TTL和COMS电平匹配以及电平转换的方法
ttl与cmos高低电平区别比较
![ttl与cmos高低电平区别比较](https://img.taocdn.com/s3/m/adc4e2e5b4daa58da1114ab4.png)
T T L与C M O S高低电平区别比较一.T T LT T L集成电路的主要型式为晶体管-晶体管逻辑门(t r a n s i s t o r-t r a n s i s t o r l o g i c g a t e),TT L大部分都采用5V电源。
1.输出高电平U o h和输出低电平U o lU o h≥2.4V,U o l≤0.4V2.输入高电平和输入低电平U i h≥2.0V,U i l≤0.8V二.C M O SC M O S电路是电压控制器件,输入电阻极大,对于干扰信号十分敏感,因此不用的输入端不应开路,接到地或者电源上。
C M OS电路的优点是噪声容限较宽,静态功耗很小。
1.输出高电平U o h和输出低电平U o lU o h≈V C C,U o l≈G N D2.输入高电平U o h和输入低电平U o lU i h≥0.7V C C,U i l≤0.2V C C(V C C为电源电压,G N D为地)从上面可以看出:在同样5V电源电压情况下,C O M S电路可以直接驱动T T L,因为C M O S的输出高电平大于 2.0V,输出低电平小于0.8V;而T T L电路则不能直接驱动C M O S电路,T T L的输出高电平为大于 2.4V,如果落在 2.4V~3.5V之间,则C M O S电路就不能检测到高电平,低电平小于0.4V满足要求,所以在T T L电路驱动C O M S电路时需要加上拉电阻。
如果出现不同电压电源的情况,也可以通过上面的方法进行判断。
如果电路中出现3.3V的C O M S电路去驱动5V C M O S电路的情况,如 3.3V单片机去驱动74H C,这种情况有以下几种方法解决,最简单的就是直接将74H C换成74H C T(74系列的输入输出在下面有介绍)的芯片,因为 3.3V C M O S可以直接驱动5V的T T L电路;或者加电压转换芯片;还有就是把单片机的I/O口设为开漏,然后加上拉电阻到5V,这种情况下得根据实际情况调整电阻的大小,以保证信号的上升沿时间。
TTL电平和CMOS电平区别和比较
![TTL电平和CMOS电平区别和比较](https://img.taocdn.com/s3/m/8a525f104531b90d6c85ec3a87c24028915f851b.png)
一.TTLTTL集成电路的主要型式为晶体管-晶体管逻辑门〔transistor-transistorlogicgate〕,TTL大局部都采用5V电源。
1.输出高电平Uoh和输出低电平UolUoh≥2.4V,Uol≤0.4V2.输入高电平和输入低电平Uih≥2.0V,Uil≤0.8V二.CMOSCMOS电路是电压控制器件,输入电阻极大,对于干扰信号十分敏感,因此不用的输入端不应开路,接到地或者电源上。
CMOS电路的优点是噪声容限较宽,静态功耗很小。
1.输出高电平Uoh和输出低电平UolUoh≈VCC,Uol≈GND2.输入高电平Uoh和输入低电平UolUih≥0.7*VCC,Uil≤0.2VCC〔VCC为电源电压,GND为地〕从上面可以看出:在同样5V电源电压情况下,COMS电路可以直接驱动TTL,因为CMOS的输出高电平大于2.0V,输出低电平小于0.8V;而TTL电路那么不能直接驱动CMOS电路,TTL的输出高电平为大于2.4V,如果落在2.4V~3.5V之间,那么CMOS电路就不能检测到高电平,低电平小于0.4V 满足要求,所以在TTL电路驱动COMS电路时需要加上拉电阻。
如果出现不同电压电源的情况,也可以通过上面的方法进展判断。
如果电路中出现3.3V的COMS电路去驱动5VCMOS电路的情况,如3.3V单片机去驱动74HC,这种情况有以下几种方法解决,最简单的就是直接将74HC换成74HCT〔74系列的输入输出在下面有介绍〕的芯片,因为3.3VCMOS可以直接驱动5V的TTL电路;或者加电压转换芯片;还有就是把单片机的I/O口设为开漏,然后加上拉电阻到5V,这种情况下得根据实际情况调整电阻的大小,以保证信号的上升沿时间。
三.74系列简介74系列可以说是我们平时接触的最多的芯片,74系列中分为很多种,而我们平时用得最多的应该是以下几种:74LS,74HC,74HCT这三种,这三种系列在电平方面的区别如下:TTL和CMOS电平1、TTL电平(什么是TTL电平):输出高电平>2.4V,输出低电平<0.4V。
常用电平标准及转换方案
![常用电平标准及转换方案](https://img.taocdn.com/s3/m/49f070205901020207409c33.png)
电路中的各电平标准简明介绍电路中有各种电平标准,下面总结一下。
和新手以及有需要的人共享一下^_^.现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有一些速度比较高的LVDS、GTL、PGTL、CML、HSTL、SSTL等。
下面简单介绍一下各自的供电电源、电平标准以及使用注意事项。
TTL:Transistor-Transistor Logic 三极管结构。
Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。
因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。
所以后来就把一部分“砍”掉了。
也就是后面的LVTTL。
LVTTL又分3.3V、2.5V以及更低电压的LVTTL(Low Voltage TTL)。
3.3V LVTTL(Low Voltage TTL):Vcc:3.3V;VOH>=2.4V;VOL<=0.4V;VIH>=2V;VIL<=0.8V。
2.5V LVTTL:Vcc:2.5V;VOH>=2.0V;VOL<=0.2V;VIH>=1.7V;VIL<=0.7V。
更低的LVTTL不常用就先不讲了。
多用在处理器等高速芯片,使用时查看芯片手册就OK了。
TTL使用注意:TTL电平一般过冲都会比较严重,可能在始端串22欧或33欧电阻;TTL电平输入脚悬空时是内部认为是高电平。
要下拉的话应用1k以下电阻下拉。
TTL输出不能驱动CMOS输入。
CMOS:Complementary Metal Oxide Semiconductor PMOS+NMOS。
Vcc:5V;VOH>=4.45V;VOL<=0.5V;VIH>=3.5V;VIL<=1.5V。
相对TTL有了更大的噪声容限,输入阻抗远大于TTL输入阻抗。
什么是TTL电平和CMOS电平-ttl电平和cmos电平区别和比较
![什么是TTL电平和CMOS电平-ttl电平和cmos电平区别和比较](https://img.taocdn.com/s3/m/6ad854831b37f111f18583d049649b6648d709bf.png)
什么是TTL电平和CMOS电平?ttl电平和cmos电平区别和比较1、TTL电平(什么是TTL电平):TTL电平信号被利用的最多是由于通常数据表示采纳二进制规定,+5V等价于规律“1”,0V等价于规律“0”,这被称做TTL(晶体管-晶体管规律电平)信号系统,这是计算机处理器掌握的设备内部各部分之间通信的标准技术。
TTL电平信号对于计算机处理器掌握的设备内部的数据传输是很抱负的,首先计算机处理器掌握的设备内部的数据传输对于电源的要求不高以及热损耗也较低,另外TTL电平信号直接与集成电路连接而不需要价格昂贵的线路驱动器以及接收器电路;再者,计算机处理器掌握的设备内部的数据传输是在高速下进行的,而TTL接口的操作恰能满意这个要求。
TTL型通信大多数状况下,是采纳并行数据传输方式,而并行数据传输对于超过10英尺的距离就不适合了。
这是由于牢靠性和成本两面的缘由。
由于在并行接口中存在着偏相和不对称的问题,这些问题对牢靠性均有影响。
TTL电路不使用的输入端悬空为高电平。
输出高电平2.4V,输出低电平0.4V。
在室温下,一般输出高电平是3.5V,输出低电平是0.2V。
最小输入高电平和低电平:输入高电平=2.0V,输入低电平=0.8V,噪声容限是0.4V。
2、CMOS电平:1规律电平电压接近于电源电压,0规律电平接近于0V。
而且具有很宽的噪声容限。
CMOS电路输出高电平约为0.9Vcc,而输出低电平约为0.1Vcc。
CMOS电路不使用的输入端不能悬空,会造成规律混乱。
另外,CMOS集成电路电源电压可以在较大范围内变化,因而对电源的要求不像TTL集成电路那样严格。
3、电平转换电路:由于TTL和COMS的凹凸电平的值不一样(ttl 5v==cmos 3.3v),所以相互连接时需要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。
哈哈4、OC门,又称集电极开路与非门门电路,Open Collector(Open Drain)。
CMOS和TTL电平分析及转换(转载)
![CMOS和TTL电平分析及转换(转载)](https://img.taocdn.com/s3/m/58eb813f0912a21614792994.png)
VOH表示输出高电平的最小值;VOL表示输出低电平的最大值。
VIH表示输入高电平的最小值;VIL表示输入低电平的最大值逻辑标准GND VCC VOH(最小值) VOL(最大值)VIH(最小值) VIL(最大值)3.3V COMS 0.0V 3.3V Vcc-0.1V(3.2V) 0.4V 0.8Vcc(2.64V)0.2Vcc(0.66V) 3.3V TTL 0.0V 3.3V 2.4V 0.4V 2.0V 0.8V5.0V CMOS 0.0V 5.0V 3.5V 0.4V 0.7Vcc(3.5V) 0.3Voc(1.5V) 5.0V TTL 0.0V 5.0V 2.4V 0.4V 2.0V 0.8V(问题一)33.3V和5.0V电平信号的转换在混合电压系统中,不同电源电压的逻辑器件互相接口时存在以下几个问题:第一,加到输入和输出引脚上允许的最大电压限制问题。
器件对加到输入或者输出脚上的电压通常是有限制的。
这些引脚有二极管或者分离元件接到Vcc。
如果接入的电压过高,则电流将会通过二极管或者分离元件流向电源。
例如在3.3V器件的输入端加上5V的信号,则5V电源会向3.3V电源充电。
持续的电流将会损坏二极管和其它电路元件。
第二,两个电源间电流的互串问题。
在等待或者掉电方式时,3.3V电源降落到0V,大电流将流通到地,这使得总线上的高电压被下拉到地,这些情况将引起数据丢失和元件损坏。
必须注意的是:不管在3.3V的工作状态还是在0V的等待状态都不允许电流流向Vcc。
第三,接口输入转换门限问题。
5V器件和3.3V器件的接口有很多情况,(问题二)同样TTL和CMOS间的电平转换也存在着不同情况。
驱动器必须满足接收器的输入转换电平,并且要有足够的容限以保证不损坏电路元件。
基于上述情况,5V器件和3.3V器件是不能直接接口的。
有些半导体器件制造厂家就推出了具有5V输入容限的3.3V器件,这种器件输入端具有ESD保护电路。
逻辑电平介绍TTL,CMOS
![逻辑电平介绍TTL,CMOS](https://img.taocdn.com/s3/m/577364fc541810a6f524ccbff121dd36a32dc4c2.png)
逻辑电平介绍TTL,CMOSTTL电平:输出高电平>2.4V,输出低电平<0.4V。
在室温下,一般输出高电平是3.5V,输出低电平是0.2V。
最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<= 0.8V,噪声容限是0.4V。
2,CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。
而且具有很宽的噪声容限。
3,电平转换电路:因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。
哈哈4,OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。
否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。
5,TTL和COMS电路比较:1)TTL电路是电流控制器件,而coms电路是电压控制器件。
2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。
COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。
COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。
TTL和CMOS的逻辑电平关系图2-1:TTL和CMOS的逻辑电平图上图为5V TTL逻辑电平、5V CMOS逻辑电平、LVTTL逻辑电平和LVCMOS逻辑电平的示意图。
5V TTL逻辑电平和5V CMOS逻辑电平是很通用的逻辑电平,注意他们的输入输出电平差别较大,在互连时要特别注意。
另外5V CMOS器件的逻辑电平参数与供电电压有一定关系,一般情况下,Voh≥Vcc-0.2V,Vih≥0.7Vcc;Vol≤0. 1V,Vil≤0.3Vcc;噪声容限较TTL电平高。
JEDEC组织在定义3. 3V的逻辑电平标准时,定义了LVTTL和LVCMOS逻辑电平标准。
LVTTL逻辑电平标准的输入输出电平与5V TTL逻辑电平标准的输入输出电平很接近,从而给它们之间的互连带来了方便。
TTL和CMOS门电路
![TTL和CMOS门电路](https://img.taocdn.com/s3/m/add62e082379168884868762caaedd3383c4b570.png)
TTL和CMOS门电路⽹页收藏TTL和CMOS门的区别:1. TTL和带缓冲的TTL信号输出⾼电平>2.4V,输出低电平<0.4V。
在室温下,⼀般输出⾼电平是3.5V,输出低电平是0.2V。
最⼩输⼊⾼电平和低电平:输⼊⾼电平>=2.0V,输⼊低电平<=0.8V,噪声容限是0.4V。
2. CMOS电平:1逻辑电平电压接近于电压,0逻辑电平接近于0V。
⽽且具有很宽的噪声容限。
3. 电平转换电路:因为TTL和COMS的⾼低电平的值不⼀样(ttl 5v<==>cmos 3.3v),所以互相连接时需要电平的转换:就是⽤两个电阻对电平分压,没有什么⾼深的东西。
4. OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为⾼低电平⽤。
否则它⼀般只作为开关⼤电压和⼤电流负载,所以⼜叫做驱动门电路。
5. TTL和COMS电路⽐较:1)TTL电路是电流控制器件,⽽coms电路是电压控制器件。
2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗⼤。
COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。
COMS电路本⾝的功耗与输⼊信号的脉冲频率有关,频率越⾼,集越热,这是正常现象。
3)COMS电路的锁定效应:COMS电路由于输⼊太⼤的电流,内部的电流急剧增⼤,除⾮切断电源,电流⼀直在增⼤。
这种效应就是锁定效应。
当产⽣锁定效应时,COMS的内部电流能达到40mA以上,很容易烧毁芯⽚。
防御措施: 1)在输⼊端和输出端加钳位电路,使输⼊和输出不超过不超过规定电压。
2)芯⽚的电源输⼊端加去耦电路,防⽌VDD端出现瞬间的⾼压。
3)在VDD和外电源之间加线流电阻,即使有⼤的电流也不让它进去。
4)当系统由⼏个电源分别供电时,开关要按下列顺序:开启时,先开启COMS电路得电源,再开启输⼊信号和负载的电源;关闭时,先关闭输⼊信号和负载的电源,再关闭COMS电路的电源。
TTL与cmos 系列的电平标准
![TTL与cmos 系列的电平标准](https://img.taocdn.com/s3/m/7951ed08581b6bd97f19eab9.png)
现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有一些速度比较高的LVDS、GTL、PGTL、CML、HSTL、SSTL等。
下面简单介绍一下各自的供电电源、电平标准以及使用注意事项。
TTL:Transistor-Transistor Logic 三极管结构。
Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。
因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。
所以后来就把一部分“砍”掉了。
也就是后面的LVTTL。
LVTTL又分3.3V、2.5V以及更低电压的LVTTL(Low V oltage TTL)。
3.3V LVTTL:Vcc:3.3V;VOH>=2.4V;VOL<=0.4V;VIH>=2V;VIL<=0.8V。
2.5V LVTTL:Vcc:2.5V;VOH>=2.0V;VOL<=0.2V;VIH>=1.7V;VIL<=0.7V。
更低的LVTTL不常用就先不讲了。
多用在处理器等高速芯片,使用时查看芯片手册就OK了。
TTL使用注意:TTL电平一般过冲都会比较严重,可能在始端串22欧或33欧电阻;TTL电平输入脚悬空时是内部认为是高电平。
要下拉的话应用1k以下电阻下拉。
TTL输出不能驱动CMOS输入。
CMOS:Complementary Metal Oxide Semiconductor PMOS+NMOS。
Vcc:5V;VOH>=4.45V;VOL<=0.5V;VIH>=3.5V;VIL<=1.5V。
相对TTL有了更大的噪声容限,输入阻抗远大于TTL输入阻抗。
对应 3.3V LVTTL,出现了LVCMOS,可以与3.3V的LVTTL直接相互驱动。
TTL和COMS电平匹配以及电平转换的方法
![TTL和COMS电平匹配以及电平转换的方法](https://img.taocdn.com/s3/m/512d616df342336c1eb91a37f111f18583d00c72.png)
TTL和COMS电平匹配以及电平转换的方法TTL和COMS电平匹配以及电平转换的方法一.TTLTTL集成电路的主要型式为晶体管-晶体管逻辑门(transistor-transistor logic gate),TTL大部分都采用5V电源。
1.输出高电平Uoh和输出低电平UolUoh≥2.4V,Uol≤0.4V2.输入高电平和输入低电平Uih≥2.0V,Uil≤0.8V二.CMOSCMOS电路是电压控制器件,输入电阻极大,对于干扰信号十分敏感,因此不用的输入端不应开路,接到地或者电源上。
CMOS电路的优点是噪声容限较宽,静态功耗很小。
1.输出高电平Uoh和输出低电平UolUoh≈VCC,Uol≈GND2.输入高电平Uoh和输入低电平UolUih≥0.7VCC,Uil≤0.2VCC(VCC为电源电压,GND为地)从上面可以看出:在同样5V电源电压情况下,COMS电路可以直接驱动TTL,因为CMOS的输出高电平大于2.0V,输出低电平小于0.8V;而TTL电路则不能直接驱动 CMOS电路,TTL的输出高电平为大于2.4V,如果落在2.4V~3.5V之间,则CMOS电路就不能检测到高电平,低电平小于0.4V满足要求,所以在TTL电路驱动COMS电路时需要加上拉电阻。
如果出现不同电压电源的情况,也可以通过上面的方法进行判断。
如果电路中出现3.3V的COMS电路去驱动5V CMOS电路的情况,如3.3V单片机去驱动74HC,这种情况有以下几种方法解决,最简单的就是直接将74HC换成74HCT(74系列的输入输出在下面有介绍)的芯片,因为3.3V CMOS 可以直接驱动5V的TTL电路;或者加电压转换芯片;还有就是把单片机的I/O口设为开漏,然后加上拉电阻到5V,这种情况下得根据实际情况调整电阻的大小,以保证信号的上升沿时间。
三.74系列简介74系列可以说是我们平时接触的最多的芯片,74系列中分为很多种,而我们平时用得最多的应该是以下几种:74LS,74HC,74HCT 这三种,这三种系列在电平方面的区别如下:输入电平输出电平74LS TTL电平 TTL电平74HC COMS电平 COMS电平74HCT TTL电平 COMS电平++++++++++++++++++++++++++++++++++++TTL和CMOS电平1、TTL电平(什么是TTL电平):输出高电平>2.4V,输出低电平<0.4V。
TTL电平与CMOS电平,RS232电平的区别
![TTL电平与CMOS电平,RS232电平的区别](https://img.taocdn.com/s3/m/fe1d283003020740be1e650e52ea551810a6c920.png)
TTL电平与CMOS电平,RS232电平的区别关于电平,是日常电气电子技术工作中经常遇到的问题,那么TTL电平、CMOS电平、RS232电平到底有哪些区别?TTL电平(一)TTL高电平3.6~5V,低电平0V~2.4VCMOS电平Vcc可达到12VCMOS电路输出高电平约为0.9Vcc,而输出低电平约为0.1Vcc。
CMOS电路不使用的输入端不能悬空,会造成逻辑混乱。
TTL电路不使用的输入端悬空为高电平另外,CMOS集成电路电源电压可以在较大范围内变化,因而对电源的要求不像TTL集成电路那样严格。
用TTL电平他们就可以兼容(二)TTL电平是5V,CMOS电平一般是12V。
TTL电路电源电压Vcc是5V,CMOS电路电源电压一般是12V。
5V的电平不能触发CMOS电路,12V的电平会损坏TTL电路,因此不能互相兼容匹配。
(三)TTL电平标准输出 L: <0.4V ; H:>2.4V。
输入 L: <0.8V ; H:>2.0VTTL器件输出低电平要小于0.4V,高电平要大于2.4V。
输入,低于0.8V就认为是0,高于2.0就认为是1。
CMOS电平:输出 L: <0.1*Vcc ; H:>0.9*Vcc输入 L: <0.3*Vcc ; H:>0.7*Vcc.RS232电平标准逻辑1的电平为-3~-15V,逻辑0的电平为+3~+15V,注意电平的定义反相了一次。
TTL和CMOS的逻辑电平转换CMOS电平能驱动TTL电平。
TTL电平不能驱动CMOS电平,需加上拉电阻。
#自动化#plc#电气。
TTL电平和CMOS电平的区别
![TTL电平和CMOS电平的区别](https://img.taocdn.com/s3/m/baf6adc8b9d528ea80c7790c.png)
TTL电平和CMOS电平的区别1.TTL电平:输出高电平>2.4V,输出低电平=2.0V,输入低电平1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。
而且具有很宽的噪声容限。
3.电平转换电路:因为TTL和COMS的高低电平的值不一样,所以互相连接时需要电平的转换:就是用两个电阻对电平分压!4.TTL和COMS电路比较:(1)TTL电路是电流控制器件,而coms电路是电压控制器件。
(2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。
COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。
COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。
(3)COMS电路的锁定效应:COMS电路由于输入太大的电流,内部的电流急剧增大,除非切断电源,电流一直在增大。
这种效应就是锁定效应。
当产生锁定效应时,COMS的内部电流能达到40mA以上,很容易烧毁芯片。
防御措施:(1)在输入端和输出端加钳位电路,使输入和输出不超过不超过规定电压。
(2)芯片的电源输入端加去耦电路,防止VDD端出现瞬间的高压。
(3)在VDD和外电源之间加线流电阻,即使有大的电流也不让它进去。
(4)当系统由几个电源分别供电时,开关要按下列顺序:开启时,先开启COMS电路得电源,再开启输入和负载的电源;关闭时,先关闭输入信号和负载的电源,再关闭COMS5.兼容性:CMOS集成电路电源电压可以在较大范围内变化,因而对电源的要求不像TTL集成电路那样严格。
所以,用TTL电平在条件允许下他们就可以兼容。
要注意到他们的驱动能力是不一样的,CMOS的驱动能力会大一些,有时候TTL的低电平触发不了CMOS电路,有时CMOS的高电平会损坏TTL电路,在兼容性上需注意。
注:1.CMOS是场效应管构成,TTL为双极晶体管构成S的逻辑电平范围比较大(5~15V),TTL只能在5V下工作3.CMOS的高低电平之间相差比较大、。
PCB设计规范(什么是TTL电平和CMOS电平)
![PCB设计规范(什么是TTL电平和CMOS电平)](https://img.taocdn.com/s3/m/b11400cd05087632311212a3.png)
什么是TTL电平和CMOS电平2009-10-27 14:42TTL电平:输出高电平〉2.4V 输出低电平〈0.4V在室温下,一般输出高电平是3.5V 输出低电平是0.2V。
最小输入高电平和低电平输入高电平〉=2.0V 输入低电平《=0.8V它的噪声容限是0.4V.CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。
而且具有很宽的噪声容限。
电平转换电路:因为TTL和COMS的高低电平的值不一样(ttl 5v《==》cmos 3。
3v),所以互相连接时需要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。
OC门,即集电极开路门电路,它必须外界上拉电阻和电源才能将开关电平作为高低电平用。
否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。
TTL和COMS电路比较:1、TTL电路是电流控制器件,而coms电路是电压控制器件。
2、TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。
COMS电路的速度慢,传输延迟时间长(25--50ns),但功耗低。
COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。
3、COMS电路的锁定效应:COMS电路由于输入太大的电流,内部的电流急剧增大,除非切断电源,电流一直在增大。
这种效应就是锁定效应。
当产生锁定效应时,COMS的内部电流能达到40mA以上,很容易烧毁芯片。
防御措施:(1)、在输入端和输出端加钳位电路,使输入和输出不超过不超过规定电压。
(2)、芯片的电源输入端加去耦电路,防止VDD端出现瞬间的高压。
(3)、在VDD和外电源之间加线流电阻,即使有大的电流也不让它进去。
(4)、当系统由几个电源分别供电时,开关要按下列顺序:开启时,先开启COMS电路得电源,再开启输入信号和负载的电源;关闭时,先关闭输入信号和负载的电源,再关闭COMS电路的电源。
4、COMS电路的使用注意事项(1)、COMS电路时电压控制器件,它的输入总抗很大,对干扰信号的捕捉能力很强。
电平转换 (TTL电路与CMOS电路的接口)
![电平转换 (TTL电路与CMOS电路的接口)](https://img.taocdn.com/s3/m/bb0efbd376a20029bd642d94.png)
电路设计时,你可以不懂集成电路的内部结构,但是初学者必须掌握电平转换设计理论及其基本方法,否则,你的电路将“罢工”。
以下主要是参考阎石教授主编的《数字电子技术基础》编辑的,最后一部分我写了一点实际工作中遇到的电平匹配案例。
希望此文对初学者有所帮助。
无论是TTL电路驱动CMOS电路还是CMOS电路驱动TTL电路,驱动门必须为负载门提供合乎标准的高、低电平和足够的驱动电流,也就是必须满足下列各式(表1)其中n和m分别为负载电流中I(IH),I(IL)的个数。
为便于比较对照,下表中列出了TTL和CMOS两种电路输出电压、输出电流、输入电压、输入电流的参数。
(表2)*系CC4000系列CMOS门电路在VDD=5V时的参数。
一.用TTL电路驱动CMOS电路1.用TTL电路驱动4000系列和74HC系列CMOS电路从上表中的数据可以看出,无论是74系列TTL电路做驱动门还是74LS系列TTL电路做驱动门,都能在n,m大于1的情况下满足V(OL(max)) ≤V(IL(max)),I(OH(max)) ≥ n I(IH(max)),I(OL(max)) ≥ m I(IL(max)),但是不满足V(OH(min)) ≥V(IH(min))。
所以,必须将TTL电路输出高电平提升到3.5V以上。
最简单的解决方法是在TTL电路的输出端与电源之间接入上拉电阻R.在CMOS电路的电源电压较高时,它所要求的VIH(min)值将超过推拉式输出结构TTL电路输出端能够承受的电压。
例如CMOS电路在VDD=15V时,要求VIH(min)=11V。
因此,TTL电路输出的高电平必须大于11V。
在这种情况下,应采用集电极开路输出结构的TTL门电路(OC门)作为驱动门。
OC门输出端三极管的耐压较高,可达30V以上。
另一种解决方法是使用带电平偏移的CMOS门电路实现电平转换。
2.用TTL电路驱动74HCT系列CMOS门电路为了能方便地实现直接驱动,又生产了74HCT系列高速CMOS电路。
常用电平介绍及相互转换
![常用电平介绍及相互转换](https://img.taocdn.com/s3/m/de79df9c680203d8ce2f24b6.png)
LDVS 输出结构:电路输出阻抗为 1 Nhomakorabea0ohm
LDVS 输入结构
输入差分阻抗为 100Ω, 为适应共模电压宽范围内的变化, 输入级还包括一个自动电平调整电路, 该电路将共模电压调整为一固定值,该电路后面是一个 SCHMITT 触发器。SCHMITT 触发器为防止不 稳定,设计有一定的回滞特性,SCHIMTT 后级是差分放大器
TTL:Transistor-Transistor Logic 三极管结构
因为 2.4V 与 5V 之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还 会影响速度。所以后来就把一部分“砍”掉了。也就是后面的 LVTTL。 LVTTL 又分 3.3V、2.5V 以及更低电压的 LVTTL(Low Voltage TTL)。 TTL 使用注意:TTL 电平一般过冲都会比较严重,可能在始端串 22 欧或 33 欧电阻; TTL 电平输 入脚悬空时是内部认为是高电平。要下拉的话应用 1k 以下电阻下拉。TTL 输出不能驱动 CMOS 输入。 另外,I/O 為 OC 門時,由於只能吸收大電流而不能向外部提供電流,需要外部上拉或者外部電 源。
ECL 电路的最大特点是其基本门电路工作在非饱和状态,因此 ECL 又称为非饱和性逻辑。也正因为如 此,ECL 电路的最大优点是具有相当高的速度。这种电路的平均延迟时间可达几个 ns 数量级甚至更 少。传统的 ECL 以 VCC 为零电压,VEE 为-5.2 V 电源,VOH=VCC-0.9 V=-0.9 V,VOL=VCC-1.7 V=-1.7 V,所以 ECL 电路的逻辑摆幅较小(仅约 0.8 V) 。当电路从一种状态过渡到另一种状态时,对寄生电 容的充放电时间将减少,这也是 ECL 电路具有高开关速度的重要原因。另外,ECL 电路是由一个差分 对管和一对射随器组成的, 所以输入阻抗大, 输出阻抗小, 驱动能力强, 信号检测能力高, 差分输出,
电平转换_(TTL电路与CMOS电路的接口)
![电平转换_(TTL电路与CMOS电路的接口)](https://img.taocdn.com/s3/m/5e9cd3bbccbff121dd3683dc.png)
电平转换_(TTL电路与CMOS电路的接口) CMOS电路和TTL电路的接口分析摘要:CMOS 和 TTL 电平的主要区别在于输入转换电平。
CMOS电路的转换电平是电源电压的 1/2,因为 CMOS 的输入时互补的,保证了转换电平是电源电压的 1/2。
TTL电路由于它的输入多射击晶体管的结构,决定了转换电平是 2 倍的 PN 结正向压降,大约为 1.4V。
TTL 电源只有 5V的,而且输入电流的方向是向外的~CMOS 电路应用最广,具有输入阻抗高、扇出能力强、电源电压宽、静态功耗低、抗干扰能力强、温度稳定性好等特点,但多数工作速度低于 TTL 电路。
在目前TTL和CMOS两种电路并存的情况下,经常会遇到需将两种器件互相对接的问题。
因此应综合考虑两种集成电路的特性及参数以做到正确的连接驱动。
如果是 TTL 驱动 CMOS,要考虑电平的接口。
TTL 可直接驱动 74HCT 型的CMOS,其余必须考虑逻辑电平的转换问题。
如果是 CMOS 驱动 TTL,要考虑驱动电流不能太低。
74HC/74HCT 型 CMOS 可直接驱动 74/74LS 型 TTL,除此需要电平转换。
这些将在正文中详细介绍。
由于 CMOS 的输入阻抗都比较大,一般比较容易捕捉到干扰脉冲,所以 NC 的脚尽量要接个上拉电阻,而且 CMOS 具有电流闩锁效应,容易烧掉 IC,所以输入端的电流尽量不要太大,最好加限流电阻。
关键字:正文:CMOS和TTL集成门电路是目前应用最广泛的两类集成门电路。
P150页TTL电路是电流控制双极型器件,一般电源电压为5V,它的速度快(数ns),传输延迟时间短(5-10ns),功耗大(mA级),负载能力大,输入阻抗小,驱动能力强,不用端多数不用处理。
CMOS电路是电压控制单级器件,一般电源电压为15V,它的速度慢(几百ns),传输时间长(25-50ns),功耗低,省电,负载能力小,输入阻抗大,驱动能力小,具有比TTL宽的噪声容限,不用端必须处理。
TTL电平与CMOS电平兼容和转换各种方法
![TTL电平与CMOS电平兼容和转换各种方法](https://img.taocdn.com/s3/m/dd389ccf0508763231121294.png)
1. 常用的电平转换方案(1) 晶体管+上拉电阻法就是一个双极型三极管或 MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。
(2) OC/OD 器件+上拉电阻法跟 1) 类似。
适用于器件输出刚好为 OC/OD 的场合。
(3) 74xHCT系列芯片升压(3.3V→5V)凡是输入与 5V TTL 电平兼容的 5V CMOS 器件都可以用作 3.3V→5V 电平转换。
——这是由于 3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而 CMOS 的输出电平总是接近电源电平的。
廉价的选择如 74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列 (那个字母 T 就表示 TTL 兼容)。
(4) 超限输入降压法 (5V→3.3V, 3.3V→1.8V, ...)凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。
这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制 (改变了输入级保护电路)。
例如,74AHC/VHC 系列芯片,其 datasheets 明确注明"输入电压范围为0~5.5V",如果采用 3.3V 供电,就可以实现5V→3.3V 电平转换。
(5) 专用电平转换芯片最著名的就是 164245,不仅可以用作升压/降压,而且允许两边电源不同步。
这是最通用的电平转换方案,但是也是很昂贵的 (俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。
(6) 电阻分压法最简单的降低电平的方法。
5V电平,经1.6k+3.3k电阻分压,就是3.3V。
(7) 限流电阻法如果嫌上面的两个电阻太多,有时还可以只串联一个限流电阻。
某些芯片虽然原则上不允许输入电平超过电源,但只要串联一个限流电阻,保证输入保护电流不超过极限(如 74HC 系列为 20mA),仍然是安全的。
TTL电平、CMOS电平、RS232电平及RS232电平转换电路
![TTL电平、CMOS电平、RS232电平及RS232电平转换电路](https://img.taocdn.com/s3/m/b2695ed57f1922791688e87a.png)
一、TTL电平TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑“1”,0V等价于逻辑“0”,这被称做TTL(Transistor-Transistor Logic 晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。
TTL 电平信号对于计算机处理器控制的设备内部的数据传输是很理想的,首先计算机处理器控制的设备内部的数据传输对于电源的要求不高以及热损耗也较低,另外 TTL电平信号直接与集成电路连接而不需要价格昂贵的线路驱动器以及接收器电路;再者,计算机处理器控制的设备内部的数据传输是在高速下进行的,而TTL 接口的操作恰能满足这个要求。
TTL型通信大多数情况下,是采用并行数据传输方式,而并行数据传输对于超过10英尺的距离就不适合了。
这是由于可靠性和成本两面的原因。
因为在并行接口中存在着偏相和不对称的问题,这些问题对可靠性均有影响。
TTL输出高电平>2.4V,输出低电平<0.4V。
在室温下,一般输出高电平是3.5V,输出低电平是0.2V。
最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。
TTL电路是电流控制器件,TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。
输出 L: <0.8V ; H:>2.4V。
输入 L: <1.2V ; H:>2.0VTTL器件输出低电平要小于0.8V,高电平要大于2.4V。
输入,低于1.2V就认为是0,高于2.0就认为是1。
二、CMOS电平输出 L: <0.1*Vcc ; H:>0.9*Vcc。
输入 L: <0.3*Vcc ; H:>0.7*Vcc.由于CMOS电源采用12V,则输入低于3.6V为低电平,噪声容限为1.8V,高于3.5V为高电平,噪声容限高为1.8V。
比TTL有更高的噪声容限。
TTL CMOS电平及输入输出方式
![TTL CMOS电平及输入输出方式](https://img.taocdn.com/s3/m/20f0c8c6ad51f01dc281f1b3.png)
DSP控制母板学习小结TTL电平与CMOS电平:TTL集成电路的全名是晶体管-晶体管逻辑集成电路(Transistor-Transistor Logic),主要有54/74系列标准TTL、高速型TTL(H-TTL)、低功耗型TTL(L-TTL)、肖特基型TTL(S-TTL)、低功耗型TTL(LS-TTL)五个系列。
标准TTL输入高电平最小2V,输出高电平最小2.4V,典型值3.4V,输入低电平最大0.8V,输出低电平最大0.4V,典型值0.2V。
S-TTL输入高电平最小2V,输出高电平最小Ⅰ类2.5V,Ⅱ、Ⅲ类2.7V,典型值3.4V。
输入低电平最大0.8V,输出低电平最大0.5V。
LS-TTL输入高电平最小2V,输出高电平最小Ⅰ类2.5V,Ⅱ、Ⅲ类2.7V,典型值3.4V。
输入低电平最大Ⅰ类0.7V,Ⅱ、Ⅲ类0.8V,输出低电平最大Ⅰ类0.4V,Ⅱ、Ⅲ类0.5V,典型值0.25V。
TTL电路的电源VDD供电只允许在+5V±10%范围内,扇出数为10个以下TTL门电路。
CMOS集成电路是互补对称金属氧化物半导体(Compiementary symmetry metal oxide semicoductor)集成电路的英文缩写,电路的许多基本逻辑单元都是用增强型PMOS晶体管和增强型NMOS管按照互补对称形式连接的,静态功耗很小。
CMOS电路的供电电压VDD范围比较广,在+5--+15V均能正常工作,电压波动允许±10,当输出电压高于VDD-0.5V时为逻辑1,输出电压低于VSS+0.5V(VSS为数字地)为逻辑0,扇出数为10—20个CMOS门电路。
CMOS电平电压范围在3~15V,比如4000系列当5V供电时,输出在4.6V以上为高电平,输出在0.05V以下为低电平。
输入在3.5V以上为高电平,输入在1.5V以下为低电平。
而对于TTL芯片,供电范围为0~5V,常见都是5V,如74系列5V供电,输出在2.7V以上为高电平,输出输出在0.5V以下为低电平,输入在2V以上为高电平,在0.8V以下为低电平。
什么是ttl电平 CMOS电平以及它们的区别
![什么是ttl电平 CMOS电平以及它们的区别](https://img.taocdn.com/s3/m/f1cf5d79a26925c52cc5bf70.png)
什么是ttl电平TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑"1",0V等价于逻辑"0",这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。
TTL电平信号对于计算机处理器控制的设备内部的数据传输是很理想的,首先计算机处理器控制的设备内部的数据传输对于电源的要求不高以及热损耗也较低,另外TTL电平信号直接与集成电路连接而不需要价格昂贵的线路驱动器以及接收器电路;再者,计算机处理器控制的设备内部的数据传输是在高速下进行的,而TTL接口的操作恰能满足这个要求。
TTL型通信大多数情况下,是采用并行数据传输方式,而并行数据传输对于超过10英尺的距离就不适合了。
这是由于可靠性和成本两面的原因。
因为在并行接口中存在着偏相和不对称的问题,这些问题对可靠性均有影响;另外对于并行数据传输,电缆以及连接器的费用比起串行通信方式来也要高一些。
TTL电路的电平就叫TTL 电平,CMOS电路的电平就叫CMOS电平TTL集成电路的全名是晶体管-晶体管逻辑集成电路(Transistor-Transistor Logic),主要有54/74系列标准TTL、高速型TTL(H-TTL)、低功耗型TTL(L-TTL)、肖特基型TTL(S-TTL)、低功耗肖特基型TTL(LS-TTL)五个系列。
标准TTL输入高电平最小2V,输出高电平最小2.4V,典型值3.4V,输入低电平最大0.8V,输出低电平最大0.4V,典型值0.2V。
S-TTL输入高电平最小2V,输出高电平最小Ⅰ类2.5V,Ⅱ、Ⅲ类2.7V,典型值3.4V,输入低电平最大0.8V,输出低电平最大0.5V。
LS-TTL输入高电平最小2V,输出高电平最小Ⅰ类2.5V,Ⅱ、Ⅲ类2.7V,典型值3.4V,输入低电平最大Ⅰ类0.7V,Ⅱ、Ⅲ类0.8V,输出低电平最大Ⅰ类0.4V,Ⅱ、Ⅲ类0.5V,典型值0.25V。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TTL和COMS电平匹配以及电平转换的方法一.TTLTTL集成电路的主要型式为晶体管-晶体管逻辑门(transistor-transistor logic gate),TTL大部分都采用5V电源。
1.输出高电平Uoh和输出低电平UolUoh≥2.4V,Uol≤0.4V2.输入高电平和输入低电平Uih≥2.0V,Uil≤0.8V二.CMOSCMOS电路是电压控制器件,输入电阻极大,对于干扰信号十分敏感,因此不用的输入端不应开路,接到地或者电源上。
CMOS电路的优点是噪声容限较宽,静态功耗很小。
1.输出高电平Uoh和输出低电平UolUoh≈VCC,Uol≈GND2.输入高电平Uoh和输入低电平UolUih≥0.7VCC,Uil≤0.2VCC (VCC为电源电压,GND为地)从上面可以看出:在同样5V电源电压情况下,COMS电路可以直接驱动TTL,因为CMOS的输出高电平大于2.0V,输出低电平小于0.8V;而TTL电路则不能直接驱动 CMOS电路,TTL的输出高电平为大于2.4V,如果落在2.4V~3.5V之间,则CMOS电路就不能检测到高电平,低电平小于0.4V满足要求,所以在TTL电路驱动COMS电路时需要加上拉电阻。
如果出现不同电压电源的情况,也可以通过上面的方法进行判断。
如果电路中出现3.3V的COMS电路去驱动5V CMOS电路的情况,如3.3V单片机去驱动74HC,这种情况有以下几种方法解决,最简单的就是直接将74HC换成74HCT(74系列的输入输出在下面有介绍)的芯片,因为3.3V CMOS 可以直接驱动5V的TTL电路;或者加电压转换芯片;还有就是把单片机的I/O口设为开漏,然后加上拉电阻到5V,这种情况下得根据实际情况调整电阻的大小,以保证信号的上升沿时间。
三.74系列简介74系列可以说是我们平时接触的最多的芯片,74系列中分为很多种,而我们平时用得最多的应该是以下几种:74LS,74HC,74HCT这三种,这三种系列在电平方面的区别如下:输入电平输出电平74LS TTL电平 TTL电平74HC COMS电平 COMS电平74HCT TTL电平 COMS电平++++++++++++++++++++++++++++++++++++TTL和CMOS电平1、TTL电平(什么是TTL电平):输出高电平>2.4V,输出低电平<0.4V。
在室温下,一般输出高电平是3.5V,输出低电平是0.2V。
最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。
2、CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。
而且具有很宽的噪声容限。
3、电平转换电路:因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。
4、OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。
否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。
5、TTL和COMS电路比较:1)TTL电路是电流控制器件,而CMOS电路是电压控制器件。
2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。
COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。
COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。
3)COMS电路的锁定效应:COMS电路由于输入太大的电流,部的电流急剧增大,除非切断电源,电流一直在增大。
这种效应就是锁定效应。
当产生锁定效应时,COMS的部电流能达到40mA以上,很容易烧毁芯片。
防御措施: 1)在输入端和输出端加钳位电路,使输入和输出不超过不超过规定电压。
2)芯片的电源输入端加去耦电路,防止VDD端出现瞬间的高压。
3)在VDD和外电源之间加限流电阻,即使有大的电流也不让它进去。
4)当系统由几个电源分别供电时,开关要按下列顺序:开启时,先开启COMS 路得电源,再开启输入信号和负载的电源;关闭时,先关闭输入信号和负载的电源,再关闭COMS电路的电源。
6、COMS电路的使用注意事项1)COMS电路时电压控制器件,它的输入总抗很大,对干扰信号的捕捉能力很强。
所以,不用的管脚不要悬空,要接上拉电阻或者下拉电阻,给它一个恒定的电平。
2)输入端接低阻的信号源时,要在输入端和信号源之间要串联限流电阻,使输入的电流限制在1mA之。
3)当接长信号传输线时,在COMS电路端接匹配电阻。
4)当输入端接大电容时,应该在输入端和电容间接保护电阻。
电阻值为R=V0/1mA.V0是外界电容上的电压。
5)COMS的输入电流超过1mA,就有可能烧坏COMS。
7、TTL门电路中输入端负载特性(输入端带电阻特殊情况的处理):1因为这时可以看作是输入端接一个无穷大的电阻。
2)在门电路输入端串联10K电阻后再输入低电平,输入端出呈现的是高电平而不是低电平。
因为由TTL门电路的输入端负载特性可知,只有在输入端接的串联电阻小于910欧时,它输入来的低电平信号才能被门电路识别出来,串联电阻再大的话输入端就一直呈现高电平。
这个一定要注意。
COMS门电路就不用考虑这些了。
8它的输出就叫做开漏输出。
OC门在截止时有漏电流输出,那就是漏电流,为什么有漏电流呢?那是因为当三极管截止的时候,它的基极电流约等于0,但是并不是真正的为0,经过三极管的集电极的电流也就不是真正的 0,而是约0。
而这个就是漏电流。
开漏输出:OC门的输出就是开漏输出;OD门的输出也是开漏输出。
它可以吸收很大的电流,但是不能向外输出的电流。
所以,为了能输入和输出电流,它使用的时候要跟电源和上拉电阻一齐用。
OD门一般作为输出缓冲/驱动器、电平转换器以及满足吸收大负载电流的需要。
9、什么叫做图腾柱,它与开漏电路有什么区别?TTL集成电路中,输出有接上拉三极管的输出叫做图腾柱输出,没有的叫做OC门。
因为TTL就是一个三级关,图腾柱也就是两个三级管推挽相连。
所以推挽就是图腾。
一般图腾式输出,高电平400UA,低电平8MA+++++++++++++++++++++++++++++++++++++++++++CMOS 器件不用的输入端必须连到高电平或低电平, 这是因为 CMOS 是高输入阻抗器件, 理想状态是没有输入电流的. 如果不用的输入引脚悬空, 很容易感应到干扰信号, 影响芯片的逻辑运行, 甚至静电积累永久性的击穿这个输入端, 造成芯片失效.另外CMOS电平和TTL电平:CMOS逻辑电平围比较大,围在3~15V,比如4000系列当5V供电时,输出在4.6以上为高电平,输出在0.05V以下为低电平。
输入在3.5V以上为高电平,输入在1.5V以下为低电平。
而对于TTL芯片,供电围在0~5V,常见都是5V,如74系列5V供电,输出在2.7V以上为高电平,输出在 0.5V以下为低电平,输入在2V以上为高电平,在0.8V以下为低电平。
因此,CMOS电路与 TTL电路就有一个电平转换的问题,使两者电平域值能匹配。
有关逻辑电平的一些概念:要了解逻辑电平的容,首先要知道以下几个概念的含义:1:输入高电平(Vih):保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih时,则认为输入电平为高电平。
2:输入低电平(Vil):保证逻辑门的输入为低电平时所允许的最大输入低电平,当输入电平低于Vil时,则认为输入电平为低电平。
3:输出高电平(Voh):保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的电平值都必须大于此Voh。
4:输出低电平(Vol):保证逻辑门的输出为低电平时的输出电平的最大值,逻辑门的输出为低电平时的电平值都必须小于此Vol。
5:阀值电平(Vt):数字电路芯片都存在一个阈值电平,就是电路刚刚勉强能翻转动作时的电平。
它是一个界于Vil、Vih之间的电压值,对于CMOS电路的阈值电平,基本上是二分之一的电源电压值,但要保证稳定的输出,则必须要求输入高电平> Vih,输入低电平<Vil,而如果输入电平在阈值上下,也就是Vil~Vih这个区域,电路的输出会处于不稳定状态。
对于一般的逻辑电平,以上参数的关系如下:Voh > Vih > Vt > Vil > Vol6:Ioh:逻辑门输出为高电平时的负载电流(为拉电流)。
7:Iol:逻辑门输出为低电平时的负载电流(为灌电流)。
8:Iih:逻辑门输入为高电平时的电流(为灌电流)。
9:Iil:逻辑门输入为低电平时的电流(为拉电流)。
门电路输出极在集成单元不接负载电阻而直接引出作为输出端,这种形式的门称为开路门。
开路的TTL、CMOS、ECL门分别称为集电极开路(OC)、漏极开OC)门,其上拉电阻阻值RL应满足下面条件:(1):RL < (VCC-Voh)/(n*Ioh+m*Iih)(2):RL > (VCC-Vol)/(Iol+m*Iil)其中n:线与的开路门数;m:被驱动的输入端数。
10:常用的逻辑电平·逻辑电平:有TTL、CMOS、LVTTL、ECL、PECL、GTL;RS232、RS422、LVDS等。
·其中TTL和CMOS的逻辑电平按典型电压可分为四类:5V系列(5V TTL和5V CMOS)、3.3V系列,2.5V系列和1.8V系列。
·5V TTL和5V CMOS逻辑电平是通用的逻辑电平。
·3.3V及以下的逻辑电平被称为低电压逻辑电平,常用的为LVTTL电平。
·低电压的逻辑电平还有2.5V和1.8V两种。
·ECL/PECL和LVDS是差分输入输出。
·RS-422/485和RS-232是串口的接口标准,RS-422/485是差分输入输出,RS-232是单端输入输出。
++++++++++++++++++++++++++++OC门,又称集电极开路(漏极开路)与非门门电路,Open Collector(Open Drain)。
为什么引入OC门?实际使用中,有时需要两个或两个以上与非门的输出端连接在同一条导线上,将这些与非门上的数据(状态电平)用同一条导线输送出去。
因此,需要一种新的与非门电路--OC门来实现“线与逻辑”。
OC门主要用于3个方面:1、实现与或非逻辑,用做电平转换,用做驱动器。
由于OC门电路的输出管的集电极悬空,使用时需外接一个上拉电阻 Rp到电源VCC。
OC门使用上拉电阻以输出高电平,此外为了加大输出引脚的驱动能力,上拉电阻阻值的选择原则,从降低功耗及芯片的灌电流能力考虑应当足够大;从确保足够的驱动电流考虑应当足够小。