π=60+65π,故答案为:60+65π.【点评】本题主要考查了几何体的表面积,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.16.如图是一个几何体的三个视图,若这个几何体的体积是24,则它的主视图的面积是12.【分析】由2个视图是长方形,那么这个几何体为棱柱,另一个视图是三角形,那么可得该几何体是三棱柱,由三视图知,三棱柱的正面的高是3,根据三棱柱的体积公式得到三角形的底,根据三角形公式列式计算即可.【解答】解:由三视图知,几何体是一个三棱柱,三棱柱的正面是高为3的三角形,∵这个几何体的体积是24,∴三角形的底为=8,∴它的主视图的面积=×8×3=12,故答案为:12.【点评】此题考查了由三视图判断几何体和几何体的表面积求法,正确判断出几何体的形状是解题的关键.17.如图,是由10个完全相同的小正方体堆成的几何体.若现在你还有若干个相同的小正方体,在保证该几何体的从上面、从正面、从左面看到的图形都不变的情况下,最多还能放1个小正方体.【分析】根据主视图是从正面看得到图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图,可得答案.【解答】解:主视图是第一层三个小正方形,第二层是左边一个小正方形,中间一个小正方形,第三层是左边一个小正方形,俯视图是第一层三个小正方形,第二层三个小正方形,左视图是第一层两个小正方形,第二层两个小正方形,第三层左边一个小正方形,不改变三视图,中间第二层加一个,故答案为:1.【点评】本题考查了简单几何体的三视图,主视图是从正面看得到图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图.18.由一些完全相同的小正方体搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是4或5.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,上层最多有2个,最少1个,下层一定有3个,∴组成这个几何体的小正方体的个数可能是4个或5个,故答案为:4或5.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.三.解答题(共7小题)19.一个几何体的三视图如图所示,根据图示的数据计算该几何体的侧面积.【分析】根据三视图判断出该几何体的形状,再求出侧面积即可得出答案.【解答】解:根据三视图可得该几何体是一个三棱柱,侧面积为4×3×6=72.【点评】此题考查了由三视图判断几何体,用到的知识点是长方形的面积,同时也体现了对空间想象能力方面的考查.20.如图是从上面看到一个由小正方体搭建的几何体的图形,其中方框内的数字为该处小立方块的个数.请你画出从正面和左面看到这个几何体的图形.【分析】分别利用小立方块的个数得出其形状,进而画出左视图与主视图.【解答】解:如图所示:.【点评】此题考查了作图﹣三视图,由三视图判断几何体,正确想象出立体图形的形状是解题关键.21.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.【分析】首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可.【解答】解:根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长6mm,宽8mm,高2mm,∴立体图形的体积是:4×4×2+6×8×2=128(mm3),∴立体图形的表面积是:4×4×2+4×2×2+4×2+6×2×2+8×2×2+6×8×2﹣4×2=200(mm2).【点评】此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键.22.某个几何体由若干个相同的小立方体组成,从正面和左面看到的形状图如图1所示:(1)这个几何体可以是图2甲、乙、丙中的甲和乙;(2)这个几何体最多由9个小立方块堆成:(3)当堆成这个几何体的小立方块个数最少时,画出从上面看到的形状图.【分析】(1)由主视图和左视图的定义求解可得;(2)构成几何体的正方体个数最少时,其正方体的构成是在乙的基础上左数第1列前面再添加1个正方形即可得;(3)正方体个数最少时如图甲,据此作出俯视图即可得.【解答】解:(1)由主视图和左视图知,这个几何体可以是图2甲、乙、丙中的甲和乙,故答案为:甲和乙;(2)这个几何体最多可以由9个小正方体组成,故答案为:9;(3)如图所示:【点评】本题考查作图﹣三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.李明和同学们一起研究“从三个不同方向看问题的形状”.(1)图1是由几个大小相同的小立方体搭成的几何体,请画出从正面看到的这个几何体的形状图;(2)图2是由几个大小相同的小立方体搭成的几何体,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小立方体的个数.请画出从左面看到的这个几何体的形状图.【分析】(1)观察几何体,作出三视图即可.(2)由已知条件可知,从正面看有2列,每列小正方数形数目分别为3,2;从左面看有2列,每列小正方形数目分别为2,3.据此可画出图形.【解答】解:(1)如图所示:(2)如图所示:【点评】此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.24.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,一摞碟子的层数与累积高度的关系如下表:碟子层数累积高度(cm)1222+1.532+342+4.5……(1)当一摞碟子有x层时,请写出此时的累积高度(用含x的式子表示);(2)桌子上有一些碟子,如图分别是从正面、左面和上面看到的形状图,厨房师傅想把这些碟子全部叠成一摞,求叠成一摞后的累积高度.【分析】(1)观察表格数据不难发现,每增加一个碟子高度增加1.5cm,然后写出即可;(2)根据三视图判断出碟子的个数为12个,然后代入(1)中算式计算即可得解.【解答】解:(1)由图可知,每增加一个碟子高度增加1.5cm,桌子上放有x个碟子时,高度为2+1.5(x﹣1)=1.5x+0.5;(2)由图可知,共有3摞,左前一摞有4个,左后一摞有5个,右边前面一摞有3个,共有:3+4+5=12个,叠成一摞后的高度=1.5×12+0.5=18.5cm.【点评】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状.25.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是③、②、①;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.【分析】(1)根据从上面、左面、正面看到的三视图,可得答案.(2)依据三视图的面积,即可得到这个几何体的表面积.【解答】解:(1)由题可得,从上面、左面、正面看到的平面图形分别是③,②,①;故答案为:③,②,①;(2)∵大正方体的边长为20cm,小正方体的边长为10cm,∴这个几何体的表面积为:2(400+400+400)=2×1200=2400(cm2).【点评】本题考查了简单组合体的三视图以及几何体的表面积,画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.。

2018年人教版九年级下《第29章视图与投影》单元测试含答案

2018年人教版九年级下《第29章视图与投影》单元测试含答案

2018年人教版九年级下《第29章视图与投影》单元测试含答案第29章投影与视图一、选择题1.下列投影是平行投影的是()A. 太阳光下窗户的影子B. 台灯下书本的影子C. 在手电筒照射下纸片的影子D. 路灯下行人的影子2.如图所示的物体的左视图为()A. B. C. D.3.电影院里座位呈阶梯形状或下坡形状的原因是()A. 增大盲区B. 使盲区不变C. 减小盲区D. 为了美观而设计的4.如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是().A. B. C. D.5.一个几何体的三视图如图所示,网格中小正方形的边长均为1,那么下列选项中最接近这个几何体的侧面积的是()A. 24.0B. 62.8C. 74.2D. 113.06.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A. B. C. D.7.如图是由五个完全相同的小正方体组成的几何体,若将最左边的小正方体拿掉,则下列结论正确的是()A. 主视图不变B. 左视图不变C. 俯视图不变D. 三视图不变8.有一个“田”字形的窗子,阳光照射后,地面上便呈现出它的影子,正确的是()A. B. C. D.9.如图,晚上小亮在路灯下散步,在从A处走向B处的过程中,他在地上的影子()A. 逐渐变短B. 先变短后再变长C. 逐渐变长D. 先变长后再变短10. 一个几何体的三视图如图所示,则这个几何体可能是()A. B. C. D.11.某物体三视图如图,则该物体形状可能是( ) .A. 长方体.B. 圆锥体.C. 立方体.D. 圆柱体.二、填空题12.如图是两棵小树在同一时刻的影子,请问它们的影子是在________ 光线下形成的(填“灯光”或“太阳”).13.如图是一个正方体的展开图,在a、b、c处填上一个适当的数,使得正方体相对的面上的两数互为相反数,则的值为________14. 在右边的展开图中,分别填上数字1,2,3,4,5,6,使得折叠成正方体后,相对面上的数字之和相等,则a=________ ,b=________ ,c=________15.小明为自己是重庆一中的学子感到很自豪,他特制了一个写有“我爱重庆一中”的正方体盒子,其展开图如图所示,则原正方体中与“重”字所在的面相对的面上的字是________ .16.一个几何体的三视图如图所示,那么这个几何体的侧面积是________ (结果保留π)17. 如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等.则这六个数的和为________.18.如图,右边的两个图形分别是由左边的物体从两种不同的方向观察得到的,请在这两种平面图形的下面填写它们各是从什么方向看得到的。①________ ②________.19.如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是________cm3.20.有底面为正方形的直四棱柱容器A和圆柱形容器B,容器材质相同,厚度忽略不计.如果它们的主视图是完全相同的矩形,那么将B容器盛满水,全部倒入A容器,问:结果会________ (“溢出”、“刚好”、“未装满”,选一个)三、解答题21.如图是某种几何体的三视图,(1)这个几何体是什么;(2)若从正面看时,长方形的宽为10m,高为20m,试求此几何体的表面积是多少m2?(结果用π表示).22.如图所示,太阳光线AC和A′C′是平行的,同一时刻两个建筑物在太阳下的影子一样长,那么建筑物是否一样高?说明理由.(注:太阳光线可看成是平行的)23.有一个几何体的形状为直三棱柱,右图是它的主视图和左视图.(1)请补画出它的俯视图,并标出相关数据;(2)根据图中所标的尺寸(单位:厘米),计算这个几何体的全面积.24.某校墙边有甲、乙两根木杆,已知乙木杆的高度为1.5m.(1)某一时刻甲木杆在阳光下的影子如图所示,画出此时乙木杆的影子DF.(2)△ABC∽△DEF,如果测得甲、乙木杆的影子长分别为1.6m和1m,那么甲木杆的高度是多少?参考答案一、选择题A A C ABC BD B C D二、填空题12.灯光13.-14.6;2;415.中16.6π17.3918.从上面看;从正面看或从左面看19.1820.未装满三、解答题21.解:(1)根据图形得到这个几何体为:圆柱,故答案为:圆柱;(2)表面积为:2(25π)+10π×20=250π(m2)22.解:建筑物一样高.证明:∵AB⊥BC,A′B′⊥B′C′,∴∠ABC=∠A′B′C′=90°,∵AC∥A′C′,∴∠ACB=∠A′C′B′,在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(ASA)∴AB=A′B′.即建筑物一样高23.(1)解答:如图:(2)由勾股定理得:斜边长为10厘米,(平方厘米),(平方厘米),(平方厘米).答:这个几何体的全面积是120平方厘米.24.(1)解:如图所示,DF是乙木杆的影子(2)解:∵△ABC∽△DEF,∴,即,解得AB=2.4m.答:甲木杆的高度是2.4m。

人教版九年级数学下册《第二十九章投影与视图》单元检测卷及答案

人教版九年级数学下册《第二十九章投影与视图》单元检测卷及答案

人教版九年级数学下册《第二十九章投影与视图》单元检测卷及答案【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( )A.物体在太阳光下产生的投影是物体的正投影B.正投影一定是平行投影C.物体在灯光下产生的投影是物体的正投影D.正投影可能是中心投影2.由大小相同的正方体搭成的几何体如图所示,其左视图是( )A. B. C. D.3.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把球向下移时,圆形阴影的大小变化情况是( )A.越来越小B.越来越大C.大小不变D.不能确定4.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )A. B.C. D.5.如图,这是由两个完全相同的小正方体与一个长方体搭成的几何体,则它的俯视图为( )A. B.C. D.6.如图是嘉淇在室外用手机拍下大树的影子随太阳转动情况的照片(上午8时至下午5时之间),这五张照片拍摄的时间先后顺序是( )A.①②③④⑤B.②④①③⑤C.⑤④①③②D.⑤③①④②7.如图为某几何体的三种视图,这个几何体可以是( )A. B. C. D.a的小正方体摆放成如图的形状,则这个图形的表面积是( )8.将20个棱长为cmA.22100cm a B.2260cm a C.2230cm a D.2216cm a9.一个由若干个大小相同的小正方体搭成的几何体,它的主视图和左视图如图所示,那么组成该几何体所需小正方体的个数最少是( )A.6B.5C.4D.310.已知某几何体的三视图如图所示,则该几何体的体积是( )A.233B.232π3+C.232πD.23π二、填空题(每小题4分,共20分)11.早在多年前的宋朝,手影就已经作为民间一种有趣的游戏而存在.诗人释惠明在《手影戏》中写到:“三尺生绡作戏台,全凭十指送诙谐.有时明月灯窗下,一笑还从掌握来”.手影戏全凭手影艺人的十指借光弄影,表演各色人物、花草虫鱼、飞禽走兽甚至是寓言故事.如图,手影戏中的手影属于____________(填“平行投影”或“中心投影”).100012.如图是某几何体的三视图,该几何体是_____.13.一根长为m的木棒在平行光线上形成的正投影为3,则m的取值范围为______.14.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个+=_____.小正方体组成,m n15.如图所示是某几何体的三视图,根据图中数据计算,这个几何体的侧面积为_______.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)如图,正三棱柱的面EFDC平行于投影面P,且2===,AB=6.AE EF AF(1)三棱柱在投影平面P 上的正投影的图形是_________. A.一条线段 B.矩形 C.平行四边形 D.等腰梯形(2)求正投影的面积.17.(8分)(1)画出下列几何体的三种视图.(2)若小立方体的边长为2cm ,试求露出部分(含底面)的几何体的面积.18.(10分)用小立方块搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中的字母表示在该位置小立方块的个数.试回答下列问题:(1)a ,b ,c 各表示几?(2)这个几何体最少由几个小立方块搭成?最多呢?(3)当1d e ==,2f =时,画出这个几何体的左视图.19.(10分)小红想利用阳光下的影长测量学校旗杆AB 的高度,如图,他在某一时刻在地面上竖直立一个2m 长的标杆CD ,测得其影长0.4m DE =.(1)请在图中画出此时旗杆AB 在阳光下的投影BF ;(2)如果 1.8m BF =,求旗杆AB 的高.20.(12分)如图,路灯下竖立的一根木杆(用线段AB 表示)的影子BC ,小明(用线段DE 表示)的影子是EF .(1)请在图中画出路灯的位置(用点P 表示);(2)若此路灯距地面高8米,小红的身高1.6米在距离灯的底部左侧6米N 处,此时小红沿NM 方向向左直走,求当小红的影长是5米时,她所走的路程.21.(12分)在一节数学课上,小红画出了某四棱柱的三视图如图所示,其中主视图和左视图为矩形,俯视图为等腰梯形ABCD ,已知该四棱柱的侧面积为(232162cm +.(1)三视图中,有一图未画完,请在图中补全;(2)根据图中给出的数据,俯视图中AB 的长度为________cm ;(3)左视图中矩形的面积为________2cm ;(4)这个四棱柱的体积为________3cm .参考答案及解析1.答案:B解析:A.物体在太阳光下产生的投影不一定是物体的正投影,错误,不合题意;B.正投影一定是平行投影,正确,符合题意;C.物体在灯光下产生的投影不一定是物体的正投影,错误,不合题意;D.正投影是平行投影,错误,不合题意.故选:B.2.答案:B解析:左视图如图:故选B.3.答案:A解析:当把球向下平移时,圆形阴影的大小的变化情况是:越来越小故选:A.4.答案:D解析:A.影子的方向不相同,故本选项错误;B.影子的方向不相同,故本选项错误;C.相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误;D.影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;故选:D.5.答案:C解析:从上面看得该几何体的俯视图是:故选:C.6.答案:B解析:一天中太阳位置的变化规律是:从东到西.太阳的高度变化规律是:低→高→低.影子位置的变化规律是:从西到东,影子的长短变化规律是:长→短→长.根据影子变化的特点,按时间顺序给这五张照片排序是②④①③⑤.故选:B.7.答案:A解析:根据几何体的三视图,只有A选项符合题意;故选:A. 8.答案:B解析:从上面看,露在外面的小正方体的面一共有10个从下面看露在外面的小正方体的面一共有10个从左面看,露在外面的小正方体的面一共有10个从右面看,露在外面的小正方体的面一共有10个从正面看,露在外面的小正方体的面一共有10个从后面看,露在外面的小正方体的面一共有10个∴该几何体露在外面的面一共有60个小立方体的棱长为cm a∴这个几何体的表面积为26060cm a a a ⋅⋅=故选:B.9.答案:B解析:根据左视图和主视图,这个几何体的底层最少有1113++=个小正方体第二层最少有1个小正方体因此组成这个几何体的小正方体最少有314+=个.故选B.10.答案:D解析:由三视图知该几何体是三棱柱与半圆柱的组合体,且三棱柱的底面是边长为2的正三角形,三棱柱的高为2;半圆柱的底面半径为1,高为2该几何体的体积为211232π1223π22+⨯⨯⨯=.故选D.11.答案:中心投影解析:由图像可得手影戏中的手影属于中心投影故答案为:中心投影.12.答案:圆柱解析:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱.故答案为:圆柱.13.答案:3m ≥解析:当木棒与光线平行时,正投影为一条线段,长度为3,此时3m =;当木棒与光线不平行时,正投影为一条线段,长度为3,此时3m >;故答案为: 3.m ≥14.答案:16解析:易得第一层有4个正方体,第二层最多有3个正方体,最少有2个正方体,第三层最多有2个正方体,最少有1个正方体4329m =++= 4217n =++=所以9716m n +=+=.故答案为:16.15.答案:12π解析:根据该几何体的三视图得:这个几何体为圆锥 根据题意得:该圆锥的侧长为()22442+=62⎛⎫ ⎪⎝⎭ 所以这个几何体的侧面积为46=122ππ⨯⨯. 故答案为:12π16.答案:(1)B(2)12解析:(1)B(2)正投影的面积为2612EFDC S =⨯=矩形.17.答案:(1)见详解,(2)2112cm解析:(1)三视图如下 (2)该几何体的表面积为()22262+42+42112cm ⨯⨯⨯⨯=18.答案:(1)3,1,1(2)9,11(3)见解析解析:(1)3a = 1b = 1c =.(2)这个几何体最少由4239++=(个)小立方块搭成,最多由62311++=(个)小立方块搭成.(3)左视图如图所示.19.答案:(1)见解析(2)旗杆AB 的高为9m解析:(1)连接CE ,过A 点作//AF CE 交BD 于F ,则BF 为所求,如图.(2)//AF CE∴AFB CED ∠=∠而90ABF CDE ∠=∠=︒∴ABF CDE ∽△△ ∴AB BF CD DE =,即 1.820.4AB =∴9m AB =.答:旗杆AB 的高为9m .20.答案:(1)见解析(2)14米解析:(1)如图,点P 即为所求;(2)如图,过点P 作PH CM ⊥于点H ,设当小红的影长是5米时,到达点M ',KM '表示小红的身高,SM '表示此时的影长,则 1.6KM '=米,5SM '=米//KM PH ' ∴SKM SPH '∽△△∴KM SM PH SH ''= ∴1.6585HM ='+∴20HM '=米∴20614NM '=-=米即当小红的影长是5米时,她所走的路程14米.21.答案:(1)见解析(2)2(3)8(4)32解析:(1)BC 所在的面在前,AD 所在的面在后∴主视图中应补充两条虚线∴补充完整如图所示:(2)俯视图为等腰梯形ABCDAB CD ∴=该四棱柱的侧面积为(232162cm +42446432162AB CD ∴+⨯++⨯=+22cm AB CD ∴==故答案为:2;(3)如图,作AE BC ⊥于E ,DF BC ⊥于F俯视图为等腰梯形ABCDAB CD ∴= //AD BCAE BC ⊥ DF BC ⊥90AEF DFE AEB DFC ∴∠=∠=∠=∠=︒ //AD BC90EAD ∴∠=︒∴四边形ADFE 是矩形2cm EF AD ∴== AE DF =()Rt Rt HL ABE DCF ∴≌△△BE CF ∴=6cm BE EF CF BC ++==622cm 2BE CF -∴===()22222222cm AE DF AB BE ∴==-=-= ∴左视图中矩形的面积为:2248cm ⨯= 故答案为:8; (4)由题意得:这个四棱柱的体积为()31262432cm 2+⨯⨯= 故答案为:32.。

人教版九年级数学下册第二十九章-投影与视图综合测试试题(含答案及详细解析)

人教版九年级数学下册第二十九章-投影与视图综合测试试题(含答案及详细解析)

人教版九年级数学下册第二十九章-投影与视图综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是由4个相同的小正方体组成的一个几何体,则从正面看到的平面图形是( )A .B .C .D .2、如图,身高1.5米的小明(AB )在太阳光下的影子AG 长1.8米,此时,立柱CD 的影子一部分是落在地面的CE ,一部分是落在墙EF 上的EH .若量得 1.2CE =米, 1.5EH =米,则立柱CD 的高为( ).A.2.5m B.2.7m C.3m D.3.6m3、如图,是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D.4、如图,是空心圆柱体,其主视图是下列图中的()A.B.C.D.5、下列物体中,三视图都是圆的是()A.B.C.D.6、如图是由5个相同的小立方块搭成的几何体,则从左面看这个几何体的形状图是()A.B.C.D.7、下列立体图形中,从上面看到的形状图是三角形的是( )A.B.C.D.8、一个几何体是由几个大小相同的小立方块搭成的,从正面、左面、上面看到的这个几何体的形状图如图所示,则搭成这个几何体所需的小立方块的个数为( )A.8 B.7 C.6 D.59、如图所示几何体的左视图是()A.B.C.D.10、在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )A.A B.B C.C D.D第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟子共有____个.2、在学校开展的手工制作比赛中,小明用纸板制作了一个圆锥模型,它的三视图如图所示,根据图中数据求出这个模型的侧面积为______.3、如图是由一些棱长为1的小立方块所搭几何体的三种视图.若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个长方体,至少还需要______个小立方块.4、一个立体图形,从正面看到的形状是,从左面看到的形状图是.搭这样的立体图形,最少需要________个小正方体,最多可以有________个正方体.5、如图所示是从不同的方向观察一个圆柱体得到的形状图,由图中数据计算此圆柱体的侧面积为________(结果保留 ).从正面看从左面看从上面看三、解答题(5小题,每小题10分,共计50分)1、一个几何体的三种视图如图所示.(1)这个几何体的名称是____;(2)求这个几何体的表面积;(3)求这个几何体的体积.2、如图,是由7个棱长都为1的小正方体组合成的简单几何体,请分别画出从正面、左面、上面看到的几何体的形状图;3、如图,是由一些棱长为1cm的小正方体组成的简单几何体(1)请直接写出该几何体的表面积(含下底面)为(2)从正面看到的平面图形如图所示,请在下面方格中分别画出从左向右、从上向下看到的平面图形4、已知,如图,AB和DE是直立在地面上的两根立柱,AB=2m,某一时刻AB在太阳光下的投影BC=1m.(1)请你在图中画出此时DE在太阳光下的投影EF;(2)在测量AB的投影时,同时测量出DE在太阳光下的投影EF=1.5m,请你计算DE的长.5、如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.---------参考答案-----------一、单选题1、B【分析】根据图形特点,分别得出从正面看每一列正方形的个数,即可得出正面看到的平面图形.【详解】解:从正面看,有三列,第一列有一个正方形,第二列有一个正方形,第三列有两个个正方形,从正面看,有两行,第一行有一个正方形,第二行有三个正方形,故选B.【点睛】本题考查从不同方向看几何体.做此类题,最好是逐列分析每一列中正方形的个数然后组合即可.2、A【分析】将太阳光视为平行光源,可得BAG MCE~,MD=HE,即可得CM的值,故计算CD=CM+DM即可.【详解】如图所示,过D点作BG平行线交FE于点H,过E点作BG平行线交CD于点M∵BG//ME//DH∴∠BGA=∠MEC,∠BAG=∠DCE=90°∴BAG MCE~,MD=HE∴AB CM AG CE=∴1512118AB.CM CE.AG.=⋅=⨯=∴CD=CM+DM=1+1.5=2.5故答案选:A.【点睛】本题考查了相似三角形的判断即性质,由太阳光投影判断出平行关系进而求得相似是解题的关键.3、C【分析】长方体的左视图为矩形,圆柱的左视图为矩形,据此分析即可得左视图【详解】从左面可看到一个长方形和一个长方形,且两个长方形等高.故选C【点睛】本题考查了简单几何题的三视图,掌握简单几何题的三视图是解题的关键.4、C【分析】从正面观察空心圆柱体,能够看见的部分用实线表示,不能看见的部分用虚线表示,即可得到主视图. 【详解】主视图是在几何体正面面观察物体得到的图形.能够看见的部分用实线表示,不能看见的部分用虚线表示.本题圆柱体的主视图整体是个矩形,中间包含两条竖直的虚线.故选:C【点睛】本题主要考查三视图, 主视图是在物体正面从前向后观察物体得到的图形;俯视图是在水平面内从上向下观察物体得到的图形;左视图是在几何体左侧面观察物体得到的图形.5、C【分析】根据主视图、左视图、俯视图的判断方法,逐项进行判断即可.【详解】A、圆柱的主视图是矩形,左视图是矩形,俯视图是圆,不符合题意;B.圆锥的主视图是三角形,左视图是三角形,俯视图是圆,不符合题意;C.球的三视图都是圆,符合题意;D.正方体的三视图都是正方形,不符合题意.故选:C.【点睛】题目主要考查了简单几何体的三视图,理解三视图的作法是解题的关键.6、D【分析】观察图形可知,从左面看到的图形是2列,分别有2,1个正方形,据此即可判断.【详解】解:从左面看这个几何体的形状图如图所示:故选D.【点睛】此题考查了从不同方向观察物体和几何体和画简单图形的三视图的方法,是基础题型.7、C【分析】根据三视图的性质得出主视图的形状进而得出答案.【详解】解:正方体从上面看到的形状图是正方形,故A项不符合题意;圆柱从上面看到的形状图是圆,故B项不符合题意;圆锥从上面看到的形状图是带圆心的圆,故D项不符合题意.三棱柱从上面看到的形状图是三角形,故C项符合题意;故选:C.【点睛】本题题主要考查了简单几何体的三视图,熟悉主视图性质是解题关键.8、B【分析】易得这个几何体共有2层,底层5个,第二层有2个,共有7个.【详解】解:由从俯视图看到的形状图易得该几何体的最底层有5个小立方块,由从正面看到的形状图和从左面看到的形状图得第二层有2个小立方块,所以搭成这个几何体所需的小立方块的个数为7.故选B.【点睛】本题考查了三视图的知识点,解题的关键是掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”.9、D【分析】根据从左面看到的图形判断即可.【详解】解:该物体从左面看到的图形是:故选D.【点睛】本题考查了三视图,解题关键是明确左视图是从左面看到的视图,树立空间观念是解题关键.10、D【分析】由太阳光是平行光线,可知同一时刻下,影子的朝向一致,由此进行求解即可.【详解】解:太阳光是平行光线,因此同一时刻下,影子的朝向是一致的.故选:D.【点睛】考查主要考查了的影子问题,解题的关键在于能够知道太阳光是平行光线.二、填空题1、12【解析】【分析】从俯视图中可以看出最底层碟子的个数及形状,从主视图可以看出碟子的层数和个数,从而算出总的个数.【详解】解:由三视图可得三摞碟子数从左往右分别为5,4,3,则这个桌子上共有5+4+3=12个碟子.故答案为:12.【点睛】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出碟子的个数.2、15π【解析】【分析】从主视图和左视图都为一个三角形,俯视图为一个圆,可以确定这个几何体是圆锥,由三视图可知圆锥的底面半径为3,高为4,进而求得母线长,据此求得圆锥的侧面积.【详解】从主视图和左视图都为一个三角形,俯视图为一个圆,可以确定这个几何体是圆锥,由三视图可知圆锥的底面半径为623÷=,高为45,所以这个模型的侧面积为3515rl πππ=⨯=.故答案为15π.【点睛】本题考查了根据三视图确定几何体,求圆锥的侧面,牢记公式是解题的关键.3、26【解析】【分析】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大长方体的共有4×3×3=36个小正方体,即可得出答案.【详解】解:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大长方体,∴搭成的大长方体的共有4×3×3=36个小正方体,∴至少还需要36−10=26个小正方体.故答案为:26.【点睛】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大长方体共有多少个小正方体.4、 6 10【解析】【分析】根据题中所给的正面的形状和左面的形状即可得.【详解】解:根据题中所给的正面的形状和左面的形状可知,最少需要6个,将小正方体横着摆5个,再在任意一个小正方体的后面放一个小正方体;最多需要10个,将小正方体横着摆5个,再在每一个小正方体的后面放一个小正方体;故答案为:6,10.【点睛】本题考查了三视图,解题的关键是根据三视图得出立体图形.5、6π【解析】【分析】根据主视图确定出圆柱体的底面直径与高,然后根据圆柱体的侧面积公式列式计算即可得解.【详解】解:由图可知,圆柱体的底面直径为2,高为3,所以,侧面积236ππ=⋅⨯=.故答案为:6π.【点睛】本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,解题的关键是根据主视图判断出圆柱体的底面直径与高.三、解答题1、(1)圆柱体;(2)这个几何体的表面积为32π;(3)这个几何体的体积为24π.【分析】(1)根据这个几何体的三视图即可求解;(2)根据三视图可得到圆柱的高为6,底面半径为2,然后根据圆柱的表面积等于侧面积加两个底面积求解即可;(3)根据圆柱的体积等于底面积×高求解即可.【详解】解:(1)由图可得,主视图是长方形,左视图是长方形,俯视图是圆,∴这个几何体是圆柱体,故答案是:圆柱体;(2)由三视图可得,圆柱的高为6,底面半径为2,∴这个圆柱的表面积=底面积×2+侧面积=22222682432πππππ⨯⨯+⨯⨯⨯=+=;(3)这个圆柱的体积=底面积×高=22624ππ⨯⨯=.【点睛】此题考查了几何体的三视图,求圆柱的表面积和体积,解题的关键是熟练掌握三视图的表示方法以及圆柱的表面积和体积公式.2、见解析【分析】根据三视图的含义,分别画出从正面,从左面,从上面看到的平面图形即可.【详解】解:如图,主视图,左视图,俯视图如下:【点睛】本题考查的是画简单组合体的三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.3、(1)342cm;(2)见解析【分析】(1)先计算出每个小正方体一个面的面积,然后求出一共露在外面的面有多少个即可得到答案;(2)根据三视图的画法作图即可.【详解】解:(1)∵每个小正方体的棱长为1cm,∴每个小正方体的一个面的面积为21cm,∵从上面看露在外面的小正方体的面有6个,从底面看露在外面的面有6个,从正面看,露在外面的面有6个,从后面看,露在外面的面有6个,从左面看,露在外面的面有4个,从右面看,露在外面的面有4个,然后在最下层,第二行第二列的小正方体右边1个面露在外面,第二行第四列的小正方体左边一个面露在外面,∴露在外面的面一共有34个,∴该几个体的表面积为234cm,故答案为:234cm;(2)如图所示,即为所求;【点睛】本题主要考查了简单几何体的表面积和画三视图,解题的关键在于能够熟练掌握相关知识进行求解.4、(1)画图见解析;(2)DE=3米【分析】(1)连接AC,过D点做AC平行线,交EB与点F,即可得投影EF.(2)太阳光属于平行光源,故DEF ABC,故DE ABEF BC=,所以DE=3.【详解】(1)如图所示:(2)∵DE//AC ∴∠EFD=∠BCA ∴DEF ABC∴DE AB EF BC=∴ABDE EFBC=⋅∴DE=3米.【点睛】本题考查了平行投影以及相似三角形的判定和性质,在实际生活中,处处都存在相似三角形.当我们与其接触时,就能利用相似的相关知识去识别和解决实际生活中的问题,如同一时刻物高与影长的问题.5、见解析【分析】利用三视图的画法画出图形即可.【详解】根据三视图的画法,画出相应的图形如下:【点睛】本题考查简单组合体的三视图,理解三视图的意义是正确解答问题的关键.。

新人教版九年级数学下册第29章《投影与视图》单元检测及答案

新人教版九年级数学下册第29章《投影与视图》单元检测及答案

人教版数学九年级下学期第29章《投影与视图》单元测试卷(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1.一个人离开灯光的过程中人的影长()A.变长B.变短C.不变D.不确定2.小强的身高和小明的身高一样,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长3.在阳光的照射下,一个矩形框的影子的形状不可能是()A.线段B.平行四边形C.等腰梯形D.矩形4.如图是北半球一根电线杆在同一天不同时刻的影长图,请按其一天中发生的先后顺序进行排列,正确的是()A.(1)(2)(3)(4) B.(4)(3)(1)(2) C.(4)(3)(2)(1) D.(2)(3)(4)(1)5.下列为某两个物体的投影,其中是在太阳光下形成投影的是()DCBA6.下列命题是假命题的是()A.中心投影下,物高与影长成正比B.平移不改变图形的形状和大小C.三角形的中位线平行于第三边D.圆的切线垂直于过切点的半径7.某同学画出了如图所示的几何体的三种视图,其中正确的是()③俯视图②左视图①主视图几何体A.①②B.①③C.②③D.②8.下列四个几何体中,左视图为圆的是()A B CD9.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()3211A B C D10.在小孔成像问题中,如图可知CD的长是物长AB长的()BAA.3倍B.12C.13D.14二、填空题(共6小题,每小题3分,共18分)11.当你走向路灯时,你的影子在你的,并且影子越来越.12.太阳光线下形成的投影是投影.(平行或中心)13.请你写出一个主视图与左视图相同的立体图形是.14.房地产开发商在介绍楼房室内结构时,宣传单上标示的结构图是房间的视图.15.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图和左视图的面积之和是.主视方向16.如图是由大小相同的小正方体组成的简单几何体的左视图和俯视图,那么组成这个几何体的小正方体的个数最少为个.俯视图左视图三、解答题(共8题,共72分)17.(本题8分)一棵树(AB)和一根木杆(CD)在同一时刻的投影如图所示,木杆CD高3米,影BE长6米,则树AB长多少米?D18.(本题8分)在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来,如图所示,则这堆正方体货箱共有多少箱?左视图俯视图主视图19.(本题8分)画出下图的三视图。

人教版九年级下《第二十九章投影与视图》单元测试题(含答案).docx

人教版九年级下《第二十九章投影与视图》单元测试题(含答案).docx

第二十九章投影与视图一、选择题(本大题共7小题,每小题5分,共35分)1.下列结论中正确的有()① 同一地点、同一时刻,不同物体在阳光照射下,影子的方向是相同的; ② 不同物体在任何光线照射下影子的方向都是相同的; ③ 同一物体在路灯照射下,影子的方向与路灯的位置有关; ④ 物体在光线照射下,影子的长短仅与物体的长短有关.如图29-Z-1是某零件的直观图,则它的主视图为()图 29-Z-1如图29-Z-3是水平放置的圆柱形物体,物体中间有一根细木棒,则此几何体的左视图是()图 29-Z-45. 一个正方体被截去四个角后得到一个几何体(如图29-Z-5),它的俯视图是A. 1个B. 2个C ・3个D. 4个2. 圆形物体在阳光下的投影不可能是() A. 圆形B.线段C.矩形D.椭圆3. B C 图 29-Z-24. 正面AD止面图 29-Z-3ABCD6. 由一些大小相同的小正方体组成的几何体的三视图如图29-Z-7所示,那么组成这个几何体的小正方体有(左视图图 29-Z-7A ・4个 B. 5个 C. 6个 D. 7个7. 一个几何体的三视图如图29-Z-8所示,则这个几何体的侧面积为()图 29-Z-8 A • 2兀 cnT B • 4兀 cnT C. 8兀 cm 2 D• I671 cm 2二、填空题(本大题共6小题,每小题5分,共30分)8. 写出一个在三视图中俯视图与主视图完全相同的儿何体: _________ ・ 9. 如图29-Z-9是由四个小正方体组成的几何体,若每个小正方体的棱长都是1,则该几何体的俯视图的面积是A 图 29-Z-5图 29-Z-6D主视图 俯视图图29-Z-910. 一个几何体的三视图如图29-Z-10所示(其中标注的a, b, C 为相应的边长),则这个几何体的体积是 ________ •图 29-Z-1011. 已知小明同学身高1.5 m,经太阳光照射,在地上的影长为2 m,若此时测得一座塔在地上的影长为60 m,则塔高为 _________ m.12. 已知某正六棱柱的主视图如图29-Z-11所示,则该正六棱柱的表面积为60 f―> 1010图 29-Z-1113. 在桌面上摆放着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图29-Z-12所示,设组成这个几何体的小正方体的个数为弘则n 的最小值为三、解答题(本大题共3小题,共35分)14. (9分)画出如图29—Z —13所示几何体的三视图.图 29-Z-1315. (12分)如图29-Z-14,已知线段AB=2cm,投影面为P,太阳光线与投影面垂直.(1)当AB 垂直于投影面P 时(如图①),请画出线段AB 的投影;b主视图图 29-Z-12(2)当AB平行于投影面P吋(如图②),请画出它的投影,并求出正投影的长;(3)在(2)的基础上,点A不动,线段AB绕点A在垂育于投影面P的平面内逆时针旋转30。

第29章 投影与视图 单元测试卷-2022-2023学年人教版九年级数学下册

第29章 投影与视图 单元测试卷-2022-2023学年人教版九年级数学下册

第29章投影与视图单元测试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共8小题,共24分。

在每小题列出的选项中,选出符合题目的一项)1. 如图是两个等直径圆柱构成的“T”形管道,从左边看到的它的形状图是( )A. B. C. D.2. 如图是从三个方向看一个几何体所得到的形状图,则这个几何体是( )A. B. C. D.3. 某几何体的三视图如图所示,该几何体是( )A. 三棱柱B. 正方体C. 圆锥D. 圆柱4. 某正方体的平面展开图如图所示,则原正方体中与“春”字所在的面相对的面上的字是( )A. 青B. 来C. 斗D. 奋5. 如图是某几何体的三视图,该几何体是( )A. 圆柱B. 五棱柱C. 长方体D. 五棱锥6. 如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是( )A. 主视图相同B. 左视图相同C. 俯视图相同D. 三种视图都不相同7. 如图,在下面的四个几何体中,从它们各自的正面和左面看,不相同的是( )A. B. C. D.8. 如图为一个用正方体积木搭成的几何体,从正面、左面、上面看该几何体的形状图如图,从上面看的形状图中方格上的数字表示该位置上积木累积的个数,则a+b+c+d的最大值为( )A. 12B. 13C. 14D. 15二、填空题(本大题共8小题,共24分)9. 如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG的中点,矩形EFGH 与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是(用“=”“>”或“<”连接).10. 如图,一个几何体的三视图分别是两个矩形、一个扇形,则这个几何体的表面积为.11. 如图是一个几何体的三视图,根据图示的数据可计算出该几何体的表面积为.12. 如图是某几何体的三视图及相关数据,则该几何体的侧面积是.13. 如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m.已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为m.14. 小诺同学想测量出如图所示的电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处竖立一根标杆CD,使标杆的影子DE与电线杆的影子BE部分重叠(即点E,C,A在同一条直线上).量得ED=2m,DB=4m,CD=1.5m,则电线杆AB的高度为m.15. 如图是一个多面体的表面展开图,如果向里折后,面F在前面,从左面看是面B,那么从上面看是面(填字母).16. 如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M在旋转中心O的正下方.某一时刻,太阳光线恰好垂直照射叶片OA,OB,此时各叶片影子在点M右侧成线段CD,测得MC=8.5m,CD=13m,垂直于地面的木棒EF与影子FG的比为2:3,则点O,M之间的距离等于米.转动时,叶片外端离地面的最大高度等于米.三、解答题(本大题共9小题,共72分。

(完整版)第29章投影与视图单元测试与答案汇总

(完整版)第29章投影与视图单元测试与答案汇总

【章节训练】第29章投影与视图-1一、选择题(共10小题)1. (2014?漳州)学校小卖部货架上摆放着某品牌方便面,它们的三视图如图,2. (2014?毕节地区)如图是某一几何体的三视图,则该几何体是(如下图所示的图形是由 7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这)个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的)丄 丄 丄 31则货架上的方便面至少有(兰匚圍A .三棱柱B .长方体C .圆柱D .圆锥用四个相同的小立方体搭几何体,要求每个几何体的主视图、 下列四种摆放方式中不符合要求的是(B . 左视图、俯视图中至少有两种视图-7774. (2014?衡阳)个立体图形的三视图的是( 5. (2014?东营)下图 是个数,则这个几何体的左视图是( 3. (2014?威海)D.A .棱柱B .圆柱 圆锥 D .球大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是(9. (2014?宜宾)如图1放置的一个机器零件,若其主(正)视图如图 2,则其俯视图是(10. (2014?遂宁)一个几何体的三视图如图所示,这个几何体是(ODD俯视圈主视图左视图D.6. (2014?崇左)下列几何体的主视图、左视图、俯视图的图形完全相同的是( A.三棱锥B .长方体C .三棱柱)D .球体7.(2014?永州)若某几何体的三视图如图,则这个几何体是()D.B.A .B二、填空题(共5小题)(除非特别说明,请填准确值)11. (2014?简阳市模拟)如图是某几何体的三视图,该几何体的表面积是13. (2014?南京联合体一模)如图是某个几何体的三视图,计算该几何体的侧面积为(524/ \主视度1左视圜14. (2014?拱墅区二模)如图,上下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为______________ .(若结果带根号则保留根号)-- TF -- 3——40cm -—hi了15cmA15<mi王视團園实物图15. (2013?绥化)由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是—_ .三、解答题(共9小题)(选答题,不自动判卷)16. (2011?顺城区二模)某加工厂要加工一批密封罐,设计者给出了密封罐的三视图,请按照三视图确定制作每个密封罐所需钢板的面积.12. (2012?南湖区二模)一个几何体的三视图如图所示,则这个几何体的表面积是 ____________ cm2.42 一主视圍17. (2009?崇安区一模)(1)夜晚,小明在路灯下散步•已知小明身高 1.5米,路灯的灯柱高 4.5米.① 如图1,若小明在相距10米的两路灯AB 、CD 之间行走(不含两端),他前后的两个影子长分别为FM=x 米,FN=y 米,试求y 与x 之间的函数关系式,并指出自变量x 的取值范围?② 有言道:形影不离•其原意为:人的影子与自己紧密相伴,无法分离•但在灯光下,人的速度与影子的速度却不是一样的!如图2,若小明在灯柱 PQ 前,朝着影子的方向(如图箭头),以0.8米/秒的速度匀速行走,试求他影子 的顶端R 在地面上移动的速度.(2)我们知道,函数图象能直观地刻画因变量与自变量之间的变化关系. 相信,大家都听说过龟兔赛跑的故事吧. 现有一新版龟兔赛跑的故事:由于兔子上次比赛过后不服气,于是单挑乌龟再来另一场比赛,不过这次路线由乌龟确 定…比赛开始,在同一起点出发,按照规定路线,兔子飞驰而出,极速奔跑,直至跑到一条小河边,遥望着河对岸 的终点,兔子呆坐在那里,一时不知怎么办•过了许久,乌龟一路跚跚而来,跳入河中,以比在陆地上更快的速度 游到对岸,抵达终点,再次获胜•根据新版龟兔赛跑的故事情节,请在同一坐标系内(如图3),画出乌龟、兔子离开终点的距离s 与出发时间t 的函数图象示意图.(实线表示乌龟,虚线表示兔子)18. (2010?自贡)作出下面立体图形的三视图.19. (2010?永州)如图所示是一个直四棱柱及其正视图和俯视图(等腰梯形)(1) ____________________________________________________________________ 根据图中所给数据,可得俯视图(等腰梯形)的高为 ;(2) 在虚线框内画出其左视图,并标出各边的长.(尺规作图,不写作法,保留作图痕迹)5020. (2009?庆阳)一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆 锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上22. (2009?衢州)一个几何体的三视图如图所示,它的俯视图为菱形•请写出该几何体的形状,并根据图中所给的23. (2009?沈阳模拟)如图是一个由若干个棱长相等的正方体构成的几何体的三视图.(1) 请写出构成这个几何体的正方体个数;(2) 请根据图中所标的尺寸,计算这个几何体的表面积.面看得到的视图) 21 .( 2011 ?广州)5个棱长为1的正方体组成如图的几何体.(1) 该几何体的体积是 ________________ (立方单位),表面积是(2) 画出该几何体的主视图和左视图.(平方单位)正面24. (2009?杭州)如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个线路的最短路程.【章节训练】第29章投影与视图-1参考答案与试题解析一、选择题(共10小题)1.(2014?漳州)学校小卖部货架上摆放着某品牌方便面,它们的三视图如图,则货架上的方便面至少有(考点:由三视图判断几何体.分析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答: 解:易得第一层有 4碗,第二层最少有 2碗,第三层最少有1碗,所以至少共有 故选:A .7盒.点评: 考查学生对三视图掌握程度和灵活运用能力,冋时也体现了对空间想象能力方面的考查. 视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.如果掌握口诀俯主视图左规圏 倨规團A .三棱柱B .长方体C .圆柱考点: 由三视图判断几何体.分析: 三视图中有两个视图为矩形,那么这个几何体为柱体,根据第 3个视图的形状可得几何体的具体形状.解答: 解:•/三视图中有两个视图为矩形,•••这个几何体为柱体, •••另外一个视图的形状为圆, •••这个几何体为圆柱体, 故选:C .点评: 考查由三视图判断几何体;用到的知识点为:三视图中有两个视图为矩形,那么这个几何体为柱体,根据 第3个视图的形状可得几何体的形状.3. (2014?威海)用四个相同的小立方体搭几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图D .圆锥的形状是相同的,下列四种摆放方式中不符合要求的是(2. (2014?毕节地区)如图是某一几何体的三视图,则该几何体是(B.考点:简单组合体的三视图.专题:几何图形问题.分析:主视图、左视图、俯视图是分别从正面、左面、上面所看到的图形. 解答:―解:A 、此几何体的主视图和俯视图都是“ I”字形,故A 选项不合题意;考点:简单组合体的三视图.分析: 根据几何体组成,结合三视图的观察角度,进而得出答案.解答:解:根据立方体的组成可得出:A、 是几何体的左视图,故此选项错误; B 、 不是几何体的三视图,故此选项正确; C 、 是几何体的主视图,故此选项错误;D 、 是几何体的俯视图,故此选项错误; 故选:B .点评:此题主要考查了简单组合体的三视图,准确把握观察角度是解题关键.5. (2014?东营)下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的 个数,则这个几何体的左视图是()考点:由三视图判断几何体;简单组合体的三视图.点评:此题主要考查了简单几何体的三视图,关键是注意所有的看到的棱都应表现在三视图中.4. (2014?衡阳)如下图所示的图形是由个立体图形的三视图的是( )7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这故B 选项不合题意;故C 选项不合题意;分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 解答:解:从俯视图可以看出直观图的各部分的个数,可得出左视图前面有 2个,中间有3个,后面有1个, 即可得出左视图的形状. 故选:B .点评:此题主要考查了三视图的概念.根据俯视图得出每一组小正方体的个数是解决问题的关键.6. (2014?崇左)下列几何体的主视图、左视图、俯视图的图形完全相同的是( )A .三棱锥B .长方体C .三棱柱D .球体 考点:简单几何体的三视图.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 解答:解:A 、三棱锥的主视图、左视图都是三角形,俯视图为三角形多一点,故A 选项错误;B 、 长方体的主视图为长方形、左视图为长方形或正方形、俯视图为长方形或正方形,故 B 选项错误;C 、 三棱柱的主视图和左视图是一个矩形,俯视图是一个三角形,故 C 选项错误;D 、 球体的主视图、左视图、俯视图都是圆形;故 D 选项正确;故选:D .点评:本题考查三视图的有关知识,本题只要清楚了解各个几何体的三视图即可求解.7. (2014?永州)若某几何体的三视图如图,则这个几何体是(考点:由三视图判断几何体.分析: 如图:该几何体的正视图与俯视图均为矩形,侧视图为三角形和一个矩形,易得出该几何体的形状. 解答:解:该几何体的正视图为矩形,俯视图亦为矩形,侧视图是一个三角形和一个矩形, 故选:C .点评: 本题是个简单题,主要考查的是三视图的相关知识.8 (2014?黔南州)形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是(EbD.考点: 简单组合体的三视图. 专题: 图表型.分析: 由实物结合它的俯视图,还原它的具体形状和位置,再判断主视图.解答: 解:由实物结合它的俯视图可得该物体是由两个长方体木块一个横放一个竖放组合而成, 由此得到它的主视图应为选项 D .故选:D .点评: 本题考查了物体的三视图.在解题时要注意,看不见的线画成虚线.9. (2014?宜宾)如图1放置的一个机器零件,若其主(正)视图如图 2,则其俯视图是( )考点:由三视图判断几何体.分析:根据三视图确定该几何体是圆柱体.解答:解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是圆可判断出该几何体为圆柱. 故选:B .点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识. 72+108 .考点:由三视图判断几何体.圍_考点: 简单组合体的三视图. 专题: 常规题型.分析: 找到从上面看所到的图形即可. 解答: 解:从上面看可得到左右相邻的3个矩形.故选:D .点评: 本题考查了三视图的知识,俯视图是从物体的上面看到的视图.10.(2014?遂宁)一个几何体的三视图如图所示,这个几何体是( 俯视国主视图A .棱柱B .圆柱C .圆锥D .球左视图二、填空题(共5小题)(除非特别说明,请填准确值)11. (2014?简阳市模拟)如图是某几何体的三视图,该几何体的表面积是分析:首先确定该几何体的形状,然后根据各部分的尺寸得到该几何体的表面积即可.解答:解:观察该几何体的三视图发现该几何体为正六棱柱;该六棱柱的高为2,正六边形的半径为6,所以表面积为2 >6>6+6 >6 >3^3=72+10^3,故答案为:72+108 I:.点评:本题考查由三视图求表面积,考查由三视图还原直观图,注意求面积时,由于包含的部分比较多,不要漏掉,本题是一个基础题.212. (2012?南湖区二模)一个几何体的三视图如图所示,则这个几何体的表面积是1300 cm •4厂至也:cm1*—20 —>|考点:由三视图判断几何体;几何体的表面积.分析:由题意推知几何体长方体,长、宽、高分别为20,、10 ,、15,可求其表面积.解答:解:由题意推知几何体长方体,长、宽、高分别为20、10、15,所以其面积为:2 (10X15+10 >20+20 >5)=1300cm2. 故答案为:1300.点评:本题考查三视图、圆柱的表面积,考查简单几何体的三视图的运用•培养同学们的空间想象能力和基本的运算能力•基础题.13. (2014?南京联合体一模)如图是某个几何体的三视图,计算该几何体的侧面积为(524八主视度1左视圍考点:由三视图判断几何体.分析:首先根据左视图和确定俯视图的三角形的高为4,从而确定俯视图中等腰三角形的腰长,然后计算三个长方形的面积的和即为侧面积.解答:解:根据左视图知:如图,AD=4 ,由勾股定理得到AB=5 ,•••该三棱柱的侧面积为2 >5 X+6 >2=32,点评:本题考查了由三视图判断几何体的知识,解题的关键是确定该几何体的形状,难度中等.14. (2014?拱墅区二模)如图,上下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为(120「;+90)cm .(若结果带根号则保留根号)32考点:由三视图判断几何体.分析:由正视图知道,高是 15cm ,两顶点之间的最大距离为40cm ,应利用正六边形的性质求得底面对边之间的距离,然后所有棱长相加即可.解答:解:根据题意,作出实际图形的上底,如图: AC , CD 是上底面的两边•作 CB 丄AD 于点B ,贝U BC=10 , AC=20 , / ACD=120 ° 那么 AB=AC 冶in60 °10衍, 所以 AD=2AB=201,胶带的长至少=20近>6+15 >6=120體+90 (cm ). 故答案为:(120.汁90) cm .点评:本题考查立体图形的三视图和学生的空间想象能力;注意知道正六边形两个顶点间的最大距离求对边之间 的距离需构造直角三角形利用相应的三角函数求解.15. (2013?绥化)由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正 方体的个数可能是 4或5 .考点:由三视图判断几何体.分析:易得这个几何体共有 2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数, 相加即可. 解答:解:由题中所给出的主视图知物体共三列,且左侧一列高两层,右侧一列最高一层;由左视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两 层,出可能两行都是两层.所以图中的小正方体最少 4块,最多5块. 故答案为:4或5.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查. 三、解答题(共9小题)(选答题,不自动判卷)16. (2011?顺城区二模)某加工厂要加工一批密封罐,设计者给出了密封罐的三视图,请按照三视图确定制作每个 密封罐所需钢板的面积.—40cm - —*■15cm115cmT主视團 左视囹考点:由三视图判断几何体. 专题:数形结合.分析:根据三视图可以得出该几何体是正六棱柱,分别求出上下底的面积和侧面积,相加即可. 解答: 解:S=2S 六边形+6S 长方形,=2 >6>i->50X (5O0in60° ]+6X50X50, =7500 . >15000 .故每个密封罐所需钢板的面积为 7500 :';+ 15000.点评:本题考查了由该三视图中的数据确定正六棱柱的底面边长和高是解本题的关键,体现了数形结合的数学思 想.17. (2009?崇安区一模)(1)夜晚,小明在路灯下散步.已知小明身高 1.5米,路灯的灯柱高 4.5米.① 如图1,若小明在相距10米的两路灯AB 、CD 之间行走(不含两端),他前后的两个影子长分别为FM=x 米,FN=y 米,试求y 与x 之间的函数关系式,并指出自变量x 的取值范围?② 有言道:形影不离.其原意为:人的影子与自己紧密相伴,无法分离.但在灯光下,人的速度与影子的速度却不是一样的!如图2,若小明在灯柱 PQ 前,朝着影子的方向(如图箭头),以0.8米/秒的速度匀速行走,试求他影子 的顶端R 在地面上移动的速度.(2)我们知道,函数图象能直观地刻画因变量与自变量之间的变化关系. 相信,大家都听说过龟兔赛跑的故事吧. 现有一新版龟兔赛跑的故事:由于兔子上次比赛过后不服气,于是单挑乌龟再来另一场比赛,不过这次路线由乌龟确 定…比赛开始,在同一起点出发,按照规定路线,兔子飞驰而出,极速奔跑,直至跑到一条小河边,遥望着河对岸 的终点,兔子呆坐在那里,一时不知怎么办.过了许久,乌龟一路跚跚而来,跳入河中,以比在陆地上更快的速度 游到对岸,抵达终点,再次获胜.根据新版龟兔赛跑的故事情节,请在同一坐标系内(如图3),画出乌龟、兔子离开终点的距离s 与出发时间t 的函数图象示意图.(实线表示乌龟,虚线表示兔子)考点:中心投影;函数的图象;相似三角形的应用. 专题: 阅读型. 分析:(1)易证△ MEFMAB ,根据相似三角形的对应边的比相等.可以把 BF 用x 表示出来,冋理,DF 也可以用y 表示出来.根据 BD-10,就可以得到x , y 的一个关系式,从而求出函数的解析式.根据50△ REFRPQ 就可以求出PE 与RP 的比值,同理.根据 △ PEE's^ PRR ;求得EE 与RR 的比值.则影 子的速度就可以得到.(2)根据故事的叙述,就可以作出图象.解答: 解:(1) •/ EF / AB ,••• / MEF= / A ,/ MFE= / B . ••• △ MEF s △ MAB .①• X 丄=_•「"I- .「:.x 1•—=丄,MB=3x BF=3x - x=2x .MB 3同理,DF=2y . (2 分)•/ BD=10• 2x+2y=10 • y= - x+5(3 分)•/当EF 接近AB 时,影长FM 接近0;当EF 接近CD 时,影长FM 接近5 • 0V X V 5(4 分)②如图,设运动时间为 t 秒,贝U EE'=FF'=0.8t•/ EF // PQ :丄 REF= / RPQ , / RFE= / RQP• △ REF RPQ• •十.一 「广; •(6 分)•/ EE' // RR'• / PEE'= / PRR', / PE'E= / PR'R • △ PEE's^ PRR'• RR'=1・2t •卡爭子EE Z PE P (8分)本题主要考查了相似三角形的性质,相似三角形的对应边的比相等.18. (2010?自贡)作出下面立体图形的三视图.点评:本题考查了几何体的三种视图,掌握定义是关键•注意看得到的棱画实线,看不到的棱画虚线.19. (2010?永州)如图所示是一个直四棱柱及其正视图和俯视图(等腰梯形)(1)根据图中所给数据,可得俯视图(等腰梯形)的高为4 ;(2)在虚线框内画出其左视图,并标出各边的长. (尺规作图,不写作法,保留作图痕迹)E3倩视圍点评:考点:作图-三视图.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.— f ----- 1_____圭视圉解答: 解:点评:用到的知识点为:求等腰梯形的问题常用辅助线是做等腰梯形的高;左视图反映几何体的宽与高.20. (2009?庆阳)一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆 锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上考点:作图-三视图. 专题:作图题.分析:认真观察实物,可得这个几何体的主视图和左视图都为长方形上面一个三角形,俯视图为正方形中间一个 有圆心的圆.解答:解:正确的三视图如图所示:主视图正确;(2分) 左视图正确;(2分) 俯视图正确.(3分)说明:俯视图中漏掉圆心的黑点扣(1分).点评:本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成 实线,看不见的画成虚线,不能漏掉.考点:由三视图判断几何体;勾股定理;作图 -三视图.分析:(1) 过上底的顶点向对边引垂线组成直角三角形求解即可;(2) 易得左视图为长方形,宽等于(1)中算出的梯形的咼,咼等于正视图图中的10.解答: 解:(1) 4 ( 3 分)作AE 丄BC 于点E ,贝U BE= ( 8 - 2)吃=3 , •••高 AE=计一二=4.-BE面看得到的视图)21 . (2011 ?广州)5个棱长为1的正方体组成如图的几何体. (1)该几何体的体积是 5 (立方单位),表面积是 22 (平方单位)(2) 画出该几何体的主视图和左视图.考点:作图-三视图. 专题:作图题.分析:(1)几何体的体积为 5个正方体的体积和,表面积为22个正方形的面积;(2)主视图从左往右看 3列正方形的个数依次为 2, 1, 2;左视图1列正方形的个数为 2. 解答:解:(1)每个正方体的体积为1, •••组合几何体的体积为 5X1=5 ;•••组合几何体的前面和后面共有 5X 2=10个正方形,上下共有 6个正方形,左右共 6个正方形,每个正方形的面积为1,•组合几何体的表面积为 22. 故答案为:5, 22;点评: 考查组合几何体的计算和三视图的画法;用到的知识点为:主视图,左视图分别是从物体的正面和左面看 到的平面图形.22. (2009?衢州)一个几何体的三视图如图所示,它的俯视图为菱形•请写出该几何体的形状,并根据图中所给的 数据求出它的侧面积.考点:分析:由三视图判断几何体.有三视图可看出这个图形是个四棱柱,然后根据底面菱形的对角线求出菱形的边长,然后求出侧面积. 解答: 解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为 4cm ,3cm ,棱柱的侧面积=丄>8>4=80 (cm 2).2点评:本题要先判断出几何体的形状,然后根据其侧面积的计算方法进行计算即可.正面主视图(2)作图如下:•菱形的边长23. (2009?沈阳模拟)如图是一个由若干个棱长相等的正方体构成的几何体的三视图.(1) 请写出构成这个几何体的正方体个数;(2) 请根据图中所标的尺寸,计算这个几何体的表面积.主视團左视图r=50傭视图考点:由三视图判断几何体;简单组合体的三视图. 专题:计算题;压轴题.分析:(1)根据三视图可得,俯视图中有一个正方体与下面四个正方体重叠了,故该几何体共有5个正方体;(2)该正方体的边长为 a ,根据正方体表面积公式计算.注意应去掉10个正方形的面积.解答:解:(1) 5个;(2) S 表=5 >6a 2 - 10a 2=20a 2.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及数形结合判断能力.24. (2009?杭州)如图是一个几何体的三视图.(1) 写出这个几何体的名称;(2) 根据所示数据计算这个几何体的表面积; (3)如果一只蚂蚁要从这个几何体中的点 B 出发,沿表面爬到 AC 的中点D ,请你求出这个线路的最短路程.考点:由三视图判断几何体;平面展开 -最短路径问题;扇形面积的计算.专题:综合题;压轴题. 分析:考查立体图形的三视图,圆锥的表面积求法及公式的应用.(1) 根据三视图的知识,主视图以及左视图都是三角形,俯视图为圆形,故可判断出该几何体是圆锥; (2) 圆锥的表面积等于扇形的表面积以及圆形的表面积之和; (3)将圆锥的侧面展开,设顶点为 B',连接BB', AC .线段AC 与BB'的交点为D ,线段BD 是最短路程. 解答:解:(1)根据三视图的知识,主视图以及左视图都是三角形,俯视图为圆形,故可判断出该几何体是圆锥;(2)表面积S=S扇形+S圆= + n2, 2=n l+ n=12 n+4 n=16 n (平方厘米),即该几何体全面积为(3)如图将圆锥侧面展开,得到扇形设 / BAB =n °ABB ',则线段BD为所求的最短路程.X6••• n=120 即/ BAB '=120° ••• C为弧BB '中点,• / ADB=90 ° / BAD=60 °•路线的最短路程为3 ^3cm.注意把立体图形转化为平面图形的思维,圆锥表面积的计算公式.216 冗cm ;• BD=AB ?sin/ BAD=6 x '= f F em,2点评:。

【初三数学】宁波市九年级数学下(人教版)《第29章 投影与视图》单元检测试卷及答案

【初三数学】宁波市九年级数学下(人教版)《第29章 投影与视图》单元检测试卷及答案

人教版九年级数学下册期末高效复习:专题9 投影与视图人教版初中数学九年级下册第28章锐角三角函数专题9投影与视图题型一投影典例下列为某两个物体的投影,其中是在太阳光下形成投影的是(D)A B C D【解析】如答图,故选D.典例答图【点悟】判断是平行投影还是中心投影,关键是看光源,一般太阳光可以近似地看成平行光,因此,在太阳光下的投影是平行投影.在路灯、手电筒等点光源下的投影就是中心投影.变式跟进 1.某舞台的上方共挂有a,b,c,d四个照明灯,当只有一个照明灯亮时,一棵道具树和小玲在照明灯光下的影子如图Z9-1所示,则亮的照明灯是(B)图Z9-1A.a灯B.b灯C.c灯D.d灯题型二直棱柱的展开图典例[2018·雅安]下列图形不能折成一个正方体的是(B)A B C D【解析】B选项图形中含“7”字形,因此不能折成一个正方体,故选B.【点悟】正方体的展开图有“1+4+1”型、“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.变式跟进 2.[2018·大庆]将正方体的表面沿某些棱剪开,展成如图Z9-2所示的平面图形,则原正方体中与“创”字所在面相对的面的上标的字是(A)图Z9-2A.庆B.力C.大D.魅【解析】“141”型上下两个为相对面,其余的相对的面之间一定相隔一个正方形.故选A.3.[2017·海淀区一模]下列选项中,左边的平面图形能够折成右边封闭的立体图形的是(B)A BC D【解析】A.四棱锥的展开图有四个三角形,故A选项错误;B.根据长方体的展开图的特征,故B选项正确;C.正方体的展开图中,不存在“田”字形,故C选项错误;D.圆锥的展开图中只有一个圆,故D选项错误.题型三几何体的三视图典例[2017·开封一模]下列四个几何体中,主视图与左视图相同的几何体有(D)A.1个B.2个C.3个D.4个【解析】①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形.故选D.【点悟】在画三视图时,一定要将物体的边、棱、顶点都体现出来,看得见的轮廓线画成实线,看不见的轮廓线画成虚线,不能漏掉.变式跟进 4.[2018·遂宁]如图Z9-3,5个完全相同的小正方体组成一个几何体,则这个几何体的主视图是(D)图Z9-3A B C D 5.[2017·聊城]如图Z9-4是由若干个小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,则这个几何体的主视图是(C)图Z9-4 A B C D【解析】主视图是从前往后看,由俯视图可知从左到右最高层数依次为2,3,1,∴这个几何体的主视图是C.6.[2017·烟台]如图Z9-5所示的工件,其俯视图是(B)图Z9-5 A B C D题型四由视图确定几何体的形状或组成个数典例[2017·峄城区模拟]如图Z9-6,是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是(C)图Z9-6A.3个B.4个C.5个D.6个【解析】由俯视图可知,这个几何体的底层有4个小正方体,结合主视图、左视图可知上层后排左侧有1个正方体,所以组成该几何体的小正方体的个数是5个.【点悟】通过三视图计算组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,小正方体的个数就迎刃而解了.在三视图中,通过主视图、俯视图可以确定组合图形的列数;通过俯视图、左视图可以确定组合图形的行数;通过主视图、左视图可以确定行与列中的最高层数.变式跟进7.[2018·武汉]一个几何体由若干个相同的正方体组成,其主视图和俯视图如图Z9-7所示,则这个几何体中正方体的个数最多是(C)A.3 B.4 C.5 D.6图Z9-7变式跟进7答图【解析】由主视图知,俯视图中在该位置上最多小正方体的个数如答图所示(图中的数字表示在该位置上的小正方体的个数),则这个几何体中正方体的个数最多是2+2+1=5.故选C.8.[2018·齐齐哈尔]三棱柱的三视图如图Z9-8所示,已知在△EFG中,EF=8 cm,EG=12 cm,∠EFG=45°,则AB的长为图Z9-8【解析】由三视图的性质可知,在△EFG中,边FG上的高长等于AB的长,∵EF=8 cm,∠EFG=45°,∴AB=8×sin45°=4 2 cm.【专题突破训练】人教版九年级数学下册_第29章_投影与视图 _单元检测试卷(有答案)一、单选题(共10题;共30分)1.下列几何体中,俯视图相同的是()A. ①②B. ①③C. ②③D. ②④2.如图是由5个大小相同的正方体组成的几何体,它的俯视图是()A. B. C.D.3.在同一时刻,两根长度不等的竿子置于阳光之下,但它们的影长相等,那么这根竿子的相对位置是( )A. 两根都垂直于地面B. 两根平行斜插在地上C. 两根竿子不平行D. 一根倒在地上4.如图所示是一个几何体的三视图,这个几何体的名称是()A. 圆柱体B. 三棱锥C. 球体D. 圆锥体5.(2015•本溪)如图是由多个完全相同的小正方体组成的几何体,其左视图是()A. B. C. D.6.有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.7.下面给出的三视图表示的几何体是()A. 圆锥B. 正三棱柱C. 正三棱锥D. 圆柱8.将两个长方体如图放置,则所构成的几何体的左视图可能是()A. B. C.D.9.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A. 108cm3B. 100 cm3C. 92cm3D. 84cm310.如图,是一个正方体的平面展开图,且相对两个面表示的整式的和都相等,如果,则E所代表的整式是()A. B. C. D.二、填空题(共10题;共33分)11.如图是测得的两根木杆在同一时间的影子,那么它们是由________形成的投影(填“太阳光”或“灯光”).12.下面是一些立体图形的三视图(如图),•请在横线上填上立体图形的名称.________ ________13.下图是某天内,电线杆在不同时刻的影长,按先后顺序应当排列为________.14.若要使图中平面展开图按虚线折叠成正方体后,相对面上两个数互为相反数,则x+y=________.15.如图,是一个几何体的三视图,由图中数据计算此几何体的表面积为________(结果保留π).16.为了测量水塔的高度,我们取一竹竿,放在阳光下,已知2米长的竹竿投影长为1.5米,在同一时刻测得水塔的投影长为30米,则水塔高为________米.17.太阳光线形成的投影称为________ ,手电筒、路灯、台灯的光线形成的投影称为________18.如图是一个几何体的三视图,则这个几何体的侧面积是________ cm2.19.有一个正方体的六个面上分别标有数字1、2、3、4、5、6,从三个不同的角度观察这个正方体所得到的结果如图所示,如果标有数字6的面所对面上的数字记为a,2的面所对面上数字记为b,那么a+b的值为________ .20.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、解答题(共8题;共57分)21.画图:(1)画出圆锥的三视图.(2)已知∠AOB,用直尺和圆规作∠A′O′B′=∠AOB(要求:不写作法,保留作图痕迹)22.画出如图所示图形从正面、从左面和从上面看到的形状图.23.如图是由6个正方体组成的几何体,请分别画出从正面、左面、上面看到的这个几何体的形状图。

人教版九年级下数学第二十九章《投影与视图》单元测试及答案.doc

人教版九年级下数学第二十九章《投影与视图》单元测试及答案.doc

人教版 九下数学第二十九章《投影与视图》单元测试及答案【1】一、选择题:(每小题3分,共60分)1.小明从正面观察下图所示的两个物体,看到的是( )2.下面是空心圆柱在指定方向上的视图,正确的是( )3.如图是某物体的三视图,则该物体形状可能是( ) (A )长方体 (B )圆锥体 (C )立方体 (D )圆柱体 4.下图中几何体的主视图是( )5.如图,左面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )6.把图①的纸片折成一个三棱柱,放在桌面上如图②所示,则从左侧看到的面为( )(B ) (A ) (C ) (D )主视图左视图(第3题)(B ) (A ) (C ) (D )(B )(A )(C )(D)(B ) (A ) (C ) (D )(A )Q (B )R (C )S (D )T7.两个不同长度的的物体在同一时刻同一地点的太阳光下得到的投影是( ) (A )相等 (B )长的较长 (C )短的较长 (D )不能确定 8.正方形在太阳光的投影下得到的几何图形一定是( )(A )正方形 (B )平行四边形或一条线段 (C )矩形 (D )菱形9.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子( ) (A )平行 (B )相交 (C )垂直 (D )无法确定10.在同一时刻,身高1.6m 的小强的影长是1.2m ,旗杆的影长是15m ,则旗杆高为( ) (A )16 m (B )18 m (C )20 m (D )22 m11.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为( )(A )上午8时 (B )上午9时30分 (C )上午10时 (D )上午12时 12.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中时间先后顺序排列,正确的是( )(A )①②③④ (B )④②③① (C )④①③② (D )④③②①13.下图是由一些相同的小正方形构成的几何体的三视图,则小正方形的个数是( )(B)(A)(C)(D)(A)4个(B)5个(C)6个(D)7个14.如图所示的几何体的俯视图是()15.如果用□表示1表示两个立方体叠加,用█表示三个立方体叠加,那么下图由6个立方体叠成的几何体的主视图是( )(A)(B)(C)(D)16.在同一时刻,两根长度不等的杆子置于阳光之下,但它们的影长相等,那么这两根竿子的相对位置是()(A)两根都垂直于地面(B)两根平行斜插在地上(C)两根竿子不平行(D)一根到在地上17.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()(A)小明的影子比小强的影子长(B)小明的影长比小强的影子短(C)小明的影子和小强的影子一样长(D)无法判断谁的影子长18.底面与投影面垂直的圆锥体的正投影是( )(A)圆(B)三角形(C)矩形(D)正方形19.一个全透明的玻璃正方体,上面嵌有一根黑色的金属丝,如图,金属丝在俯视图中的形状是()左视图主视图俯视图(第14题)(A(B(C(D2 24 1 1 3 (B ) (A ) (C )(D )20.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为( )二、填空题(每小题4分,共24分)21.一个几何体的三视图如右图,那么这个几何体是 . 22.请写出三种视图都相同的两种几何体 、 .23.一个物体的俯视图是圆,则该物体有可能是 .(写两个即可) 24.小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为2米,小刚比小明矮5cm ,此刻小明的影长是________米。

人教版九年级数学下第二十九章《投影与视图》单元练习题(含答案)

人教版九年级数学下第二十九章《投影与视图》单元练习题(含答案)

第二十九章《投影与视图》单元练习题一、选择题1.如图,是一组几何体,它的俯视图是()A.B.C.D.2.如图是某几何体的三视图,则与该三视图相对应的几何体是()A.B.C.D.3.如下图的四棱台,它的俯视图是下边所示的图形的()A.B.C.D.4.由以下光源产生的投影,是平行投影的是()A.太阳B.路灯C.手电筒D.台灯5.某几何体的主视图和左视图完整同样均如下图,则该几何体的俯视图不行能是()A.B.C.D.6.如图是一个圆柱体和一个长方体构成的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图为()A.B.C.D .如下图,平川上一棵树高为 6 米,两次察看地面上的影子,第一次是当阳光与地面成 时, 7.60°第二次是阳光与地面成 30°时,第二次察看到的影子比第一次长 ( )A .6-3B . 4C . 6D . 3-28.以下图形中,表示两棵小树在同一时辰阳光下的影子的图形可能是 ( )A .B .C .D .分卷 II二、填空题9.若某几何体的三视图如下图,则该几何体是 _________.10.如图,在斜坡的顶部有一铁塔 AB , B 是 CD 的中点, CD 是水平的,在阳光的照耀下,塔影 DE留在坡面上.已知铁塔底座宽= 12 m ,塔影长 = ,小明和小华的身高都是 1.6 m ,同一CD DE 24 m时辰,小明站在点E 处,影子在坡面上,小华站在平川上,影子也在平川上,两人的影长分别为 2m 和 1 m ,那么塔高 AB 为 ________ m.11.一位工人师傅要制造某一工件,想知道工件的高,他须看到在视图的________或 ________.12.在以下对于盲区的说法中,正确的有________. (填序号 ①② 等 )① 我们把视线看不到的地方称为盲区;② 我们上山与下山时视线盲区是同样的;③ 我们坐车向前行驶,有时会发现高大的建筑物会被比它矮的建筑物挡住;④ 人们说 “站得高,看得远”,说明在高处视线盲区要小些,视线范围要大些.13.如图,是小明在一天中四个时辰看到的一棵树的影子的俯视图,请你将它们准时间的先后次序进行摆列 ________.14.从上面看圆柱和从上面看圆锥,其形状是同样的,都是圆,但是它们的俯视图是有区其他,其差别是________________ .15. 主视图与俯视图的________ 一致;主视图与左视图的________ 一致;俯视图与左视图的________一致.16.一块直角三角形板ABC , ∠ACB = 90°, BC = 12 cm , AC =8 cm ,测得BC 边的中心投影B 1C 1 长为 24 cm ,则 A 1B 1 长为 ________ cm.三、解答题17.看教室黑板上的同一幅画,是离黑板近,视角大;仍是离黑板远,视角大呢?是离黑板近看得清仍是远看得清呢?由此你能够得出一个什么样的结论?18.当你去看电影的时候,你想坐得离屏幕近一些,但是又不想为了看屏幕边沿的镜头不断地转动眼睛.如下图,点A 、B 分别为屏幕边沿两点,若你在 P 点,则视角为假如你感觉电影院∠ APB .内 P 点是观看的最正确地点,但是已经有人坐在那了,那么你会找到一个地点,使得在 Q 、 P 两点Q有同样的视角吗?请在图中画出来 (保存绘图印迹,不写画法).19.如下图,太阳光与地面成60°角,一颗倾斜的大树在地面上所成的角为30 °,这时测得大树在地面上的影长约为10 m ,试求此大树的长约是多少?(得数保存整数 )20.如图,两棵树的高度分别为AB = 6 m ,CD = 8 m ,两树的根部间的距离AC = 4 m ,小强沿着正对这两棵树的方向从左向右行进,假如小强的眼睛与地面的距离为1.6 m ,当小强与树AB的距离小于多少时,就不可以看到树CD 的树顶D?21.如下图,一段街道的两边沿所在直线分别为AB , PQ ,而且 AB ∥ PQ ,建筑物的一端 DE 所在的直线 MN ⊥AB 于点M ,交PQ 于点N ,小亮从成功街的A处,沿着AB 方向行进,小明向来站 在点P 的地点等候小亮.(1) 请你画出小亮恰巧能看见小明的视线,以及此时小亮所在的地点(用点 C 标出 ).(2) 已知: MN = 30 m , MD = 12 m , PN = 36 m .求 (1)中的点 C 到成功街口的距离.第二十九章《投影与视图》单元练习题答案分析1.【答案】 B【分析】如图摆放的地点,从上面看三棱柱可获得左右相邻的两个长方形;六棱柱为一个六边形,应选 B.2.【答案】 C【分析】由主视图和左视图发现应当有一个正四棱锥和正方体的组合体,依据俯视图发现正方体位于正四棱柱的右前面,应选 C.3.【答案】 B【分析】四棱台的俯视图是两个大小相套的正方形,所有为实线.应选 B.4.【答案】 A【分析】用平行光芒照耀物体所产生的投影为平行投影,而用路灯、手电筒、台灯等照耀物体所产生的投影为中心投影.应选 A.5.【答案】 C【分析】几何体的主视图和左视图完整同样均如下图则上面的几何体从正面看和左面看的长度相等,只有等边三角形不行能,应选 C.6.【答案】 C【分析】从上面看矩形内部是个圆,应选 C.7.【答案】 B【分析】利用所给角的正切值分别求出两次影子的长,而后作差即可.第一次察看到的影子长为6×tan 30 =(米;°2 )第二次察看到的影子长为6×tan 60 =(米.°6 )两次察看到的影子长的差=6-2=4(米).应选 B.8.【答案】 A【分析】平行投影特色:在同一时辰,不一样物体的影子同向,且不一样物体的物高和影长成比率.A.影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;B.影子的方向不同样,故本选项错误;C.影子的方向不同样,故本选项错误;D.同样树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误.应选 A.9.【答案】长方体【分析】从正面看,是一个矩形;从左面看,是一个矩形;从上面看,是矩形,这样的几何体是长方体.10.【答案】 28.8【分析】过点 D 作 DF∥ AE,如图,依据题意得=,即=,解得BF=9.6;=,即=,解得AF=19.2,所以 AB= AF+ FD=19.2+9.6=28.8(m).故答案为28.8.11.【答案】正视图左视图【分析】从正面看某一工件,看到的是工件的长和高,从左面看到的是工件的宽和高,从上面看到的是工件的长和宽,由此问题得解.要想知道工件的高,需从正面或左面看到高,所以需知道正视图或左视图.12.【答案】①③④【分析】盲区是指看不见的地区,仰望时越向前视线越小盲区越大,俯视时越向前视线越大,盲区越小.② 中上山和下山时盲区是不一样的,要记着仰望时越向前视线越小盲区越大,俯视时越向前视线越大,盲区越小.而①③④ 都是正确的,所以选①③④.13.【答案】④②①③【分析】西为④ ,西北为② ,东北为① ,东为③ ,故其准时间的先后次序为④②①③.14.【答案】圆锥的俯视图圆心处有一实心点【分析】15.【答案】长高 宽【分析】依据三视图的特色,主视图与俯视图长对正;主视图与左视图高平齐;俯视图与左视图的宽相等进行填空即可.故答案为长、高、宽.16.【答案】 8【分析】 ∵∠ ACB =90°, BC = 12 cm , AC = 8 cm ,∴AB = 4,∵△ ABC ∽△ A 1B 1C 1,1 1= 1 1= ,即 1 1= 8cm. ∴A B ∶AB B C ∶BC 2∶1 A B 17.【答案】解 依据视角的定义可得:离黑板近视角大,离黑板近看得清.结论:视角大,看得清.【分析】人眼到视平面的距离视固定的(视距 ),视平面左右两个边沿到人眼的连线获得的角度就是视角.18.【答案】解作 ,AP 的中垂线,交点为 ,以 O 为圆心, OP 长为半径做三角形 ABP 的外AB O接圆,在圆上 P 点同侧找一点 Q ,连结 AQ , BQ ,则点 Q 即可所求点.【分析】作 AB , AP 的中垂线,找到交点 O ,而后以 O 为圆心, OP 长为半径做三角形ABP 的外接圆,圆上每一点与A ,B 的连线所成的角都与 ∠ APB 相等,找到一个和 P 点同侧的 Q 点连结 AQ ,BQ 即可.19.【答案】解 过 B 作 BM ⊥ AC 于 M ,∵∠ A = 30°,∴BM = BC = 5, AM = 5 ,又∵∠ CBE = 60°,∴∠ ACB =30°,∴AB = CB ,∴CM = AM = 5 ,∴AC = 10≈17.答:此大树的长约是 17 m.【分析】先过B 作 BM ⊥AC 于 M ,结构含角的直角三角形,求得AM 的长,再依据 △ ABC 为30°等腰三角形,利用三线合一求得 AC 的长.20.【答案】解设 FG = x 米.那么 FH = x + GH = x +AC = x + 4(米 ),= 6 m , =,小强的眼睛与地面的距离为 1.6 m , ∵AB CD 8 m∴BG = 4.4 m , DH = 6.4 m ,∵BA ⊥ PC , CD ⊥PC ,∴AB ∥ CD ,∴FG ∶FH = BG ∶ DH ,即 FG ·DH = FH ·BG ,∴ x ×6.4= (x + 4) ×4.4,解得 x = 8.8(米 ),所以小于 8.8 米时就看不到树 CD 的树顶 D .【分析】依据盲区的定义联合图片,我们可看出在 FG 之间时,是看不到树 CD 的树顶 D 的.所以求出 FG 就是此题的重点.已知了AC 的长, 、 DH 的长,那么可依据平行线分线段成比率来得出对于、 、、BG FG FH BG DH的比率关系式,用 FG 表示出 FG 后即可求出 FG 的长.21.【答案】解 (1) 如下图, CP 为视线,点 C 为所求地点.(2) ∵AB ∥PQ ,MN ⊥AB 于 M ,∴∠ CMD = ∠ PND = 90°.又∵∠ CDM = ∠ PDN ,∴△ CDM ∽△ PDN ,∴ = .∵MN =30 m, MD=12 m,∴ND =18 m.∴=,∴CM=24(m).∴点 C 到成功街口的距离CM 为24 m.【分析】此题以生活场景为载体,考察学生运用知识解决实质问题能力,此题可依据生活知识得第(1) 问,第 (2) 问由相像三角形性质求出.。

【初三数学】济南市九年级数学下(人教版)《第29章 投影与视图》单元测试题及答案

【初三数学】济南市九年级数学下(人教版)《第29章 投影与视图》单元测试题及答案

人教版九年级数学下册第二十九章投影与视图单元测试卷一、选择题:本大题共15小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.1. 如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A. B.C.D.2. 如图的立体图形的左视图可能是().B.C.D.3.如图是由5个大小相同的正方体组成的几何体,它的主视图是()A.B.C.D.4. 如图的几何体的三视图是().B.C .D.5.下列立体图形中,俯视图是正方形的是()A.B.C.D.6.如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.7.如图是由四个相同的小正方体组成的立体图形,它的俯视图为().B.C.D.8.某几何体的三视图如图所示,则这个几何体是()A .圆柱B . 正方体C . 球D . 圆锥9.如图所示的支架是由两个长方形构成的组合体,则它的主视图是( ).B .C .D .10.、如图是某一几何体的三视图,则该几何体是( )11.如图是由4个大小相同的正方体搭成的几何体,其俯视图是( ).B .C .D .12.如图几何体的俯视图是( ).B .C .D .13.如图的罐头的俯视图大致是( ).B .C .D .14.如图是某个几何体的三视图,则该几何体的形状是( )15.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是( )B .C .D .16、左下图是由3个完全相同的小正方体组成的立体图形,它的主视图是( )17.一个几何体的三视图如图所示,那么这个几何体是【 】18. 如图,所给三视图的几何体是( )(第1题图)19. 下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是( ).正方体B .圆柱C .圆锥D .球DCB A20. 一个几何体的三视图如图所示,则该几何体可能是().B.C.D.21.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()22.甲是某零件的直观图,则它的主视图为().B.C.D.23.下列几何体,主视图和俯视图都为矩形的是()A.B.C.D.24.一个圆锥的三视图如图所示,则此圆锥的底面积为()A.30πcm2B.25πcm2C.50πcm2D.100πcm2第Ⅱ卷(非选择题共60分)二、填空题:本大题共7小题,其中16-22题每小题5分,共35分.只要求填写最后结果.1.写出一个在三视图中俯视图与主视图完全相同的几何体.2.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是..3. 如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是18cm3.(第1题图)4.三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为cm.5.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为__▲__cm2.(结果可保留根号)6如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为______cm2参考答案:数学试题第Ⅰ卷(选择题共60分)一、选择题:本大题共15小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.1. 如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A. B.C.D.考点:简单几何体的三视图.分析:俯视图是从物体上面看所得到的图形.解答:解:从几何体的上面看俯视图是,故选:D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2. 如图的立体图形的左视图可能是().B.C.D.3. 如图是由5个大小相同的正方体组成的几何体,它的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:从正面看,第一层是两个正方形,第二层左边是一个正方形,故选:C.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.如图的几何体的三视图是().B.C.D.5.下列立体图形中,俯视图是正方形的是()A.B.C.D.考点:简单几何体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解;A、的俯视图是正方形,故A正确;B、D的俯视图是圆,故A、D错误;C、的俯视图是三角形,故C错误;故选:A.点评:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.6.如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.分析:根据从左面看得到的图形是左视图,可得答案.解答:解;从左面看下面一个正方形,上面一个正方形,故选:A.点评:本题考查了简单组合体的三视图,从左面看得到的图形是左视图.7.如图是由四个相同的小正方体组成的立体图形,它的俯视图为().B.C.D.8.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方体C.球D.圆锥考点:由三视图判断几何体.分析: 由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状. 解答: 解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形可判断出这个几何体应该是圆锥,故选D .点评: 主视图和左视图的大致轮廓为三角形的几何体为锥体,俯视图为圆就是圆锥.9.如图所示的支架是由两个长方形构成的组合体,则它的主视图是( ).B .C .D .解答:解:从几何体的正面看可得此几何体的主视图是,故选:D .10.如图是某一几何体的三视图,则该几何体是( )11.如图是由4个大小相同的正方体搭成的几何体,其俯视图是().B.C.D.12. 如图几何体的俯视图是().B.C.D.13.如图的罐头的俯视图大致是().B.C.D.14.如图是某个几何体的三视图,则该几何体的形状是()15.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()B .C.D.人教版九年级下册数学《第29章投影与视图》单元测试卷(解析版)一.选择题(共10小题)1.如图,下列图形从正面看是三角形的是()A.B.C.D.2.如图2的三幅图分别是从不同方向看图1所示的工件立体图得到的平面图形,(不考虑尺寸)其中正确的是()A.①②B.①③C.②③D.③3.如图,下面几何体,从左边看到的平面图形是()A.B.C.D.4.如图,是由若干个大小相同的正方体搭成的几何体的俯视图,其中小正方形中的数字表示该位置上的正方体的个数,则这个几何体的左视图是()A.B.C.D.5.一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是()A.4B.5C.6D.76.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是()A.圆柱B.圆锥C.棱锥D.球7.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②8.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.9.把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.10.木棒长为1.2m,则它的正投影的长一定()A.大于1.2m B.小于1.2mC.等于1.2m D.小于或等于1.2m二.填空题(共5小题)11.请写出一个三视图都相同的几何体:.12.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是.13.一个几何体有若干大小相同的小立方块搭成,如图分别是从它的正面、左面看到的形状图,则搭成该几何体最多需要个小立方块.14.如图所示,是由若干相同大小的小立方体组成的立体图形的三视图,请在右边的立体图形中画出所缺少的小立方体.15.如图,在A时测得某树的影长为4m,B时又测得该树的影长为16m,若两次日照的光线互相垂直,则树的高度为.三.解答题(共4小题)16.如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的上数,请你画出它从正面和从左面看得到的平面图形.17.已知图为一几何体从不同方向看的图形:(1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图;(3)若长方形的高为10厘米,三角形的边长为4厘米,求这个几何体的侧面积.18.(1)由大小相同的小立方块搭成的几何体如下图,请在下图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.19.某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)2019年人教版九年级下册数学《第29章投影与视图》单元测试卷参考答案与试题解析一.选择题(共10小题)1.如图,下列图形从正面看是三角形的是()A.B.C.D.【分析】分别写出各选项中几何体的从正面看到的图形,进一步选择答案即可.【解答】解:A、三棱柱从正面看到的是长方形,不合题意;B、圆台从正面看到的是梯形,不合题意;C、圆锥从正面看到的是三角形,符合题意;D、长方体从正面看到的是长方形,不合题意.故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握简单几何体的特征.2.如图2的三幅图分别是从不同方向看图1所示的工件立体图得到的平面图形,(不考虑尺寸)其中正确的是()A.①②B.①③C.②③D.③【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从正面看可得到两个左右相邻的中间没有界线的长方形,①错误;从左面看可得到两个上下相邻的中间有界线的长方形,②错误;从上面看可得到两个左右相邻的中间有界线的长方形,③正确.故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.如图,下面几何体,从左边看到的平面图形是()A.B.C.D.【分析】根据由已知条件可知,左视图有2列,每列小正方形数目分别为3,1,据此即可判断.【解答】解:已知条件可知,左视图有2列,每列小正方形数目分别为3,1.故选:C.【点评】本题主要考查了画实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.4.如图,是由若干个大小相同的正方体搭成的几何体的俯视图,其中小正方形中的数字表示该位置上的正方体的个数,则这个几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.由图示可得左视图有3列,每列小正方形数目分别为3,2,1.【解答】解:从左面看易得第一层有3个正方形,第二层最左边有2个正方形,第三层左边有1个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是()A.4B.5C.6D.7【分析】根据“俯视图打地基,主视图疯狂盖,左视图拆违章”的原则解答可得.【解答】解:几何体分布情况如下图所示:则小正方体的个数为2+1+1+1=5,故选:B.【点评】本题考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.6.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是()A.圆柱B.圆锥C.棱锥D.球【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选:A.【点评】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.7.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.依此即可解题.【解答】解:根据几何体的摆放位置,主视图和俯视图正确.左视图中间有一条横线,故左视图不正确.故选:B.【点评】本题考查了三种视图及它的画法,看得到的棱画实线,看不到的棱画虚线.8.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.【分析】根据题意:水杯的杯口与投影面平行,即与光线垂直;则它的正投影图是应是D.【解答】解:依题意,光线是垂直照下的,故只有D符合.故选:D.【点评】本题考查正投影的定义及正投影形状的确定.9.把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选:A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.10.木棒长为1.2m,则它的正投影的长一定()A.大于1.2m B.小于1.2mC.等于1.2m D.小于或等于1.2m【分析】投影线垂直于投影底幕面时,称正投影,根据木棒的不同位置可得不同的线段长度.【解答】解:正投影的长度与木棒的摆放角度有关系,但无论怎样摆都不会超过1.2 m.故选:D.【点评】考查正投影的定义,注意同一物体的所处的位置不同得到正投影也不同.二.填空题(共5小题)11.请写出一个三视图都相同的几何体:球(或正方体).【分析】三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形,找到从3个方向得到的图形全等的几何体即可.【解答】解:球的三视图是3个全等的圆;正方体的三视图是3个全等的正方形,故答案为:球(或正方体).【点评】考查三视图的有关知识,注意三视图都相同的常见的几何体有球或正方体.12.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是5.【分析】先得出从上面看所得到的图形,再求出俯视图的面积即可.【解答】解:从上面看易得第一行有3个正方形,第二行有2个正方形,共5个正方形,面积为5.故答案为5.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,同时考查了面积的计算.13.一个几何体有若干大小相同的小立方块搭成,如图分别是从它的正面、左面看到的形状图,则搭成该几何体最多需要14个小立方块.【分析】从主视图上弄清物体的上下和左右形状,从左视图上弄清楚物体的上下和前后形状,综合分析,即可得出答案.【解答】解:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为:14.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.14.如图所示,是由若干相同大小的小立方体组成的立体图形的三视图,请在右边的立体图形中画出所缺少的小立方体略.【分析】由左视图可以知道,左边应该为三个小立方体,且在正前方,添加即可.【解答】解:【点评】此题主要考查三视图的画图、学生的观察能力和空间想象能力.15.如图,在A时测得某树的影长为4m,B时又测得该树的影长为16m,若两次日照的光线互相垂直,则树的高度为8m.【分析】根据题意,画出示意图,易得:Rt△EDC∽Rt△CDF,进而可得=;即DC2=ED•FD,代入数据可得答案.【解答】解:如图:过点C作CD⊥EF,由题意得:△EFC是直角三角形,∠ECF=90°,∴∠EDC=∠CDF=90°,∴∠E+∠ECD=∠ECD+∠DCF=90°,∴∠E=∠DCF,∴Rt△EDC∽Rt△CDF,有=;即DC2=ED•FD,代入数据可得DC2=64,DC=8;故答案为:8m.【点评】本题考查了平行投影,通过投影的知识结合三角形的相似,求解高的大小;是平行投影性质在实际生活中的应用.三.解答题(共4小题)16.如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的上数,请你画出它从正面和从左面看得到的平面图形.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,3,左视图有2列,每列小正方形数目分别为3,3.据此可画出图形.【解答】解:【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.17.已知图为一几何体从不同方向看的图形:(1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图;(3)若长方形的高为10厘米,三角形的边长为4厘米,求这个几何体的侧面积.【分析】(1)只有棱柱的主视图和左视图才能出现长方形,根据俯视图是三角形,可得到此几何体为直三棱柱;(2)应该会出现三个长方形,两个三角形;(3)侧面积为3个长方形,它的长和宽分别为10厘米,4厘米,计算出一个长方形的面积,乘3即可.【解答】解:(1)直三棱柱;(2)如图所示:;(3)3×10×4=120cm2.【点评】用到的知识点为:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.18.(1)由大小相同的小立方块搭成的几何体如下图,请在下图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要5个小立方块,最多要7个小立方块.【分析】(1)从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1,依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最少个数和最多个数相加即可.【解答】解:(1)作图如下:;(2)解:由俯视图易得最底层有4个小立方块,第二层最少有1个小立方块,所以最少有5个小立方块;第二层最多有3个小立方块,所以最多有7个小立方块.故答案是:5;7.【点评】考查了作图﹣三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.19.某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)【分析】(1)在直角△ABC中,已知∠ACB=30°,AC=12米.利用三角函数即可求得AB的长;(2)在△AB1C1中,已知AB1的长,即AB的长,∠B1AC1=45°,∠B1C1A=30°.过B1作AC1的垂线,在直角△AB1N中根据三角函数求得AN,BN;再在直角△B1NC1中,根据三角函数求得NC1的长,再根据当树与地面成60°角时影长最大,根据三角函数即可求解.【解答】解:(1)AB=AC tan30°=12×=4(米).答:树高约为4米.(2)如图(2),B1N=AN=AB1sin45°=4×=2(米).NC1=NB1tan60°=2×=6(米).AC1=AN+NC1=2+6.当树与地面成60°角时影长最大AC2(或树与光线垂直时影长最大或光线与半径为AB 的⊙A相切时影长最大)AC2=2AB2=;【点评】此题考查了平行投影;通过作高线转化为直角三角形的问题,期末复习:人教版九年级数学下册第29章投影与视图单元检测试卷(解析版)一、单选题(共10题;共30分)1.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A. 1.5B. 2C. 2.5D. 32.由五个相同的立方体搭成的几何体如图所示,则它的左视图是()A. B. C.D.3.如图,下列几何体是由4个相同的小正方体组合而成的,从左面看得到的平面图形是下列选项中的()A. B. C.D.4.已知某几何体的一个视图(如图),则此几何体是()A. 正三棱柱B. 三棱锥C. 圆锥D. 圆柱5.(2017•镇江)如图是由6个大小相同的小正方体组成的几何体,它的主视图是()A. B. C.D.6.如图是由几个相同的小立方块搭成的几何体的三视图,则这个几何体的小立方块的个数是()A. 4个B. 5个C. 6个D. 7个7.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A. 4个B. 5个C. 6个D. 7个8.如图所示,是一个空心正方体,它的左视图是()A. B. C.D.9.由n个大小相同的小正方形搭成的几何体的主视图和左视图如图所示,则n的最大值为()A. 11B. 12C. 13D. 1410.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()A. B. C.D.二、填空题(共10题;共30分)11.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是________.12.圆锥的底面半径为5,侧面积为60π,则其侧面展开图的圆心角等于________.13.如图,5个边长相等的小正方形拼成一个平面图形,小丽手中还有一个同样的小正方形,她想将它与图中的平面图形拼接在一起,从而可以构成一个正方体的平面展开图,则小丽总共能有 ________种拼接方法.14.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为________ cm2.15.在市委、市政府的领导下,全市人民齐心协力,努力将我市创建为“全国文明城市”,为此学生小红特制了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字所对的面上标的字应是________ .16.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则点P到AB间的距离是________.17.侧面可以展开成一长方形的几何体有________;圆锥的侧面展开后是一个________;各个面都是长方形的几何体是________;18.主视图、俯视图和左视图都是正方形的几何体是________19.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是________.20.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、解答题(共8题;共60分)21.如图为7个正方体堆成的一个立体图形,分别画出从正面、左面、上面看这个几何体所。

九年级数学第二十九章投影与视图单元测试精选题目含答案

九年级数学第二十九章投影与视图单元测试精选题目含答案

九年级数学第二十九章投影与视图单元测试精选题目含答案九年级数学第二十九章投影与视图单元测试精选题目含答案姓名:__________班级:__________考号:__________一、选择题(共10题)1、在一个晴朗的上午,皮皮拿着一块正方形术板在阳光下做投影实验,正方形木板在地面上形成的投影不可能是()2、一个圆柱形的茶叶盒在太阳光下旋转,其影子的变化过程可能是(?)A.矩形、矩形、圆B.正方形、圆、矩形C.圆、矩形、矩形D.无法确定3、如图所示,夜晚路灯下同样高的旗杆,离路灯越近,它的影子(??)A.越长?B.越短?C.一样长?D.无法确定4、如图所示,在房子外的屋檐E处安有一台监视器,房子前有一块落地的广告牌,那么监视器的盲区在(??)A.△ACEB.△BFD?C.四边形BCEDD.△ABD5、电影院呈阶梯或下坡形状的主要原因是(??)A.为了美观?B.盲区不变C.增大盲区??D.减小盲区6、下列四幅图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是()7、张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为(?)A、3.2米B、4.8米?C、5.2米??D、5.6米8、如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是(??)A.①②③④B.④①③②C.④②③①D.④③②①9、某时刻两根木棒在同一平面内的影子如图所示,此时,第三根木棒的影子表示正确的是()10、如图是一个包装盒的三视图,则这个包装盒的体积是(??)A.1000cm3B.1500cm3C.2000cm3D.400 0cm3二、填空题(共6题)1、如图,小丽和小华在院子内捉迷藏游戏,院内有3堵墙,现在小丽站在O点,小华?如果不想被小丽看见,则不应该站在的区域是??.2、高4米的旗杆在水平地面的影长为10米,此时测得附近一棵小树的影长为22.5米,则这棵树的高度为_______________。

【初三数学】济南市九年级数学下(人教版)《第29章 投影与视图》单元测试题(含答案解析)

【初三数学】济南市九年级数学下(人教版)《第29章 投影与视图》单元测试题(含答案解析)

人教版九年级数学下册复习_第29章_投影与视图_单元测试卷(有答案)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 小亮在上午时、时、时、时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午时B.上午时C.上午时D.上午时2. 晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是()A.变长B.变短C.先变长后变短D.先变短后变长3. 人离窗子越远,向外眺望时此人的盲区是()A.变大B.变小C.不变D.无法确定4. 下列投影中属于中心投影的是()A.阳光下跑动的运动员的影子B.阳光下木杆的影子C.阳光下汽车的影子D.路灯下行人的影子5. 为了看到柜顶上的物品,我们常常向后退几步或踮起脚,这其中的道理是()A.增大柜顶的盲区B.减小柜顶的盲区C.增高视点D.缩短视线6. 下列事例中,属于减少盲区的有()①站在阳台上看地面,向前走几步;②将眼前的纸片靠近眼睛;③将胡同的出口修成梯形状;④前方有看不见的地方,用望远镜看.A.个B.个C.个D.个7. 如图,模块①由个棱长为的小正方体构成,模块②-⑥均由个棱长为的小正方体构成.现在从模块②-⑥中选出三个模块放到模块①上,与模块①组成一个棱长为的大正方体.下列四个方案中,符合上述要求的是()A.模块②,④,⑤B.模块③,④,⑥C.模块②,⑤,⑥D.模块③,⑤,⑥8. 如图是由棱长为的正方体搭成的积木三视图,则图中棱长为的正方体的个数是()A.个B.个C.个D.个9. 在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来(如图),则这堆正方体货箱共有()A.箱B.箱C.箱D.箱10. 某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如图,是由小立方块搭成几何体的俯视图,上面的数字表示,该位置小立方块的个数画出主视图:________,左视图:________.12. 如图,迎宾公园的喷水池边上有半圆形的石头(半径为)作为装饰,其中一块石头正前方处有一彩灯,某一时刻,该灯柱落在此半圆形石头上的影长为.如果同一时刻,一直立的杆子的影长为,则灯柱的高________.13. 如图所示,这是一个由小立方块塔成的几何体的俯视图,图中的数字表示在该位置的小立方块的个数,请你画出它的主视图和左视图.主视图________ 左视图________.14. 观察下列几何体,主视图、左视图和俯视图都是矩形的是________.15. 太阳光线可以看成________,像这样的光线所形成的投影称为________.16. 太阳光所形成的投影是________投影,皮影戏中的皮影是由________投影得到的.17. 如图,小军、小珠之间的距离为,他们在同一盏路灯下的影长分别为,,已知小军、小珠的身高分别为,,则路灯的高为________.18. 轮船及汽车的驾驶室设在前面是为了让驾驶员的盲区足够________.19. 身高相同的小明和小丽站在灯光下的不同位置,已知小明的投影比小丽的投影长,我们可以判定小明离灯光较________.20. 如图,是一个长方体的三视图(单位:),这个长方形的体积是________.三、解答题(本题共计7 小题,共计60分,)21. (6分)下面几何体的三种视图有无错误?如果有,请改正.22. (9分)画出如图所示的几何体的主视图、左视图、俯视图:23. (9分)如图,是一个由小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的正方形的个数.请你画出它的主视图和左视图.24. (9分)一个物体的主视图和俯视图如图所示,请根据你对这个物体的想象,画出它的一个左视图.25. (9分)如图,是由几个小立方块所搭几何体的从上面看的图形,图中数字表示所在位置小立方块的个数,请画出这个几何体的从正面看和从左面看的图形.26. (9分)如图,已知一个几何体的三视图和有关的尺寸如图所示,请写出该几何体的形状,并根据图中所给的数据求出表面积.27.(9分) 在平整的地面上,有若干个完全相同棱长的小正方体堆成一个几何体,如图所示.(1)请画出这个几何体的三视图.(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有________个正方体只有一个面是黄色,有________个正方体只有两个面是黄色,有________个正方体只有三个面是黄色.(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体?参考答案与试题解析人教版九年级数学下册复习第29章投影与视图单元测试卷一、选择题(本题共计10 小题,每题3 分,共计30分)1.【答案】D【考点】平行投影【解析】根据太阳光线与地平面的夹角的大小变化来判断向日葵影子的长度的大小.【解答】解:在上午,时间越早,太阳光线与地平面的夹角越小,则物体的影长越长,所以这四个时刻中,上午时,向日葵的影子最长.故选.2.【答案】D【考点】中心投影【解析】由题意易得,小华离光源是由远到近再到远的过程,根据中心投影的特点,即可得到身影的变化特点.【解答】解:因为小华出去散步,在经过一盏路灯这一过程中离光源是由远到近再到远的过程,所以他在地上的影子先变短后变长.故选.3.【答案】A【考点】视点、视角和盲区【解析】根据视角与盲区的关系来判断.【解答】解:如图:为窗子,,过的直线,通过想象我们可以知道,不管在哪个区域,离窗子越远,视角就会越小,盲区就会变大.4.【答案】D【考点】中心投影【解析】根据中心投影的性质,找到是灯光的光源即可.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有选项得到的投影为中心投影.故选:.5.【答案】B【考点】视点、视角和盲区【解析】根据实际生活为了看到柜顶上的物品,我们常常向后退几步或踮起脚,实际就是减小盲区,即可得出答案.【解答】解:∵为了看到柜顶上的物品,我们常常向后退几步或踮起脚,∴这其中的道理是:减小柜顶的盲区.故选:.6.【答案】B【考点】视点、视角和盲区【解析】视线到达不了的区域为盲区,仰视时越向前视野越小盲区越大,俯视时越向前视野越大,盲区越小,由此可判断出答案.【解答】解:①站在阳台上看地面,向前走几步,视野扩大,减小了盲区,故正确;②将眼前的纸片靠近眼睛,眼睛的视野变小,增大了盲区,故错误;③将胡同的出口修成梯形状,视野扩大,减小了盲区,故正确;④前方有看不见的地方,用望远镜看,视野范围没变化,盲区没有减小,故错误.综上可得①③正确.故选.7.【答案】C【考点】简单组合体的三视图观察模块①可知,模块②补模块①上面的左边,模块③补模块①上面的右上角,模块⑥补模块①上面的右下角能够成为一个棱长为的大正方体.【解答】解:由图形可知模块②补模块①上面的左边,模块③补模块①上面的右上角,模块⑥补模块①上面的右下角,使得模块①成为一个棱长为的大正方体.故能够完成任务的为模块②,⑤,⑥.故选.8.【答案】C【考点】由三视图判断几何体【解析】易得这个几何体共有层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.【解答】解:由俯视图易得最底层有个正方体,第二层有个正方体,那么共有个正方体组成.故选.9.【答案】B【考点】由三视图判断几何体【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:由题意知,第二行正方体的个数从左往右依次为:,,;第一行第一列有个正方体,共有个正方体.故选.10.【答案】B【考点】作图-三视图【解析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.依此即可解题.【解答】解:根据几何体的摆放位置,主视图和俯视图正确.左视图中间有一条横线,故左视图不正确.故选:.二、填空题(本题共计10 小题,每题3 分,共计30分)11.【答案】,【考点】作图-三视图由三视图判断几何体【解析】由已知条件可知,主视图有列,每列小正方数形数目分别为,,;左视图有列,每列小正方形数目分别为,.据此可画出图形.【解答】解:如图所示:12.【答案】【考点】中心投影【解析】如图,,,的弧长为,先利用弧长公式计算出,则,作于,则,,接着利用相似比得到,解得,然后计算即可.【解答】解:如图,,,的弧长为,设,则,解得,即,∴,作于,则,,∵同一时刻,一直立的杆子的影长为,∴,∴,∴,即灯柱的高为.故答案为.13.【答案】,【考点】作图-三视图由三视图判断几何体【解析】利用俯视图结合小立方块的个数分别得出主视图与左视图.【解答】解:如图所示:.14.【答案】【考点】简单几何体的三视图【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:、主视图为矩形,俯视图为圆,错误;、主视图为矩形,三视图为矩形,正确;、主视图为等腰梯形,俯视图为圆环,错误;、主视图为三角形,俯视图为有对角线的矩形,错误.故答案为.15.【答案】平行光线,平行投影【考点】平行投影【解析】根据平行投影的定义填空即可.【解答】解:平行光线;平行投影.16.【答案】平行,中心【考点】平行投影中心投影【解析】太阳光是平行光线所以在地面上的投影是平行投影,皮影戏是有灯光照射下在影布上形成的投影,故是中心投影.【解答】解:太阳光是平行光线所以在地面上的投影是平行投影,皮影戏是有灯光照射下在影布上形成的投影,故是中心投影.故答案为:平行,中心.17.【答案】【考点】中心投影【解析】根据,得到,,根据相似三角形的性质可知,,即可得到结论.【解答】解:如图,∵,∴,,∴,,即,,解得:,答:路灯的高为.18.【答案】小【考点】视点、视角和盲区【解析】“轮船及汽车的驾驶室设在前面”是为了增加驾驶员的视角,减少盲区,从而更有利于驾驶;在高处俯瞰时,视角会增大,而盲区相应减小,故“站得高,看得远”也是为了增大视角,减少盲区.【解答】解:“轮船及汽车的驾驶室设在前面”这与“站得高,看得远”从数学原理上来说是为了增大视角,减小盲区,故答案为:小.19.【答案】远【考点】中心投影【解析】中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.据此判断即可.【解答】解:中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.所以小明离灯光较远.20.【答案】【考点】由三视图判断几何体【解析】【专题突破训练】人教版九年级数学下册_第29章_投影与视图 _单元检测试卷(有答案)一、单选题(共10题;共30分)1.下列几何体中,俯视图相同的是()A. ①②B. ①③C. ②③D. ②④2.如图是由5个大小相同的正方体组成的几何体,它的俯视图是()A. B. C.D.3.在同一时刻,两根长度不等的竿子置于阳光之下,但它们的影长相等,那么这根竿子的相对位置是( )A. 两根都垂直于地面B. 两根平行斜插在地上C. 两根竿子不平行D. 一根倒在地上4.如图所示是一个几何体的三视图,这个几何体的名称是()A. 圆柱体B. 三棱锥C. 球体D. 圆锥体5.(2015•本溪)如图是由多个完全相同的小正方体组成的几何体,其左视图是()A. B. C. D.6.有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.7.下面给出的三视图表示的几何体是()A. 圆锥B. 正三棱柱C. 正三棱锥D. 圆柱8.将两个长方体如图放置,则所构成的几何体的左视图可能是()A. B. C.D.9.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A. 108cm3B. 100 cm3C. 92cm3D. 84cm310.如图,是一个正方体的平面展开图,且相对两个面表示的整式的和都相等,如果,则E所代表的整式是()A. B. C. D.二、填空题(共10题;共33分)11.如图是测得的两根木杆在同一时间的影子,那么它们是由________形成的投影(填“太阳光”或“灯光”).12.下面是一些立体图形的三视图(如图),•请在横线上填上立体图形的名称.________ ________13.下图是某天内,电线杆在不同时刻的影长,按先后顺序应当排列为________.14.若要使图中平面展开图按虚线折叠成正方体后,相对面上两个数互为相反数,则x+y=________.15.如图,是一个几何体的三视图,由图中数据计算此几何体的表面积为________(结果保留π).16.为了测量水塔的高度,我们取一竹竿,放在阳光下,已知2米长的竹竿投影长为1.5米,在同一时刻测得水塔的投影长为30米,则水塔高为________米.17.太阳光线形成的投影称为________ ,手电筒、路灯、台灯的光线形成的投影称为________18.如图是一个几何体的三视图,则这个几何体的侧面积是________ cm2.19.有一个正方体的六个面上分别标有数字1、2、3、4、5、6,从三个不同的角度观察这个正方体所得到的结果如图所示,如果标有数字6的面所对面上的数字记为a,2的面所对面上数字记为b,那么a+b的值为________ .20.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、解答题(共8题;共57分)21.画图:(1)画出圆锥的三视图.(2)已知∠AOB,用直尺和圆规作∠A′O′B′=∠AOB(要求:不写作法,保留作图痕迹)22.画出如图所示图形从正面、从左面和从上面看到的形状图.23.如图是由6个正方体组成的几何体,请分别画出从正面、左面、上面看到的这个几何体的形状图。

第二十九章投影与视图单元测试

第二十九章投影与视图单元测试

第二十九章投影与视图单元测试资源共享一、选择题1.中心投影的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的2.当一条线段倾斜于投影面时产生的投影的长度a与该线段的实际长度b的大小关系是()A.a<bB.a>bC.a=bD.无法确定3.当一条线段垂直于投影面时,它的正投影是()A.一条直线B.一条线段C.一个点D.两条相互平行的线段4.同一灯光下两个物体的影子可以是()A.同一方向B.不同方向C.相反方向D.以上都有可能5.(2022年浙江宁波中考题)由一些完全相同的小立方块搭成的几何体的三视图如图所示,那么搭成这个几何体所用的小立方块的个数是()A.8B.7C.6D.56.(2005年南京中考题)下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是A.球B.圆柱C.三棱柱D.圆锥7.小明从正面观察下图所示的两个物体,看到的是()8.一个圆柱的主视图是A.长方形B.菱形C.圆D.正三角形9.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是()10.圆柱对应的主视图是()。

BACDABCD俯视图左视图主视图资源共享二、填空题11.我们常说的三种视图分别是指、、12.一个圆柱的俯视图是13.在同一时刻,身高1.4m的小强的影长是1m,旗杆的影长是15m,则旗杆高为14.如图,一几何体的三视图如右:那么这个几何体是;15.将一个三角形放在太阳光下,它所形成的投影是三、计算问答题16.下面是一天中四个不同时刻两个建筑物的影子:17.画出下面实物的三视图:18.正方形分别在平行、倾斜、垂直于投影面时得正投影各是什么图形?请把它们画出来俯视图左视图主视图资源共享19.已知,如图,MN和DE是直立在地面上的两根立柱.MN=7.5m,某一时刻MN在阳光下的投影NC=4.5m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量MN的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长..资源共享参考答案:1.B2.A3.C4.D5.A6.A7.C8.A9.B10.C11.主视图俯视图左视图12.圆13.21m14.圆锥15.三角形或者一条线段16.③④①②17.作图略18.正方形长方形线段19.(1)作图略(2)10m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【章节训练】第29章投影与视图-1
一、选择题(共10小题)
1.(2014?漳州)学校小卖部货架上摆放着某品牌方便面,它们的三视图如图,则货架上的方便面至少有()
A.7盒B.8盒C.9盒D.10盒
2.(2014?毕节地区)如图是某一几何体的三视图,则该几何体是()
A.三棱柱B.长方体C.圆柱D.圆锥
3.(2014?威海)用四个相同的小立方体搭几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图
的形状是相同的,下列四种摆放方式中不符合要求的是()
A.B.C.D.
4.(2014?衡阳)如下图所示的图形是由7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这
个立体图形的三视图的是()
A.B.C.D.
5.(2014?东营)下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的
个数,则这个几何体的左视图是()
A.B.C.D.
6.(2014?崇左)下列几何体的主视图、左视图、俯视图的图形完全相同的是()
A.三棱锥B.长方体C.三棱柱D.球体
7.(2014?永州)若某几何体的三视图如图,则这个几何体是()
A.B.C.D.
8.(2014?黔南州)形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是()A.B.C.D.
9.(2014?宜宾)如图1放置的一个机器零件,若其主(正)视图如图2,则其俯视图是()
A.B.C.D.
10.(2014?遂宁)一个几何体的三视图如图所示,这个几何体是()
A.棱柱B.圆柱C.圆锥D.球
二、填空题(共5小题)(除非特别说明,请填准确值)
11.(2014?简阳市模拟)如图是某几何体的三视图,该几何体的表面积是_________.
2.12.(2012?南湖区二模)一个几何体的三视图如图所示,则这个几何体的表面积是_________cm
13.(2014?南京联合体一模)如图是某个几何体的三视图,计算该几何体的侧面积为_________.
14.(2014?拱墅区二模)如图,上下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩
形边长如图所示,左视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为
_________.(若结果带根号则保留根号)
15.(2013?绥化)由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正
方体的个数可能是_________.
三、解答题(共9小题)(选答题,不自动判卷)
16.(2011?顺城区二模)某加工厂要加工一批密封罐,设计者给出了密封罐的三视图,请按照三视图确定制作每个
密封罐所需钢板的面积.
17.(2009?崇安区一模)(1)夜晚,小明在路灯下散步.已知小明身高 1.5米,路灯的灯柱高 4.5米.①如图1,若小明在相距10米的两路灯AB、CD之间行走(不含两端),他前后的两个影子长分别为FM=x米,FN=y米,试求y与x之间的函数关系式,并指出自变量x的取值范围?
②有言道:形影不离.其原意为:人的影子与自己紧密相伴,无法分离.但在灯光下,人的速度与影子的速度却不是一样的!如图2,若小明在灯柱PQ前,朝着影子的方向(如图箭头),以0.8米/秒的速度匀速行走,试求他影子
的顶端R在地面上移动的速度.
(2)我们知道,函数图象能直观地刻画因变量与自变量之间的变化关系.相信,大家都听说过龟兔赛跑的故事吧.现
有一新版龟兔赛跑的故事:由于兔子上次比赛过后不服气,于是单挑乌龟再来另一场比赛,不过这次路线由乌龟确
定⋯比赛开始,在同一起点出发,按照规定路线,兔子飞驰而出,极速奔跑,直至跑到一条小河边,遥望着河对岸
的终点,兔子呆坐在那里,一时不知怎么办.过了许久,乌龟一路跚跚而来,跳入河中,以比在陆地上更快的速度
游到对岸,抵达终点,再次获胜.根据新版龟兔赛跑的故事情节,请在同一坐标系内(如图3),画出乌龟、兔子离
开终点的距离s与出发时间t的函数图象示意图.(实线表示乌龟,虚线表示兔子)
18.(2010?自贡)作出下面立体图形的三视图.
19.(2010?永州)如图所示是一个直四棱柱及其正视图和俯视图(等腰梯形).
(1)根据图中所给数据,可得俯视图(等腰梯形)的高为_________;
(2)在虚线框内画出其左视图,并标出各边的长.(尺规作图,不写作法,保留作图痕迹)
20.(2009?庆阳)一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上
面看得到的视图).
21.(2011?广州)5个棱长为1的正方体组成如图的几何体.
(1)该几何体的体积是_________(立方单位),表面积是_________(平方单位)
(2)画出该几何体的主视图和左视图.
22.(2009?衢州)一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.
23.(2009?沈阳模拟)如图是一个由若干个棱长相等的正方体构成的几何体的三视图.
(1)请写出构成这个几何体的正方体个数;
(2)请根据图中所标的尺寸,计算这个几何体的表面积.
24.(2009?杭州)如图是一个几何体的三视图.
(1)写出这个几何体的名称;
(2)根据所示数据计算这个几何体的表面积;
(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个线路的最短路程.
【章节训练】第29章投影与视图-1
参考答案与试题解析
一、选择题(共10小题)
1.(2014?漳州)学校小卖部货架上摆放着某品牌方便面,它们的三视图如图,则货架上的方便面至少有()
A.7盒B.8盒C.9盒D.10盒
考点:由三视图判断几何体.
分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
解答:解:易得第一层有4碗,第二层最少有2碗,第三层最少有1碗,所以至少共有7盒.
故选:A.
点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.
2.(2014?毕节地区)如图是某一几何体的三视图,则该几何体是()
A.三棱柱B.长方体C.圆柱D.圆锥
考点:由三视图判断几何体.
分析:三视图中有两个视图为矩形,那么这个几何体为柱体,根据第3个视图的形状可得几何体的具体形状.
解答:解:∵三视图中有两个视图为矩形,
∴这个几何体为柱体,
∵另外一个视图的形状为圆,
∴这个几何体为圆柱体,
故选:C.
点评:考查由三视图判断几何体;用到的知识点为:三视图中有两个视图为矩形,那么这个几何体为柱体,根据第3个视图的形状可得几何体的形状.
3.(2014?威海)用四个相同的小立方体搭几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图
的形状是相同的,下列四种摆放方式中不符合要求的是()
A.B.C.D.
考点:简单组合体的三视图.。

相关文档
最新文档