切线的证明及计算

合集下载

(完整)圆切线证明的方法

(完整)圆切线证明的方法

切线证明法切线的性质定理: 圆的切线垂直于经过切点的半径切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点. 切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心 切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径.【例1】如图1,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD =OB ,点C 在圆上,∠CAB =30º.求证:DC 是⊙O 的切线.思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90º即可. 证明:连接OC ,BC .∵AB 为⊙O 的直径,∴∠ACB =90º.∵∠CAB =30º,∴BC =21AB =OB .∵BD =OB ,∴BC =21OD .∴∠OCD =90º.∴DC 是⊙O 的切线.【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线.【例2】如图2,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接OC ,弦AD ∥OC .求证:CD 是⊙O 的切线.思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明CD 是⊙O 的切线,只要证明∠ODC =90º即可.图1图2证明:连接OD .∵OC ∥AD ,∴∠1=∠3,∠2=∠4. ∵OA =OD ,∴∠1=∠2.∴∠3=∠4. 又∵OB =OD ,OC =OC ,∴△OBC ≌△ODC .∴∠OBC =∠ODC .∵BC 是⊙O 的切线,∴∠OBC =90º.∴∠ODC =90º. ∴DC 是⊙O 的切线.【例3】如图2,已知AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D .求证:AC 平分∠DAB .思路:利用圆的切线的性质--与圆的切线垂直于过切点的半径.证明:连接OC .∵CD 是⊙O 的切线,∴OC ⊥CD .∵AD ⊥CD ,∴OC ∥AD .∴∠1=∠2. ∵OC =OA ,∴∠1=∠3.∴∠2=∠3. ∴AC 平分∠DAB .【评析】已知一条直线是某圆的切线时,切线的位置一般是确定的.在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直切线.【例4】 如图1,B 、C 是⊙O 上的点,线段AB 经过圆心O ,连接AC 、BC ,过点C 作CD ⊥AB 于D ,∠ACD =2∠B .AC 是⊙O 的切线吗?为什么?解:AC 是⊙O 的切线. 理由:连接OC , ∵OC =OB , ∴∠OCB =∠B .图3 OABCD2 31∵∠COD是△BOC的外角,∴∠COD=∠OCB+∠B=2∠B.∵∠ACD=2∠B,∴∠ACD=∠COD.∵CD⊥AB于D,∴∠DCO+∠COD=90°.∴∠DCO+∠ACD=90°.即OC⊥AC.∵C为⊙O上的点,∴AC是⊙O的切线.【例5】如图2,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB的延长线上的一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.求证:DE是⊙O的切线.证明:连接OC,则OA=OC,∴∠CAO=∠ACO,∵AC平分∠EAB,∴∠EAC=∠CAO=∠ACO,∴AE∥CO,又AE⊥DE,∴CO⊥DE,∴DE是⊙O的切线.二、直线与圆的公共点未知时须通过圆心作已知直线的垂直线段,证明此垂线段的长等于半径【例6】如图3,AB=AC,OB=OC,⊙O与AB边相切于点D.证明:连接OD,作OE⊥AC,垂足为E.∵AB=AC,OB=OC.∴AO为∠BAC角平分线,∠DAO=∠EAO∵⊙O与AB相切于点D,∴∠BDO=∠CEO=90°.∵AO=AO∴△ADO≌△AEO,所以OE=OD.∵OD是⊙O的半径,∴OE是⊙O的半径.∴⊙O与AC边相切.【例7】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.证明:连结OE,AD。

中考数学专题--切线的相关证明及计算

中考数学专题--切线的相关证明及计算
课时教学设计
授课时间年月日总课时数:总序数:
课题
切线的相关证明及计算
教学
目标
1、掌握圆的切线的性质和判定,并会进行相关的计算和证明。
2、掌握切线长长和切线定理
重点
切线的判定和切线长定理
难点
常添加辅助线
教学准备
教学过程
教学环节
教学内容
二次备课






一、知识点梳理
1、切线的性质:
(1)数量关系:圆心到切线的距离等于半径;
通过本节课的学习,你对圆的基本性质又有哪些认识呢?你还有什么收获?
板书
ቤተ መጻሕፍቲ ባይዱ设计
教学
反思
围绕教学方式、学习方式、课程资源的开发与利用、成功与不足……进行反思




1、如图,已知AB是⊙O的直径,点E是⊙O上一点,∠EAB的平分线交⊙O于点C,过点C作CD⊥AE,垂足为D.
(1)求证:CD为⊙O的切线;(2)若⊙O的直径为10,圆心O到AD的距离为4,求AE和ED的长度.
(2)位置关系:切线________于过切点的半径。
2、切线的判定:
(1)“连半径,证垂直”
(2)“作垂直,证半径”
3、切线长和切线长定理
(1)切线长:经过圆外一点作圆的切线,这点与切点之间的线段长,叫做这点到圆的切线长。
(2)切线长定理:从圆外一点可以引圆的两条切线,它们的切线长________,这一点和圆心的连线______两条切线的夹角。如图,PA=PB,∠APO=∠BPO.
三、典例分析
1、如图,线段AB为⊙O的直径,点C、E在⊙O上, = ,CD⊥AB,垂足为点D,连接BE,弦BE与线段CD相交于点F.

专题 证明圆的切线的常用方法(六大题型)(解析版)

专题 证明圆的切线的常用方法(六大题型)(解析版)

(苏科版)九年级上册数学《第2章对称图形---圆》专题证明圆的切线的常用的方法★★★方法指引:证明一条直线是圆的切线的方法及辅助线作法:1、有交点:连半径、证垂直:当直线和圆有一个公共点时,把圆心和这个公共点连接起来,然后证明直线垂直于这条半径,简称:“有交点,连半径,证垂直”.2、无交点:作垂直、证半径:当直线和圆的公共点没有明确时,可以过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称:“无交点,作垂直,证半径”.类型一:有公共点:连半径,证垂直●●【典例一】(2022•雁塔区校级模拟)如图,AB 是⊙O 的直径,点D 在直径AB 上(D 与A ,B 不重合),CD ⊥AB ,且CD =AB ,连接CB ,与⊙O 交于点F ,在CD 上取一点E ,使得EF =EC .求证:EF 是⊙O 的切线;【分析】连接OF ,根据垂直定义可得∠CDB =90°,从而可得∠B +∠C =90°,然后利用等腰三角形的性质可得∠B =∠OFB ,∠C =∠EFC ,从而可得∠OFB +∠EFC =90°,最后利用平角定义可得∠OFE =90°,即可解答;【解答】证明:连接OF ,∵CD ⊥AB ,∴∠CDB =90°,∴∠B +∠C =90°,∵OB =OF ,EF =EC ,∴∠B =∠OFB ,∠C =∠EFC,∴∠OFB+∠EFC=90°,∴∠OFE=180°﹣(∠OFB+∠EFC)=90°,∵OF是⊙O的半径,∴EF是⊙O的切线:【点评】本题考查了切线的判定与性质,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.【变式1-1】(2022•澄城县三模)如图,AB是△ABC外接圆⊙O的直径,过⊙O外一点D作BC的平行线分别交AC,AB于点G,E,交⊙O于点F,连接DB,CF,∠BAC=∠D.求证:BD是⊙O的切线;【分析】证明∠ABD=90°,根据切线的判定可得BD与⊙O相切;【解答】证明:∵AB是⊙O的直径,∴∠ACB=90°,∵DG∥BC,∴∠AGE=∠ACB=90°,∴∠A+∠AEG=90°,又∵∠A=∠D,∠AEG=∠DEB,∴∠D+∠DEB=90°,∴∠DBE=90°,∴AB⊥BD,∵AB为直径,∴BD与⊙O相切;【点评】此题考查了切线的判定,垂径定理,解答本题需要我们熟练掌握切线的判定.【变式1-2】如图,AB是⊙O的直径,点C是圆上一点,CD⊥AB于点D,点E是圆外一点,CA平分∠ECD.求证:CE是⊙O的切线.【分析】利用切线的判定定理证明∠OCE=90°即可得出结论.【解答】证明:∵CA平分∠ECD,∴∠ECA=∠DCA.∵CD⊥AB,∴∠CAD+∠DCA=90°,∴∠ECA+∠CAD=90°.∵OA=OC,∴∠CAD=∠ACO,∴∠ECA+∠ACO=90°,即∠OCE=90°,∴OC⊥EC,∵OC是⊙O的半径,∴CE是⊙O的切线.【点评】本题主要考查了圆的切线的判定,熟练应用圆的切线的判定定理是解题的关键.【变式1-3】(2022秋•阳谷县校级期末)如图,△ABC内接于半圆,AB是直径,过A作直线MN,∠MAC=∠ABC,D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F.(1)求证:MN是半圆的切线.(2)求证:FD=FG.【分析】(1)欲证明MN是半圆的切线,只需证得∠MAB=90°,即MA⊥AB即可;(2)根据圆周角定理推论得到∠ACB=90°,由DE⊥AB得到∠DEB=90°,则∠1+∠5=90°,∠3+∠4=90°,又D是弧AC的中点,即弧CD=弧DA,得到∠3=∠5,于是∠1=∠4,利用对顶角相等易得∠1=∠2,则有FD=FG.【解答】证明:(1)如图,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°.又∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即∠MAB=90°,∴MA⊥AB.∴MN是半圆的切线.(2)∵AB为直径,∴∠ACB=90°,而DE⊥AB,∴∠DEB=90°,∴∠1+∠5=90°,∠3+∠4=90°,∵D是弧AC的中点,即弧CD=弧DA,∴∠3=∠5,∴∠1=∠4,而∠2=∠4,∴∠1=∠2,∴FD=FG.【点评】本题考查了切线的判定:经过半径的外端点,并且与半径垂直的直线是圆的切线.也考查了圆周角定理及其推论、三角形外角的性质以及等腰三角形的判定.【变式1-4】如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接OC,PB,已知PB=6,DB=8,∠EDB=∠EPB.(1)求证:PB是⊙O的切线;(2)求⊙O的半径.(3)连接BE,求BE的长.【分析】(1)由已知角相等及直角三角形的性质得到∠OBP为直角,即可得证;(2)在直角三角形PBD中,由PB与DB的长,利用勾股定理求出PD的长,由切线长定理得到PC=PB =6,由PD﹣PC求出CD的长,在直角三角形OCD中,设OC=r,则有OD=8﹣r,利用勾股定理列出关于r的方程,求出方程的解得到r的值,即为圆的半径.(3)延长PB、DE相交于点F,证明△PED≌△PEF(ASA),由全等三角形的性质得出PD=PF=10,DE =EF,求出DF的长,则可得出答案.【解答】(1)证明:∵DE⊥PE,∴∠DEO=90°,∵∠EDB=∠EPB,∠BOE=∠EDB+∠DEO,∠BOE=∠EPB+∠OBP,∴∠OBP=∠DEO=90°,∴OB⊥PB,∴PB为⊙O的切线;(2)解:在Rt△PBD中,PB=6,DB=8,根据勾股定理得:PD=10,∵PD与PB都为⊙O的切线,∴PC=PB=6,∴DC=PD﹣PC=10﹣6=4;在Rt△CDO中,设OC=r,则有OD=8﹣r,根据勾股定理得:(8﹣r)2=r2+42,解得:r=3,则圆的半径为3.(3)延长PB、DE相交于点F,∵PD与PB都为⊙O的切线,∴OP平分∠CPB,∴∠DPE=∠FPE,∵PE⊥DF,∴∠PED=∠PEF=90°,又∵PE=PE,∴△PED ≌△PEF (ASA ),∴PD =PF =10,DE =EF ,∴BF =PF ﹣PB =10﹣6=4,在Rt △DBF 中,DF==∴BE =12DF =【点评】本题考查了切线的判定和性质,勾股定理,平行线的性质,全等三角形的判定和性质,熟练掌握性质定理是解题的关键.●●【典例二】 如图,△ABC 是直角三角形,点O 是线段AC 上的一点,以点O 为圆心,OA 为半径作圆.O 交线段AB 于点D ,作线段BD 的垂直平分线EF ,EF 交线段BC 于点.(1)若∠B =30°,求∠COD 的度数;(2)证明:ED 是⊙O 的切线.【分析】(1)根据三角形的内角和定理得到∠A =60°,根据等腰三角形的性质得到∠ODA =∠A =60°,于是得到∠COD =∠ODA +∠A =120°;(2)根据线段垂直平分线的性质得到∠EDB =∠B =30°,求得ED ⊥DO ,根据切线的判定定理即可得到结论.【解答】(1)解:∵∠C =90°,∠B =30°,∴∠A =60°,∵OD =OA,∴∠COD=∠ODA+∠A=120°;(2)证明:∵EF垂直平分BD,∴∠EDB=∠B=30°,∴∠EDO=180°﹣∠EDB﹣∠ODA=180°﹣30°﹣60°=90°,∴ED⊥DO,∵OD是⊙O的半径,∴ED是⊙O的切线.【点评】本题考查了切线的判定,等腰三角形的性质,线段垂直平分线的性质,熟练掌握切线的判定定理是解题的关键.【变式2-1】如图,AB为⊙O的直径,点C,D在⊙O上,AC=CD=DB,DE⊥AC.求证:DE是⊙O的切线.【分析】连接OD,根据已知条件得到∠BOD=13×180°=60°,求得∠EAD=∠DAB=12∠BOD=30°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,求得∠EDA=60°,根据切线的判定定理即可得到结论.【解答】证明:连接OD,∵AC=CD=DB,∴∠BOD=13×180°=60°,∵CD=DB,∴∠EAD=∠DAB=12∠BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.【点评】本题考查了切线的判定,等腰三角形的性质,正确的作出辅助线是解题的关键.【变式2-2】如图,AC是⊙O的直径,B在⊙O上,BD平分∠ABC交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.求证:DE是⊙O的切线.【分析】连接OD,根据圆周角定理的推论得到∠ABC=90°,根据角平分线的性质求出∠DBE=45°,根据圆周角定理得到∠DOC,根据平行线的性质求出∠ODE=90°,根据切线的判定定理证明结论;【解答】证明:连接OD,∵AC是⊙O的直径,∴∠ABC=90°,∵BD平分∠ABC,∴∠DBE=45°,∴∠DOC=2∠DBE=90°,∵DE∥AC,∴∠ODE=∠DOC=90°,∴DE是⊙O的切线;【点评】本题考查的是切线的判定定理、圆周角定理以及正方形的判定和性质,掌握经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.【变式2-3】(2023•鼓楼区校级模拟)如图,在⊙O中,AB为⊙O的直径,AC为弦,OC=4,∠OAC=60°.(1)求∠AOC的度数;(2)在图(1)中,P为直径BA的延长线上一点,且S△PAC=PC为⊙O的切线;【分析】(1)根据等腰三角形中有一角为60度时是等边三角形得到△ACO是等边三角形,则∠AOC=60°;(2)由等边三角形的性质以及勾股定理得出CD的长,再利用三角形外角的性质以及等腰三角形的性质得出∠PCA=30°,进而得出答案;【解答】(1)解:在△OAC中,∵OA=OC=4,∠OAC=60°,∴△OAC是等边三角形,∴∠AOC=60°;(2)证明:过点C作CD⊥AO于点D,∵△AOC是等边三角形,CD⊥AO,∴AD=DO=12OA=2,∠ACO=60°,∴CD∵S △PAC =∴12PA •CD =∴PA =4,∴PA =AC ,∴∠P =∠PCA =12∠OAC =30°,∴∠PCO =∠PCA +∠ACO =30°+60°=90°,∴OC ⊥PC ,∵OC 是⊙O 的半径,∴PC 为⊙O 的切线.【点评】本题考查了等边三角形的判定和性质,切线的判定,熟练掌握相关的性质和判定是解决问题的关键.【变式2-4】(2023•门头沟区二模)如图,AB 是⊙O 直径,弦CD ⊥AB 于E ,点F 在CD 上,且AF =DF ,连接AD ,BC .(1)求证:∠FAD =∠B(2)延长FA 到P ,使FP =FC ,作直线CP .如果AF ∥BC .求证:直线CP 为⊙O 的切线.【分析】(1)根据垂径定理、圆周角定理可得∠ACD =∠ACD =∠B ,根据等腰三角形的性质可得∠FAD=∠FDA,进而可得∠FAD=∠B;(2)根据平行线的性质以及三角形内角和定理可得∠FAB=∠FAD=∠FDA=30°,进而得到∠CFP=60°,再利用等边三角形的性质可得∠PCO=60°+30°=90°,由切线的判定方法可得结论.【解答】证明:(1)如图,连接AC,∵AB是⊙O直径,弦CD⊥AB,∴AC=AD,∴∠ACD=∠ACD=∠B,∵AF=FD,∴∠FAD=∠FDA,∴∠FAD=∠B;(2)如图,连接OC,∵AF∥BC,∴∠FAB=∠B,∴∠FAB=∠FAD=∠FDA,∵∠AED=90°,∴∠FAB=∠FAD=∠FDA=30°,∴∠CFP=60°,∵FP=FC,∴△CFP是等边三角形,∴∠PCF=60°,∵OB=OC,∴∠B=∠OCB=30°,∴∠OCD=30°,∴∠PCO=60°+30°=90°,即OC⊥PC,∵OC是半径,∴PC是⊙O的切线.【点评】本题考查切线的判定,圆周角定理、平行线的性质以及三角形内角和定理,掌握切线的判定方法,圆周角定理是正确解答的前提.●●【典例三】如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,过点C 作CE ⊥AD 交AD 的延长线于点E ,延长EC ,AB 交于点F ,∠ECD =∠BCF .求证:CE 为⊙O 的切线;【分析】连接OC ,BD ,可推出EF ∥BD ,进而可证CD =BC ,进而得出CE 为⊙O 的切线;【解答】证明:如图1,连接OC ,BD ,∵AB 是⊙O 的直径,∴∠ADB =90°,∵CE ⊥AE,∴∠E=∠ADB,∴EF∥BD,∴∠ECD=∠CDB,∠BCF=∠CBD,∵∠ECD=∠BCF,∴∠CDB=∠CBD,∴CD=BC,∴半径OC⊥EF,∴CE为⊙O的切线;【点评】本题考查了圆周角定理及其推论,圆的切线判定,解决问题的关键是作合适的辅助线.【变式3-1】(2022秋•阿瓦提县校级期末)已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.求证:DE为⊙O的切线.【分析】连接OD,根据OA=OB,CD=BD,得出OD∥AC,∠ODE=∠CED,再根据DE⊥AC,即可证出OD⊥DE,从而得出答案.【解答】证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,∴CD=BD,∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.【点评】本题考查了切线的判定与性质,解决本题的关键是掌握圆周角定理的推论、线段垂直平分线的性质以及等边三角形的判定,是一道常考题型.【变式3-2】已知,如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论.【分析】(1)连接CD,如图,根据圆周角定理,由BC为直径得到∠BDC=90°,然后根据等腰三角形的性质得AD=BD;(2)连接OD,先得到OD为△ABC的中位线,再根据三角形中位线性质得OD∥AC,而DE⊥AC,则DE⊥OD,然后根据切线的判定定理可得DE为⊙O的切线.【解答】(1)证明:连接CD,如图,∵BC为直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,即点D是AB的中点;(2)解:DE与⊙O相切.理由如下:连接OD,∵AD=BD,OC=OB,∴OD为△ABC的中位线,∴OD∥AC,而DE⊥AC,∴DE⊥OD,∴DE为⊙O的切线.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.【变式3-3】如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)已知∠B=30°,CD=4,求线段AB的长.【分析】(1)连接OD,根据角平分线的定义得到∠BAD=∠CAD,而∠OAD=∠ODA,则∠ODA=∠CAD,于是判断OD∥AC,由于∠C=90°,所以∠ODB=90°,然后根据切线的判定定理即可得到结论;(2)由∠B=30°得到∠BAC=60°,则∠CAD=30°,在Rt△ADC中,根据含30度的直角三角形三边的关系得到AC=Rt△ABC中,根据含30度的直角三角形三边的关系可得到AB=【解答】(1)证明:连接OD,如图,∵∠BAC的平分线交BC于点D,∴∠BAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,∴OD⊥BC,∴BC是⊙O的切线;(2)解:∵∠B=30°,∴∠BAC=60°,∴∠CAD=30°,在Rt△ADC中,DC=4,∴AC==在Rt△ABC中,∠B=30°,∴AB=2AC=【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了含30度的直角三角形三边的关系.【变式3-4】如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.【分析】(1)连接OA,根据角之间的互余关系可得∠OAE=∠DEA=90°,故AE⊥OA,即AE是⊙O的切线;(2)根据圆周角定理,可得在Rt△AED中,∠AED=90°,∠EAD=30°,有AD=2DE;在Rt△ABD中,∠BAD=90°,∠ABD=30°,有BD=2AD=4DE,即可得出答案.【解答】(1)证明:连接OA,∵DA平分∠BDE,∴∠BDA=∠EDA.∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EDA,∴OA∥CE.∵AE⊥CE,∴AE⊥OA.∴AE是⊙O的切线.(2)解:∵BD是直径,∴∠BCD=∠BAD=90°.∵∠DBC=30°,∠BDC=60°,∴∠BDE=120°.∵DA平分∠BDE,∴∠BDA=∠EDA=60°.∴∠ABD=∠EAD=30°.∵在Rt△AED中,∠AED=90°,∠EAD=30°,∴AD=2DE.∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,∴BD=2AD=4DE.∵DE的长是1cm,∴BD的长是4cm.【点评】此题主要考查了切线的判定,角平分线的性质,含30°的直角三角形的性质,勾股定理,矩形的判定和性质,构造出直角三角形是解本题的关键,是一道中等难度的中考常考题.●●【典例四】(2022•城关区一模)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为6,PB=4,PC=8.求证:PC是⊙O的切线;【分析】可以证明OC2+PC2=OP2得△OCP是直角三角形,即OC⊥PC,PC是⊙O的切线;【解答】解:如图,连接OC、BC,∵⊙O的半径为6,PB=4,PC=8.∴OC=OB=6,OP=OB+BP=6+4=10,∴OC2+PC2=62+82=100,OP2=102=100,∴OC2+PC2=OP2,∴△OCP是直角三角形,∴OC⊥PC,∴PC是⊙O的切线;【点评】本题考查圆的切线的判定和勾股定理逆定理,利用勾股定理的逆定理证明垂直是解决问题的关键.【变式4-1】如图,AD, BD是⊙O的弦,AD⊥BD,且BD=2AD=8 ,点C是BD的延长线上的一点,CD=2,求证:AC是⊙O的切线.【分析】先由勾股定理的逆定理证明垂直,再由切线的判断进行解答即可.【解答】证明:连接AB,∵AD⊥BD,且BD=2AD=8 ,∴AB为直径,AB2 =82+42 =80,∵CD=2,AD=4 ,∴AC2 =22 +42=20,∵CD=2,BD=8,∴BC=102=100,∴AC2+AB2=CB2,∴∠BAC=90° ,∴AC是⊙O的切线【点评】本题考查切线的判定,圆周角定理的推论,勾股定理的逆定理,解题关键是作出辅助线构造直角三角形.【变式4-2】如图,AD,BD是⊙O的弦,AD⊥BD,且BD=2AD=8,点C是BD的延长线上的一点,CD=2,求证:AC是⊙O的切线.【分析】先根据圆周角定理得到AB为⊙O的直径,再利用勾股定理计算出AB、AC,接着利用勾股定理的逆定理证明△ABC为直角三角形,∠BAC=90°,所以AC⊥AB,然后根据切线的判定定理得到结论.【解答】证明:∵AD⊥BD,∴∠ADB=90°,∴AB为⊙O的直径,∵BD =2AD =8,∴AD =4,在Rt △ADB 中,AB 2=AD 2+BD 2=42+82=80,在Rt △ADC 中,AC 2=AD 2+CD 2=42+22=20,∵BC 2=(2+8)2=10,∴AC 2+AB 2=BC 2,∴△ABC 为直角三角形,∠BAC =90°,∴AC ⊥AB ,∵AB 为直径,∴AC 是⊙O 的切线.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、勾股定理和勾股定理的逆定理.●●【典例五】(2022•鄞州区校级开学)如图,AB 为⊙O 的直径,点C 和点D 是⊙O 上的两点,连接BC ,DC ,BC =CD ,CE ⊥DA 交DA 的延长线于点E .求证:CE 是⊙O 的切线;【分析】连接OD ,OC ,证得△COD ≌△COB ,可得∠OCD =∠BCO ,从而得到∠ADC =∠DCO ,进而得到DA ∥CO ,利用切线的判定定理即可求证;【解答】证明:连接OD ,OC,如图,在△COD和△COB中,OD=OBOC=OC,CD=CB∴△COD≌△COB(SSS),∴∠OCD=∠BCO,∵CO=BO,∴∠B=∠BCO,∵∠B=∠ADC,∴∠ADC=∠DCO.∴DA∥CO,∴∠E+∠ECO=180°.∵CE⊥EA,∴∠E=90°.∴∠ECO=90°,∴EC⊥CO,∵CO是⊙O的半径,∴EC是⊙O的切线;【点评】本题主要考查了切线的判定,圆周角定理等知识,熟练掌握切线的判定,相似三角形的判定和性质,圆周角定理等知识是解题的关键.【变式5-1】如图,已知AB是⊙O的直径,BC⊥AB,连接OC,弦AD∥OC,直线CD交BA的延长线于点E.求证:CD是⊙O的切线;【分析】连接OD,利用SAS得到三角形COD与三角形COB全等,利用全等三角形的对应角相等得到∠ODC 为直角,即可得证;【解答】证明:如图,连接OD.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD,又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB,在△COD和△COB中,OC=OC∠COD=∠COB,OD=OB∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°,∵OD是⊙O的半径,∴CD是⊙O的切线;【点评】此题考查了切线的判定和性质,以及全等三角形的判定与性质,熟练掌握各自的性质是解本题的关键.【变式5-2】(2022秋•新抚区期末)如图,AB为⊙O的直径,四边形OBCD是矩形,连接AD,延长AD 交⊙O于E,连接CE.求证:CE为⊙O的切线.【分析】连接OC、BE,根据矩形性质和圆半径相等,推出∠CDE=∠AEO,进而得到OP=CP,然后根据OB∥CD,可以推出∠COE=∠BOC,最后通过证明△BOC≌△EOC即可求解.【解答】证明:如图:连接OC、BE,OE,CD交于点P,∵四边形OBCD是矩形,∴OB∥CD,∠OBC=90°,OB=CD,∵OB∥CD,∴∠A=∠CDE,∵在⊙O中,OA=OB=OE,∴OE=CD,∵OA=OE,∴∠A=∠AEO,∴∠CDE=∠AEO,∴DP=PE,∵OE=CD,∴OP=CP,∴∠COE=∠DCO,∵OB∥CD,∴∠DCO=∠BOC,∴∠COE=∠BOC,在△BOC和△EOC中,OB=OECO=CO,∠BOC=∠COE∴△BOC≌△EOC(SAS),∴∠CEO=∠OBC=90°,∴CE⊥OE,又∵OE为⊙O的半径,∴CE为⊙O的切线.【点评】本题考查圆周角定理,全等三角形的判定和性质,矩形的性质等众多知识点,熟悉掌握以上知识点是解题关键.【变式5-3】(2022•建邺区二模)如图,四边形ABCD是菱形,以AB为直径作⊙O,交CB于点F,点E在CD上,且CE=CF,连接AE.(1)求证:AE是⊙O的切线;(2)连接AC交⊙O于点P,若AP BF=1,求⊙O的半径.【分析】(1)连接AF,根据菱形的性质得到∠ACF=∠ACE,根据全等三角形的性质得到∠AFC=∠AEC,推出OA⊥AE,根据切线的判定定理即可得到结论;(2)连接BP,根据圆周角定理得到∠APB=90°,求得AC=2AP=【解答】(1)证明:连接AF,∵四边形ABCD为菱形,∴∠ACF=∠ACE,在△ACF与△ACE中,CF=CE∠ACF=∠ACEAC=AC,∴△ACF≌△ACE(SAS),∴∠AFC=∠AEC,∵AB是⊙O的直径,∴∠AFB=∠AFC=90°,∴∠AEC=90°,∵AB∥DC,∴∠BAE+∠AEC=90°,∴∠BAE=90°,∴OA⊥AE,∵OA是⊙O的半径,∴AE是⊙O的切线;(2)解:连接BP,∵AB是⊙O的直径,∴∠APB=90°,∵AB=CB,AP=∴AC=2AP=设⊙O的半径为R,∵AC2﹣CF2=AF2,AB2﹣BF2=AF2,∴2−(2R−1)2=(2R)2−12,∴R=32(负值舍去),∴⊙O的半径为3 2.【点评】本题考查了切线的判定和性质,圆周角定理,菱形的性质,三角形全等的性质和判定,勾股定理等知识,解答本题的关键是根据勾股定理列方程解决问题.类型二:无公共点:作垂直,证半径●●【典例六】如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D.求证:AC是⊙O的切线.【分析】过点O作OE⊥AC于点E,连接OD,OA,根据切线的性质得出AB⊥OD,根据等腰三角形三线合一的性质得出AO是∠BAC的平分线,根据角平分线的性质得出OE=OD,从而证得结论.【解答】证明:过点O作OE⊥AC于点E,连接OD,OA,∵AB与⊙O相切于点D,∴AB⊥OD,∵△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线,∴OE=OD,即OE是⊙O的半径,∵圆心到直线的距离等于半径,∴AC是⊙O的切线.【点评】本题考查了切线的判定和性质,等腰三角形的性质,角平分线的性质,熟练掌握性质定理是解题的关键.【变式6-1】如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.求证:CD与⊙O相切.【分析】利用正方形的性质得出AC平分角∠BCD,再利用角平分线的性质得出OM=ON,即可得出答案.【解答】证明:如图所示,连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC,又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴ON为⊙O的半径,∴CD与⊙O相切.【点评】此题主要考查了正方形的性质以及角平分线的性质,得出OM=ON是解题关键.【变式6-2】如图,OC平分∠AOB,D是OC上任意一点,⊙D和OA相切于点E,连接CE.(1)求证:OB与⊙D相切;(2)若OE=4,⊙D的半径为3,求CE的长.【分析】(1)过点D作DF⊥OB于点F,先由切线的性质得DE⊥OA,则由角平分线的性质得DF=DE,即可证得结论;(2)过E作EG⊥OD于G,先由勾股定理求出OD=5,再由面积法求出EG=125,然后由勾股定理求出DG=95,最后由勾股定理求出CE即可.【解答】(1)证明:连接DE,过点D作DF⊥OB于点F,如图所示:∵⊙D与OA相切于点E,∴DE⊥OA,∵OC平分∠AOB,∴DF=DE,又∵DF⊥OB,∴OB与⊙D相切;(2)解:过E作EG⊥OD于G,如图所示:由(1)得:DE⊥OA,∴∠OED=90°,∵OE=4,DE=3,∴OD=5,∵EG⊥OD,∴12OD×EG=12OE×DE,∴EG=OE×DEOD=4×35=125,∴DG===9 5,∴CG=CD+DG=3+95=245,∴CE=【点评】此题考查了切线的判定与性质、勾股定理以及角平分线的性质等知识,解题的关键是准确作出辅助线.【变式6-3】如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求⊙O的半径R.【分析】(1)过O点作OE⊥CD于点E,通过角平分线的性质得出OE=OA即可证得结论.(2)过点D作DF⊥BC于点F,根据切线的性质可得出DC的长度,继而在Rt△DFC中利用勾股定理可得出DF的长,继而可得出半径.【解答】(1)证明:过O点作OE⊥CD于点E,∵AM切⊙O于点A,∴OA⊥AD,又∵DO平分∠ADC,∴OE=OA,∵OA为⊙O的半径,∴OE是⊙O的半径,且OE⊥DC,∴CD是⊙O的切线.(2)解:过点D作DF⊥BC于点F,∵AM,BN分别切⊙O于点A,B,∴AB⊥AD,AB⊥BC,∴四边形ABFD是矩形,∴AD=BF,AB=DF,又∵AD=4,BC=9,∴FC=9﹣4=5,∵AM,BN,DC分别切⊙O于点A,B,E,∴DA=DE,CB=CE,∴DC=AD+BC=4+9=13,在Rt△DFC中,DC2=DF2+FC2,∴DF=12,∴AB=12,∴⊙O的半径R是6.【点评】此题考查了切线的性质、角平分线的性质及勾股定理的知识,证明第一问关键是掌握切线的判定定理,解答第二问关键是熟练切线的性质.【变式6-4】(2022秋•清原县期末)如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O 经过点C 且与AB 边相切于点E ,∠FAC =12∠BDC .(1)求证:AF 是⊙O 的切线;(2)若BC =6,AB =10,求⊙O 的半径长.【分析】(1)作OH ⊥FA ,垂足为点H ,连接OE ,证明AC 是∠FAB 的平分线,进而根据OH =OE ,OE ⊥AB ,可得AF 是⊙O 的切线;(2)勾股定理得出AC ,设⊙O 的半径为r ,则OC =OE =r ,进而根据切线的性质,在Rt △OEA 中,勾股定理即可求解.【解答】(1)证明:如图,作OH ⊥FA ,垂足为点H ,连接OE ,∵∠ACB =90°,D 是AB 的中点,∴CD =AD =12AB ,∴∠CAD =∠ACD ,∵∠BDC =∠CAD +∠ACD =2∠CAD ,又∵∠FAC =12∠BDC ,∴∠FAC =∠CAD ,即AC 是∠FAB 的平分线,∵点O 在AC 上,⊙O 与AB 相切于点E ,∴OE ⊥AB ,且OE 是⊙O 的半径,∴OH =OE ,OH 是⊙O 的半径,∴AF 是⊙O 的切线;(2)解:如图,在△ABC中,∠ACB=90°,BC=6,AB=10,∴AC==8,∵BE,BC是⊙O的切线,∴BC=BE=6,∴AE=10﹣6=4设⊙O的半径为r,则OC=OE=r,在Rt△OEA中,由勾股定理得:OE2+AE2=OA2,∴16+r2=(8﹣r)2,∴r=3.∴⊙O的半径长为3.【点评】本题考查了切线的性质与判定,勾股定理,熟练掌握切线的性质与判定是解题的关键.1.如图,已知AB是⊙O的直径,AB=BE,点P在BA的延长线上,连接AE交⊙O于点D,过点D作PC⊥BE垂足为点C.求证:PC与⊙O相切;【分析】连接OD,根据等腰三角形的性质得到∠BAE=∠BEA,∠BAE=∠ODA,等量代换得到∠ODA=∠BEA,证明OD∥BE,根据平行线的性质得到PC⊥OD,根据切线的判定定理证明结论;【解答】证明:连接OD,∵AB=BE,∴∠BAE=∠BEA,∵OA=OD,∴∠BAE=∠ODA,∴∠ODA=∠BEA,∴OD∥BE,∵PC⊥BE,∴PC⊥OD,∵OD是⊙O的半径,∴PC与⊙O相切;【点评】本题考查的是切线的判定、解直角三角形,掌握经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.2.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,点D是BC的中点,DE∥BC交AC的延长线于点E.(1)求证:直线DE与⊙O相切;(2)若⊙O的直径是10,∠A=45°,求CE的长.【分析】(1)连接OD,如图,先利用垂径定理得到OD⊥BC,再根据平行线的性质得到OD⊥DE,然后根据切线的判定方法得到结论;(2)先根据圆周角定理得到∠B=90°,则∠ACB=45°,再根据平行线的性质得到∠E=45°,则可判断△ODE 为等腰直角三角形,于是可求出OE,然后计算OE﹣OC即可.【解答】(1)证明:连接OD,如图,∵点D是BC的中点,∴OD⊥BC,∵DE∥BC,∴OD⊥DE,∴直线DE与⊙O相切;(2)解:∵AC是⊙O的直径,∴∠B=90°,∵∠A=45°,∴∠ACB=45°,∵BC∥DE,∴∠E=45°,而∠ODE=90°,∴△ODE为等腰直角三角形,∴OE==∴CE=OE﹣OC=5.【点评】本题考查了切线的性质与判定:圆的切线垂直于经过切点的半径.也考查了垂径定理、圆周角定理和等腰直角三角形的性质.3.(2023•东城区校级模拟)如图,⊙O的半径OC与弦AB垂直于点D,连接BC,OB.(1)求证:2∠ABC+∠OBA=90°;(2)分别延长BO、CO交⊙O于点E、F,连接AF,交BE于G,过点A作AM⊥BC,交BC延长线于点M,若G是AF的中点,求证:AM是⊙O的切线.【分析】(1)先根据垂径定理得到AC=BC,再根据圆周角定理得到∠BOC=2∠ABC,然后利用互余关系得∠BOD+∠OBD=90°,从而得到结论;(2)如图,连接OA,根据垂径定理得到BE⊥AF,再根据圆周角定理得到∠CAF=90°,则可判断BE ∥AC,所以∠ABE=∠BAC,接着证明∠BAO=∠CBA得到OA∥BC,根据平行线的性质得到AM⊥OA,然后根据切线的判断方法得到结论.【解答】证明:(1)∵OD⊥AB,∴AC=BC,∠ODB=90°,∴∠BOC=2∠ABC,∵∠BOD+∠OBD=90°,∴2∠ABC+∠OBA=90°;(2)如图,连接OA,∵G是AF的中点,∴BE⊥AF,∵CF为直径,∴∠CAF=90°,∴CA⊥AF,∴BE∥AC,∴∠ABE=∠BAC,∴AC=BC,∴∠CAB=∠CBA,∵OA=OB,∴∠BAO=∠ABO,∴∠BAO=∠CBA,∴OA∥BC,∵AM⊥BC,∴AM⊥OA,而OA为⊙O的半径,∴AM是⊙O的切线.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、垂径定理.4.(2022•思明区校级二模)如图,四边形ABCD是⊙O的内接四边形,AC是⊙O直径,BE∥AD交DC 延长线于点E,若BC平分∠ACE.(1)求证:BE是⊙O的切线;(2)若BE=3,CD=2,求⊙O的半径.【分析】(1)连接OB,由条件可以证明OB∥DE,从而证明OB⊥BE;(2)由垂径定理求出AD长,从而由勾股定理可求AC长.【解答】(1)证明:连接OB,∵″OB=OC,∴∠OBC=∠OCB,∵∠BCE=∠OCB,∴∠OBC=∠BCE,∴OB∥DE,∵AC是⊙O直径,∴AD⊥DE,∵BE∥AD,∴BE⊥DE,∴OB⊥BE,∵OB是⊙O半径,∴BE是⊙O切线;(2)解:延长BO交AD于F,∵∠D=∠DEB=∠EBF=90°,∴四边形BEDF是矩形,∴BF⊥AD,DF=BE=3,∴AD=2DF=6,∵AC2=AD2+CD2,∴AC2=62+22=40,∴AC=∴⊙O【点评】本题考查切线的判定,矩形的判定和性质,垂径定理,勾股定理,用到的知识点较多,关键是熟练掌握知识点,并能灵活应用.5.(2023•封开县一模)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)当AB=5,BC=6时,求DE的长.【分析】(1)连接OD,由AC=AB,根据等边对等角得到一对角相等,再由OD=OB,根据等边对等角得到又一对角相等,等量代换可得一对同位角相等,根据同位角相等两直线平行可得OD与AC平行,又EF垂直于AC,根据垂直于两平行线中的一条,与另一条也垂直,得到EF与OD也垂直,可得EF为圆O的切线;(2)连接AD,由AB为圆的直径,根据直径所对的圆周角为直角可得∠ADB=90°,即AD与BC垂直,又AC=AB,根据三线合一得到D为BC中点,由BC求出CD的长,再由AC的长,利用勾股定理求出AD的长,三角形ACD的面积有两种求法,AC乘以DE除以2,或CD乘以AD除以2,列出两个关系式,两关系式相等可求出DE的长.【解答】(1)证明:连接OD,∵AB=AC,∴∠C=∠OBD,∵OD=OB,∴∠1=∠OBD,∴∠1=∠C,∴OD∥AC,∵EF⊥AC,∴EF⊥OD,∴EF是⊙O的切线;(2)连接AD,∵AB为⊙O的直径,∴∠ADB=90°,又∵AB=AC,且BC=6,∴CD=BD=12BC=3,在Rt△ACD中,AC=AB=5,CD=3,根据勾股定理得:AD=4,又S△ACD =12AC•ED=12AD•CD,即12×5×ED=12×4×3,∴ED=12 5.【点评】此题考查了等腰三角形的性质,圆周角定理,平行线的性质,勾股定理,三角形面积的求法,以及切线的判定,其中证明切线的方法为:有点连接圆心与此点,证垂直;无点过圆心作垂线,证明垂线段长等于圆的半径.本题利用的是第一种方法.6.(2023•宁德模拟)如图,OM 为⊙O 的半径,且OM =3,点G 为OM 的中点,过点G 作AB ⊥OM 交⊙O 于点A ,B ,点D 在优弧AB 上运动,将AB 沿AD 方向平移得到DC ;连接BD ,BC .(1)求∠ADB 的度数;(2)如图2,当点D 在MO 延长线上时,求证:BC 是⊙O 的切线.【分析】(1)连接AO ,BO ,先根据特殊角的正弦值可得∠OAG =30°,再根据等腰三角形的性质可得∠OAG =∠OBG =30°,从而可得∠AOB =120°,然后根据圆周角定理即可得;(2)连接AO ,BO ,CO ,先证出四边形ABCD 是平行四边形,再根据等边三角形的判定与性质可得AB =AD ,根据菱形的判定可得四边形ABCD 是菱形,根据菱形的性质可得CB =CD ,然后根据SSS 定理证出△COB ≌△COD ,根据全等三角形的性质可得∠OBC =∠ODC =90°,最后根据圆的切线的判定即可得证.【解答】(1)解:如图1,连接AO ,BO .∵点G 为OM 的中点,且OM =3,∴OG =12OM =32,OA =OB =OM =3,∵AB ⊥OM ,在Rt △AOG 中,OG =12OA .∴∠OAG =30°,又∵OA =OB ,∴∠OAG=∠OBG=30°,∴∠AOB=120°,∴∠ADB=12∠AOB=60°.(2)证明:如图2,连接AO,BO,CO,由平移得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∵OM⊥AB,点D在MO延长线上,∴DM⊥CD,∵OA=OB,AB⊥OM,∴AG=BG,∴DM垂直平分AB,∴AD=BD,∵∠ADB=60°,∴△ABD为等边三角形,∴AB=AD,∴平行四边形ABCD是菱形,∴CB=CD,在△COB和△COD中,CB=CDOB=ODOC=OC,∴△COB≌△COD(SSS),∴∠OBC=∠ODC=90°,又∵OB是⊙O的半径,。

切线的定义及判定定理ppt课件

切线的定义及判定定理ppt课件
课后作业 : A 组 3, 4, 5.
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
问题:定理中的两个条件缺少一个行不行?
判断
1. 过半径的外端的直线是圆的切线( × ) 2. 与半径垂直的的直线是圆的切线( × ) 3. 过半径的端点与半径垂直的直线是圆的切线( ×)
课堂小结
1.切线的判定定理: 经过半径外端并且垂直于这条半径的直线是
圆的切线。 2.切线的判定方法有三种: ①直线与圆有唯一公共点; ②直线到圆心的距离等于该圆的半径; ③切线的判定定理.
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
应用定理,强化训练
例1 已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB. 求证:直线AB是⊙O的切线
证明:连结OC ∵OA=0B,CA=CB,
O
∴OC是等腰三角形OAB底边AB上的中线
∴AB⊥OC
AC B
∴直线AB经过半径OC的外端C并且垂直于半径OC
Байду номын сангаас
∴AB是⊙O的切线.
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
•切线的判定方法有三种: •①直线与圆有唯一公共点; •②直线到圆心的距离等于该圆的半径; •③切线的判定定理.即: 经过半径的外端并且垂直这条半径的直线 是圆的切线
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益

切线证明(共5篇)

切线证明(共5篇)

切线证明〔共5篇〕第1篇:证明切线的方法证明切线的方法证明一条直线是圆的切线,可分两种情况进展分析^p 。

〔1〕圆和直线的唯一公共点,方法是:连半径,证垂直〔比拟常用〕。

〔2〕圆和直线的公共点位置未知,方法是:作垂直,证半径。

例如图,△ABC是等腰三角形,AB=AC,点O在线段AB上,以O为圆心、OB为半径作圆交BC于点D,过点D作DE⊥AC于E。

DE是圆O的切线吗?分析^p :这属于第一种情况,可以考虑连半径,再证垂直。

DE是切线。

证明:连接OD。

∵△ABC是等腰三角形,AB=AC,∴∠B=∠C。

又∵OB=OD,∴∠B=∠1。

∴∠1=∠C。

而DE⊥AC,∴∠C+∠2=90°。

∴∠1+∠2=90°。

∴∠ODE=90°,即OD⊥DE,OD是圆O的半径。

∴DE是圆O的切线。

AB第2篇:证明圆的切线方法证明圆的切线方法我们学习了直线和圆的位置关系,就出现了新的一类习题,就是证明一直线是圆的切线.在我们所学的知识范围内,证明圆的切线常用的方法有:一、假设直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1 如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.证明:连结OE,AD.∵AB是⊙O的直径,∴AD⊥BC. 又∵AB=BC,∴∠3=∠4.⌒ ⌒∴BD=DE,∠1=∠2. 又∵OB=OE,OF=OF,∴△BOF≌△EOF〔SAS〕. ∴∠OBF=∠OEF. ∵BF与⊙O相切,∴OB⊥BF. ∴∠OEF=900. ∴EF与⊙O相切.说明:此题是通过证明三角形全等证明垂直的例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD.求证:PA与⊙O相切.证明一:作直径AE,连结EC.∵AD是∠BAC的平分线,∴∠DAB=∠DAC. ∵PA=PD,∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB,∴∠1=∠B. 又∵∠B=∠E,∴∠1=∠E ∵AE是⊙O的直径,∴AC⊥EC,∠E+∠EAC=900. ∴∠1+∠EAC=900. 即OA⊥PA. ∴PA与⊙O相切.证明二:延长AD交⊙O于E,连结OA,OE.∵AD是∠BAC的平分线,⌒ ⌒∴BE=CE,∴OE⊥BC. ∴∠E+∠BDE=900. ∵OA=OE,∴∠E=∠1. ∵PA=PD,∴∠PAD=∠PDA. 又∵∠PDA=∠BDE, ∴∠1+∠PAD=900即OA⊥PA. ∴PA与⊙O相切说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用.例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切.证明一:连结OD.∵AB=AC,∴∠B=∠C. ∵OB=OD,∴∠1=∠B. ∴∠1=∠C.∴OD∥AC. ∵DM⊥AC,∴DM⊥OD.∴DM与⊙O相切D 证明二:连结OD,AD.∵AB是⊙O的直径,∴AD⊥BC.又∵AB=AC,C ∴∠1=∠2. ∵DM⊥AC,∴∠2+∠4=900 ∵OA=OD,∴∠1=∠3.∴∠3+∠4=900.即OD⊥DM.∴DM是⊙O的切线说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,解题中注意充分利用及图上.例4 如图,:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.求证:DC是⊙O的切线证明:连结OC、BC.∵OA=OC,∴∠A=∠1=∠300.∴∠BOC=∠A+∠1=600. 又∵OC=OB,∴△OBC是等边三角形. ∴OB=BC. ∵OB=BD,∴OB=BC=BD. ∴OC⊥CD. ∴DC是⊙O的切线.D 说明:此题是根据圆周角定理的推论3证明垂直的,此题解法颇多,但这种方法较好.例5 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP.求证:PC是⊙O的切线.证明:连结OC∵OA2=OD·OP,OA=OC,∴OC2=OD·OP, OCOP.ODOC 又∵∠1=∠1,∴△OCP∽△ODC. ∴∠OCP=∠ODC. ∵CD⊥AB,∴∠OCP=900. ∴PC是⊙O的切线.说明:此题是通过证三角形相似证明垂直的例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与△CFG的外接圆相切.分析^p :此题图上没有画出△CFG的外接圆,但△CFG是直角三角形,圆心在斜边FG的中点,为此我们取FG的中点O,连结OC,证明CE⊥OC即可得解.证明:取FG中点O,连结OC. ∵ABCD是正方形,∴BC⊥CD,△CFG是Rt△∵O是FG的中点,∴O是Rt△CFG的外心. ∵OC=OG,∴∠3=∠G,∵AD∥BC,∴∠G=∠4. ∵AD=CD,DE=DE,∠ADE=∠CDE=450,∴△ADE≌△CDE〔SAS〕∴∠4=∠1,∠1=∠3. ∵∠2+∠3=900, ∴∠1+∠2=900. 即CE⊥OC. ∴CE与△CFG的外接圆相切二、假设直线l与⊙O没有的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”例7 如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.证明一:连结DE,作DF⊥AC,F是垂足.∵AB是⊙D的切线,∴DE⊥AB. ∵DF⊥AC,∴∠DEB=∠DFC=900. ∵AB=AC,∴∠B=∠C. 又∵BD=CD,∴△BDE≌△CDF〔AAS〕∴DF=DE. ∴F在⊙D上. ∴AC是⊙D的切线证明二:连结DE,AD,作DF⊥AC,F是垂足.∵AB与⊙D相切,∴DE⊥AB.∵AB=AC,BD=CD,∴∠1=∠2.∵DE⊥AB,DF⊥AC,∴DE=DF.∴F在⊙D上.∴AC 与⊙D相切.说明:证明一是通过证明三角形全等证明DF=DE 的,证明二是利用角平分线的性质证明DF=DE的,这类习题多数与角平分线有关.例8 :如图,AC,BD与⊙O切于A、B,且AC∥BD,假设∠COD=900.求证:CD是⊙O的切线.证明一:连结OA,OB,作OE⊥CD,E为垂足.∵AC,BD与⊙O相切,∴AC⊥OA,BD⊥OB. ∵AC∥BD,∴∠1+∠2+∠3+∠4=1800. ∵∠COD=900,∴∠2+∠3=900,∠1+∠4=900. ∵∠4+∠5=900.∴∠1=∠5. ∴Rt△AOC∽Rt△BDO.∴ACOC.OBODACOC.OAODO ∵OA=OB,∴ 又∵∠CAO=∠COD=900,∴△AOC∽△ODC,∴∠1=∠2. 又∵OA⊥AC,OE⊥CD, ∴OE=OA. ∴E点在⊙O上. ∴CD是⊙O的切线.证明二:连结OA,OB,作OE⊥CD 于E,延长DO交CA延长线于F. ∵AC,BD与⊙O相切,∴AC⊥OA,BD⊥OB.∵AC∥BD,∴∠F=∠BDO.又∵OA=OB,∴△AOF≌△BOD〔AAS〕∴OF=OD.∵∠COD=900,∴CF=CD,∠1=∠2.又∵OA⊥AC,OE⊥CD,∴OE=OA.∴E点在⊙O上.∴CD是⊙O的切线.证明三:连结AO并延长,作OE⊥CD于E,取CD中点F,连结OF.∵AC与⊙O相切,∴AC⊥AO.∵AC∥BD,∴AO⊥BD.∵BD 与⊙O相切于B,∴AO的延长线必经过点B.∴AB是⊙O的直径.∵AC∥BD,OA=OB,CF=DF,∴OF∥AC,∴∠1=∠COF.∵∠COD=900,CF=DF,∴OF1CD CF.2∴∠2=∠COF.∴∠1=∠2.∵OA⊥AC,OE⊥CD,∴OE=OA.∴E点在⊙O上.∴CD是⊙O的切线说明:证明一是利用相似三角形证明∠1=∠2,证明二是利用等腰三角形三线合一证明∠1=∠2.证明三是利用梯形的性质证明∠1=∠2,这种方法必需先证明A、O、B三点共线.此题较难,需要同学们利用所学过的知识综合求解.以上介绍的是证明圆的切线常用的两种方法供同学们参考.第3篇:圆的切线方程公式证明:圆的方程为:(xb)² = r², 圆上一点P(x0, y0) 解:圆心C(a, b)直线CP的斜率:k1 = (y0a)因为直线CP与切线垂直, 所以切线的斜率:k2 = -1/k1 =a) / (y0y0 = k2 (xy0 = [- (x0b)] (xx0)(x0y0)(y0ax +ax0 + y0yx0²a)² + (y02ax0 + a² + y1²x0²2by0 + a²+ b²ax + ax0 + y0y2by0 + a² + b²axyba)(xb)(y(x0 + D/2) / (y0 + E/2)根据点斜式, 求得切线方程:yx0)yx0)整理得:x0x + y0y + Dx/2 + Ey/2Ey0/2 -x0²x0²Dx0/2a)² + (yMC²)(根据勾股定理)= √ [(x0b)²MC²)(根据勾股定理)= √ [ (x0 + D/2)² + (y0 + E/2)² - ((√(D²+E²-4F))/2)² ](半径:r=(√(D²+E²-4F)) / 2)= √ (x0² + y0² + Dx0 + Ey0 + F)第4篇:切线的两种证明方法浅谈切线的两种证明方法在中学学习圆的时候,我们学过切线的断定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

证明圆的切线的七种常用方法

证明圆的切线的七种常用方法

证明圆的切线的七种常用方法类型1、有公共点:连半径,证垂直方法1、勾股定理逆定理法证垂直1.如图,⊙O的直径AB=12,点P是AB延长线上一点,且PB=4,点C是⊙O上一点,PC=8. 求证:PC是⊙O的切线.方法2、特殊角计算法证垂直2. 如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上一点,且AP=AC.(1)求证:P A是⊙O的切线;(2)若PD =5,求⊙O 的直径.方法3、等角代换法证垂直3.如图,在Rt△ABC中,∠C=90°,D为BC 的中点,以AC 为直径的⊙O交AB于点E . 求证:DE是⊙O 的切线.方法4、平行线性质法证垂直4.如图,已知四边形OABC的三个顶点A ,B ,C在以O为圆心的半圆上,过点C 作CD ⊥AB,分别交AB,AO 的延长线于点D,E,AE交半圆O于点F,连接CF,且∠E=30°,点B是︵AC的中点.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)求证:CF=OC;(3)若⊙O的半径是6,求DC的长.AB POCACBPD OAEBDOCA O F ECDB方法5、全等三角形法证垂直5.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且四边形AOCD 是平行四边形,过点D 作⊙O 的切线,交OC 的延长线于点F ,连接BF .求证:BF 是⊙O 的切线.类型2、无公共点:作垂直,证半径方法6、角平分线性质法证半径6.如图,在Rt △ABC 中,∠B =90°,∠BAC 的平分线交BC 于点D ,E 是AB 上一点,DE =DC ,以点D 为圆心,BD 长为半径作OD ,AB =5,EB =2. (1)求证:AC 是OD 的切线;(2)求线段AC 的长.方法7、全等三角形法证半径7.如图,四边形ABCD 中,∠A =∠ABC =90°,AD +BC =CD ,以AB 为直径作⊙O . 求证:⊙O 与边CD 相切.A OBCD F A B C D EA OB C D。

切线的证明方法。-概述说明以及解释

切线的证明方法。-概述说明以及解释

切线的证明方法。

-概述说明以及解释1.引言1.1 概述概述部分的内容:引言部分旨在介绍本文将要探讨的主题——切线的证明方法。

切线作为数学中重要的概念,在几何、微积分等领域中都起着至关重要的作用。

切线的证明方法是指在给定一个曲线时,如何确定该曲线上某点的切线。

本文将会介绍三种常见的切线的证明方法,并对其进行详细的讲解和演示。

这些证明方法包括第一个证明方法、第二个证明方法和第三个证明方法。

第一个证明方法将从基础的几何知识出发,通过利用曲线上两点之间的斜率来确定切线的方程。

我们将详细介绍这个方法的步骤和计算过程,并通过实例来加深理解。

第二个证明方法将引入导数的概念,利用导数来求解切线的斜率。

我们将介绍导数的定义和性质,以及如何利用导数求解切线的斜率,并通过例子来说明这个方法的应用。

第三个证明方法与微积分中的极限概念相关,通过极限的定义来求解切线的斜率。

我们将探讨极限的概念和性质,以及如何运用极限来确定切线的斜率,并通过实例进行演示。

本文的目的是帮助读者更加深入地理解切线的概念和证明方法。

通过学习这些方法,读者将能够独立地解决切线相关的问题,并将这些方法应用到其他数学领域中。

在结论部分,我们将对这三种证明方法进行总结,并探讨它们在实际问题中的应用。

同时,我们也将展望未来,探讨可能的改进和拓展方向,以进一步提升切线的证明方法的应用价值。

接下来,我们将详细介绍第一个证明方法,以便读者能够更好地理解和掌握这个技巧。

1.2文章结构文章结构部分的内容应该是对整篇文章的组织和章节安排进行介绍。

在本篇文章中,我们将讨论切线的证明方法,并按照如下结构进行阐述:第一部分是引言。

在引言中,我们将对切线的概念进行概述,介绍其在数学中的重要性以及与其他几何概念的关系。

同时,我们还会简要介绍本文的结构和目的。

第二部分是正文。

在正文中,我们将详细介绍三种不同的证明方法。

首先,我们将讨论第一个证明方法,详细描述其步骤和推导过程。

然后,我们将进一步介绍第二个证明方法,指出其与第一个证明方法的异同之处。

双曲线的切线方程总结(附证明)

双曲线的切线方程总结(附证明)

双曲线的切线方程总结(附证明)
双曲线的切线方程总结(附证明)
引言
双曲线是高等数学中的一个重要概念,切线是与曲线相切的直线。

本文总结了双曲线的切线方程,并给出了相应的证明。

切线方程的一般形式
双曲线的一般方程为Ax^2 - By^2 = 1(其中A和B为常数),切线的一般方程为y = mx + c(其中m和c为常数)。

要找到双曲
线上某点处的切线方程,可以按照以下步骤进行计算。

步骤 1:求导
首先,对双曲线的一般方程进行求导,得到导数dy/dx。

步骤 2:求斜率
将求导后的导数代入点斜式y - y1 = m(x - x1)中,其中点(x1,
y1)为双曲线上的某点。

通过计算,可以得到切线的斜率m。

步骤 3:求截距
将得到的斜率m代入切线方程y = mx + c中,并将双曲线上的某点的坐标代入,可以求解出切线的截距c。

步骤 4:得出切线方程
将求得的斜率m和截距c代入切线方程y = mx + c中,即可得到双曲线上某点处的切线方程。

证明
利用数学推导和曲线的性质,可以证明以上步骤中得出的切线方程确实与双曲线相切。

具体证明过程较为繁琐,因此在此不再详述。

结论
本文总结了双曲线的切线方程的一般形式和计算步骤,并提供了相应的证明过程。

通过掌握这些内容,读者可以更好地理解双曲线的性质,进一步应用于实际问题中的解决。

---
注:此文档为简单总结,具体证明过程较为复杂,若需详细了解请参考相关数学教材及资料。

人教版九年级上册圆专题复习2切线证明及计算

人教版九年级上册圆专题复习2切线证明及计算

人教版九年级上册圆专题复习2切线证明及计算一、知识回顾1、切线证明的两种主要类型:(1)已知直线经过圆上某一点,辅助性的作法是连接圆心和这一点,判定方法是:经过半径的外端并且垂直于半径的直线是圆的切线。

(2)未知直线是否经过圆上的某一点,辅助线的作法是过圆心作直线的垂线段,判定方法是:到圆心的距离等于圆的半径的直线是圆的切线。

2、圆的有关计算:经常用到垂径定理、勾股定理等。

二、例题讲解:例1:如图1,在Rt △ABC 中,C 90∠=,BE 平分∠ABC 交AC 于点E,点D 在AB 上,DE EB ⊥.(1) 求证:AC 是△BDE 的外接圆的切线;(2)若26,62==AE AD ,求EC 的长.注:(1)角平分线、平行于角平分线一边的直线、等腰三角形中,任意两个作为条件都可以推导出第三个。

(2)直角三角形中的特殊边角关系的应用。

例2:如图2,在Rt △ABC 中,∠B=90°,∠A 的平分线交BC 于D,E 为AB 上一点,DE=DC,以D 为圆心,以DB 的长为半径画圆。

求证:(1)AC 是⊙D 的切线;(2)AB+EB=AC 。

证明:(1)过点D 作DF ⊥AC 于F.∵AB 为⊙D 的切线, AD 平分∠BAC, ∴BD=DF .∴AC 为⊙D 的切线 .(2)在△BDE 和△DCF 中, ∵BD=DF, DE=DC,∴△BDE ≌△DCF (HL ), ∴EB=FC .又AB=AF, ∴AB+EB=AF+FC, 即AB+EB=AC .三、课堂练习:1、如图3,AB是⊙O的直径,弦CD⊥AB,在∠ACD的外部作∠ACE=∠ACD,CE的反向延长线交AB的延长线于点P.(1)求证:PE是⊙O的切线;(2)若PC=4,PA=8,求sinP的值.2、如图4,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,E为AB上的一点,DE=DC,以D为圆心,DB长为半径作⊙D,AB=5,EB=3.求证:⑴AC是⊙O的切线;⑵求线段AC的长.3、如图5,已知以Rt△ABC的边AB为直径作△ABC的外接圆⊙O,∠B的平分线BE交AC于D,交⊙O于E,过E作EF∥AC交BA的延长线于F.(1)求证:EF是⊙O切线;(2)若AB = 15,EF = 10,求AE的长.4、已知:如图6,∠ACB=60°,CE为∠ACB的角平分线,O为射线CE上的一点,⊙O切AC于点D.(1)求证:BC与⊙O相切;(2)若⊙O的半径为6,P为⊙O上一点,且使得∠DPC=90°,求DP的长.5、(2009年元月调考试题)如图7,在边长为4的正方形ABCD中,以AD为直径作⊙O,以C为圆心,CD长为半径作⊙C,两圆交于正方形内一点E,连CE并延长交AB于F.(1)求证:CF与⊙O相切;(2)求△BCF和直角梯形ADCF周长之比.四、课后作业:1、如图8,AB为⊙O的直径,D是⊙O 外一点, AD交⊙O于C,AE平分∠BAD交⊙O于E,AD⊥ED于D。

2.3.圆的切线的性质及判定定理

2.3.圆的切线的性质及判定定理

C
O
B
练习1.如图A是⊙O外的一点,AO的延长线交 ⊙O于C,直线AB经过⊙O上一点B,且AB=BC, ∠C=30°. 求证:直线AB是⊙O的切线.
证明:连结OB, ∵OB=OC,AB=BC,∠C=30° ∴∠OBC=∠C=∠A=30° ∴∠AOB=∠C+∠OBC=60° ∴∠ABO=180°-(∠AOB+∠A) =180°-(60°+30°)
C E D B A O
例2: 如图,AB是⊙O的直径, C为⊙O上一 点,AD和过点C的切线互相垂直,垂足为D. 求证:AC平分∠DAB.
证明:连接OC. ∵CD 是⊙O的切线, ∴OC⊥CD. 又∵AD⊥CD , ∴OC//AD. ∴∠ACO= ∠CAD . 又∵OC=OD, ∴∠CAO= ∠ACO ∴∠CAD= ∠CAO , 故AC平分∠DAB. A D
三、 圆的切线的 性质及判定定理
l
O
.O
B
l
r
Aቤተ መጻሕፍቲ ባይዱM
思考:直线与圆有几种位置关系?
(1)直线与圆有两个公共点,称直线与圆相交;(d<r)
(2)直线与圆只有一个公共点,称直线与圆相切;(d=r)
(3)直线与圆没有公共点,称直线与圆相离.(d>r)
本节专门讨论直线与圆相切的情形.
相 交
.
O
相 切
相 离
P′ O. O1 C
作法:连接OC, 以OC为直径的 圆为⊙O1,与 ⊙O 相交于两点 P和P′.连接CP和 CP′,则CP和CP′ 都是过已知点C 所引⊙O的切 线.
(2)点C在圆外. 证明:∵∠OPC是⊙O1内半圆 上的圆周角, ∴∠OPC=90°. ∴PC⊥OP. 又∵OP是⊙O的半径,PC经过 点C,∴PC就是所要作的切线. 同理,CP′也是所要作的切线.

《切线的判定》课件

《切线的判定》课件

在求解切点弦问题中的应用
切点弦方程
通过切点可以求出过该点的弦的方程,进而求出弦长或与弦 有关的量。
切点弦与切线的关系
利用切点弦与切线的关系,可以求解与切点弦有关的问题。
04 切线定理的证明
切线的判定定理的证明
切线的判定定理
如果一条直线与圆只有一个交点,则 这条直线是圆的切线。
证明方法
反证法。假设直线与圆有两个交点, 则直线与圆相交而非相切,与题目条 件矛盾。
利用切线的性质判定
切线的性质
切线与半径垂直,因此可以利用 这一性质判定切线。
判定方法
若直线与圆的半径垂直,则该直 线为圆的切线。
利用辅助线判定
辅助线的作法
在圆上任取一点,连接这点与圆心, 将连线与待判断的直线相交于一点, 然后过该点作直线的垂线,与圆相交 于另一点,连接圆心与该点。
判定方法
若所作的辅助线与待判断的直线重合 ,则该直线为圆的切线。
切线的判定定理
若直线与圆有交点,且连接交点和圆心的线段垂直于交点所连的直线,则该直线为圆的 切线。
证明过程
利用反证法,假设直线不是切线,则它与圆有两个交点,形成两个弦,由垂径定理可知 ,过圆心作弦的垂线,则这条垂线平分弦,但由题意知这条垂线同时也是连接圆心和切
点的线段,因此弦也被这条线平分,这与题意矛盾,因此假设不成立,直线为切线。
在三角函数中,切线定理可以用来求 解三角函数的值,或者用来证明某个 三角函数表达式等于零。
切线定理也可以用来求解三角函数的 单调性、周期性和最值等问题。
感谢您的观看
THANKS
如果一条直线与圆相交于两点,且 这两点与圆心构成的角平分线与该 直线垂直,则该直线是圆的切线。
切线定理在解析几何中的应用

切线证明的常用方法

切线证明的常用方法
圆与直线的公共点没有标明字母则过圆心作直线的垂线段为辅助线再证垂线段的长等于半径的长
优翼微课

初中数学知识点精讲课程
切线证明的常用方法
1、圆的切线的判定方法有三种: ①.定义法:直线l 与圆只有唯一的公共点 ②.距离法:圆心O与直线l 的距离d=r ③.切线的判定定理:经过半径的外端并且垂直于这条半径的直 线是圆的切线。 2、切线的证明方法: ①.圆与直线的公共点没有标明字母,则过圆心作直线的垂线段 为辅助线,再证垂线段的长等于半径的长。简记为:作垂直,证 半径。 ②.圆与直线的公共点标明字母,则连这个点和圆心得到辅助半 径,再证所作半径与这条直线垂直。简记为:连半径,证垂直。
典例精讲
类型一: 有切点,连半径,证垂直
如图,⊙O是△ABC的外接圆,BC为⊙O直径, 作∠CAD=∠B,且点D在BC的延长线上.求证: 直线AD是⊙O的切线.
典例精讲
类型一: 有切点,连半径,证垂直
证明:连结OA,如图, ∵BC为⊙O直径,∴∠BAC=90°, ∴∠B+∠ACB=90°, 而OC=OA,∴∠ACB=∠OAC, ∴∠B+∠OAC=90°, ∵∠CAD=∠B, ∴∠CAD+∠OAC=90°,即∠OAD=90°, ∴OA⊥AD, ∴直线AD是⊙O的切线.
变式练习
典例精讲
类型二:无切点,作垂直,证半径
例:如图,点O在∠APB的平分线上,⊙O与PA相切于点C. 求证:直线PB也与⊙切;
证明:过点O作OD⊥PB于点D,连接OC, ∵PA切⊙O于点C, ∴OC⊥PA, 又∵点O在∠APB的角平分线上, ∴OC=OD,即OD的长等于⊙O的半径, ∴PB与⊙O相切;
课堂小结
有切点,连半径, 证垂直
切线证明的常用 方法

数学专题-切线的证明与圆的计算

数学专题-切线的证明与圆的计算

专题一:圆的切线直线与圆相切是圆的重点,也是中考的热点.证明、判断或探究直线与圆相切的题目虽然很多,但是在这些众多的题目中,只有两个类型.►类型之一有公共点时,连接圆心与公共点,证垂直当要证明的直线与圆有公共点时,连接圆心与公共点,证明此半径与直线垂直,利用“经过半径的外端点并且垂直于这条半径的直线是圆的切线”可证明直线是圆的切线.1.如图所示,⊙O是△ABC的外接圆,点O在AB上,BD ⊥AB,B是垂足,OD∥AC,连接CD.求证:CD是⊙O的切线.证明:如图,连接CO.∵OD∥AC,∴∠COD=∠ACO,∠CAO=∠DOB.∵OC=OA,∴∠ACO=∠CAO,∴∠COD=∠BOD.又∵OD=OD,OC=OB,∴△COD≌△BOD,∴∠OCD=∠OBD=90°,∴OC⊥CD,∴CD是⊙O的切线.2.如图所示,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.[解析]要证明直线AB是⊙O的切线,由于直线AB与⊙O已有公共点C,所以连接OC,只需要证明OC⊥AB即可.证明:如图,连接OC.∵OA=OB,CA=CB,∴△OAB是等腰三角形,OC是底边AB上的中线,∴OC ⊥AB.∵AB经过半径OC的外端点C,∴AB是⊙O的切线(经过半径的外端点并且垂直于这条半径的直线是圆的切线).3.如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线.证明:(1)如图,连接AD.∵AB是⊙O的直径,∴∠ADB =90°.又∵BD=CD,∴AD是BC的垂直平分线.∴AB=AC.(2)如图,连接OD.∵点O,D分别是AB,BC的中点,∴OD∥AC.又∵DE⊥AC,∴OD⊥DE,∴DE为⊙O的切线.4.如图所示,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.求证:DE是⊙O的切线.证明:连接OD.∵OA=OD,∴∠OAD=∠ODA.∵AD是∠BAC的平分线,∴∠EAD=∠DAO,∴∠EAD=∠ADO,∴AE∥OD.又∵AE⊥DE,∴OD⊥DE,∴DE是⊙O的切线.5.如图所示,设AB为⊙O的直径,如果圆上的点D恰使∠ADC=∠B.求证:直线CD与⊙O相切.证明:连接OD.∵OB=OD,∴∠B=∠BDO.∵AB是⊙O的直径,∴∠ADB=90°,即∠ADO+∠ODB =90°.∵∠CDA=∠B=∠BDO,∴∠ADO+∠ADC=90°,即OD ⊥CD.∵CD经过半径OD的外端点D,∴CD是⊙O的切线(经过半径的外端点并且垂直于这条半径的直线是圆的切线).6.如图,在Rt△ABC 中,∠ABC=90°,以AB 为直径作半圆交AC 于点D,点E 为BC 的中点,连接DE.(1)求证:DE 是⊙O 的切线;(2)若∠BAC=30°,DE=2,求AD 的长.解:(1)证明:如图,连接OD,OE,BD.∵AB为⊙O 的直径,∴∠ADB=∠BDC=90°.在Rt△BDC 中,E 为斜边BC 的中点,∴DE=BE.在△OBE 和△ODE∴△OBE≌△ODE(SSS),∴∠ODE=∠ABC=90°,即OD⊥DE,故DE 为⊙O 的切线.(2)在Rt△ABC 中,∠BAC=30°,∴BC=12AC.∵BC=2DE =4,∴AC=8.又∵∠C=90°-∠A=60°,∠BDC=90°,∴∠DBC=30°,∴DC=12BC=2,则AD=AC-DC=6.►类型之二无公共点时,过圆心作垂线,证相等欲证直线与圆相切,当直线与圆无公共点时,过圆心作直线的垂线,证明垂线段的长等于圆的半径,利用“到圆心的距离等于圆的半径的直线是圆的切线”可以证明直线是圆的切线.7.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x 轴相离,与y 轴相切B.与x 轴、y 轴都相离C.与x 轴相切,与y 轴相离D.与x 轴、y 轴都相切[答案]A8.如图,在直角坐标系中,⊙O 的半径为1,则直线y =-2x+5与⊙O 的位置关系是()A.相离B.相交C.相切D.无法确定[解析]C 如图1-ZT-11所示,过O 作OC⊥直线AB,垂足为C,对于直线y=-2x+5,令x=0,解得y=5;令y=0,解得x=52,∴A(52,0),B(0,5),即OA=52,OB=5,∴在Rt△AOB 中,根据勾股定理得AB=OA 2+OB 2=52.又S △AOB =12AB·OC=12OA·OB,∴OC=OA·OB AB =52×552=1.又⊙O的半径为1,∴直线y=-2x+5与圆O的位置关系是相切.9.如图所示,△ABC为等腰三角形,AB=AC,O是底边BC的中点,⊙O与腰AB相切于点D.求证:AC与⊙O相切.证明:如图,连接OD,则OD⊥AB.过点O作OE⊥AC于点E.∵AB=AC,∴∠B=∠C.∵O是BC的中点,∴OB=OC.又∵∠BDO=∠CEO=90°,∴△BDO≌△CEO,∴OD=OE,∴AC与⊙O相切(到圆心的距离等于半径的直线是圆的切线).专题二:不规则图形的面积及曲线长的求法►类型之一用覆盖法求阴影图形的面积1.如图,在△ABC 中,AB=BC=2,∠ABC=90°,则图中阴影部分的面积是________.[答案]π-2[解析]∵在△ABC 中,AB=BC=2,∠ABC=90°,∴△ABC 是等腰直角三角形,∴S 阴影部分=S 半圆AB +S 半圆BC -S △ABC =12π×(22)2+12π×(222-12×2×2=π-2.2.如图所示,正方形的边长为2,以各边为直径在正方形内画半圆,则图中阴影部分的面积为________(结果用π表示).[答案]8-2π[解析]用四个半圆的面积减去正方形的面积求出空白部分的面积,再利用阴影部分的面积等于正方形的面积减去空白部分的面积计算.空白部分的面积=π2×4-2×2=2π-4,阴影部分的面积=2×2-(2π-4)=4-2π+4=8-2π.►类型之二用旋转求阴影图形的面积3.如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得到△AB′C′,点B 经过的路径为BB′︵,若∠BAC=60°,AC=1,则图中阴影部分的面积是()A.π2B.π3C.π4D.π[解析]A ∵在Rt△ABC 中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=1×3=3,AB=2AC=2.根据旋转的性质知△ABC≌△AB′C′,则S △ABC =S △AB′C′,AB =AB′,∴S 阴影=S 扇形BAB′+S △AB′C′-S △ABC =45π×22360=π2.4.当汽车在雨天行驶时,司机为了看清楚道路,要启动前方挡风玻璃上的雨刷器.如图是某汽车的一个雨刷器的转动示意图,雨刷器杆AB 与雨刷CD 在B 处固定连接(不能转动),当杆AB 绕点A 转动90°时,雨刷CD 扫过的面积如图所示,现量得:CD=80cm,∠DBA=20°,AC=115cm,DA =35cm,试从以上信息中选择所需要的数据,求出雨刷扫过的面积.解:由题意可知:△ABD≌△AB′D′,△ACD≌△AC′D′,且大扇形半径AC=115cm,小扇形半径AD=35cm,且圆心角都为直角,所以雨刷CD 扫过的面积为S 扇形CAC′-S 扇形DAD′=90π×1152360-90π×352360=π4×(115+35)×(115-35)=3000π(cm 2).答:雨刷扫过的面积为3000πcm 2.►类型之三用平移求阴影图形的面积5.如图是两个半圆,点O 为大半圆的圆心,AB 是大半圆的弦且与小半圆相切,且AB=24,求图中阴影部分的面积.[解析]将小圆向右平移,使之与大圆的圆心重合,阴影部分的面积等于大半圆面积减去小半圆面积.解:将小圆向右平移,使两圆变成同心圆,如图2-ZT -6所示,连接OB,过点O 作OC⊥AB 于点C,则AC=BC=12.∵AB 是大半圆的弦且与小半圆相切,∴OC 为小半圆的半径,∴S 阴影部分=S 大半圆-S 小半圆=12π·OB 2-12π·OC 2=12π(OB2-OC 2)=12πBC 2=72π.►类型之四用等积变形求阴影图形的面积6.如图所示,AB 是⊙O 的直径,弦CD⊥AB 于点E,∠CDB=30°,CD=23,则阴影部分图形的面积为()A.4πB.2πC.πD.2π3[解析]D 连接OD.∵CD⊥AB,∴CE=DE=12CD=3,故S △OCE =S △ODE ,则阴影部分的面积等于扇形BOD 的面积.又∵∠CDB=30°,∴∠BOD=60°,∴OB=2,故S 扇形BOD =60π×22360=2π3,即阴影部分的面积为2π3D.►类型之五用割补法求阴影图形的面积7.如图所示,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为________.[答案]2π-4[解析]连接AB.由题意,得阴影部分的面积=2(S 扇形AOB-S △OAB )=2(90π×22360-12×2×2)=2π-4.8.如图,AC⊥BC,AC=BC=4,以BC 为直径作半圆,圆心为O.以点C 为圆心,BC 为半径作弧AB,过点O 作AC 的平行线交两弧于点D,E,则阴影部分的面积是________.[答案]5π33[解析]连接CE.由题意,得∠ACB=90°,OB=OC=OD =2,BC=CE=4.又∵OE∥AC,∴∠ACB=∠COE=90°,∴在Rt△OEC 中,OE=23,cos∠OCE=OC CE =24=12,∴∠OCE=60°.∴S 阴影=S 扇形BCE -S 扇形BOD -S △OCE =60π×42360-14π×22-12×2×23=5π3-23.9.如图所示,OC 平分∠MON,点A 在射线OC 上,以点A 为圆心,半径为2的⊙A 与OM 相切于点B,连接BA 并延长交⊙A 于点D,交ON 于点E.(1)求证:ON 是⊙A 的切线;(2)若∠MON=60°,求图中阴影部分的面积(结果保留π).解:(1)证明:过点A 作AF⊥ON 于点F.∵⊙A 与OM 相切于点B,∴AB⊥OM.∵OC 平分∠MON,∴AF=AB=2,∴ON 是⊙A 的切线.(2)∵∠MON=60°,AB⊥OM,∴∠OEB=30°.∵AF⊥ON,∴∠FAE=60°.在Rt△AEF 中,EF=23,∴S 阴影=S △AEF -S 扇形DAF =12AF·EF-603602=23-23π.►类型之六用圆的周长公式计算曲线长10.如图所示,一枚直径为4cm的圆形古钱币沿着直线滚动一周,圆心移动的距离是()A.2πcm B.4πcmC.8πcm D.16πcm[解析]B∵一枚直径为4cm的圆形古钱币沿着直线滚动一周,∴圆心移动的距离等于圆的周长,即2π×42=4π(cm).►类型之七用弧长公式计算曲线长11.如图所示,△ABC 的边长都大于2,分别以它的顶点为圆心,1为半径画弧(弧的端点分别在三角形的相邻两边上),则这三条弧的长度之和是()A.4πB.3πC.6πD.5π[解析]D 三个圆的圆弧缺少的部分之和是∠A+∠B+∠C 360·2π·1=180360三个圆的周长为2π×1×3=6π,则这三条弧的长度之和是6π-π=5π.12.如图所示,三角板ABC中,∠ACB=90°,∠B=30°,BC=6.三角板绕直角顶点C逆时针旋转,当点A的对应点A′落在AB边上时立即停止转动,则点B转过的路径长为________.[答案]2π►类型之八用分步求和计算曲线长13.[安徽模拟]如图,一块等边三角形的木板,边长为1,现将木板沿水平线翻滚,那么B 点从开始至结束所走过的路径长度为________.[答案]4π3[解析]从图中发现,B 点从开始至结束所走过的路径长度为两段圆弧,第一段长120π×1180,第二段长120π×1180.故B 点从开始至结束所走过的路径长度=120π×1180+120π×1180=4π3.14.已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆做如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m,半圆的直径为4m,则圆心O 所经过的路线长是________m(结果用π表示).[答案](2π+50)[解析]由图2-ZT-16可知,圆心先向前走O 1O 2的长度,即14圆的周长,然后沿着O 2O 3︵旋转1450m,所以圆心总共走过的路程为圆周长的一半(即半圆)加上50m,由已知得圆的半径为2m,则半圆的弧长l=(90+90)×π×2180=2π(m),∴圆心O 所经过的路线长=(2π+50)m.15.如图所示,将一长为4cm,宽为3cm 的长方形木板在桌面上做无滑动翻滚(顺时针方向),木板上点A 的位置变化为A→A 1→A 2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A 翻滚到A 2位置时总共走过的路径长为多少?解:由图形知AA 1︵的圆心角为90°,半径为长方形的对角线长,为32+42=5(cm),从而求出AA 1︵的长为90π×5180=52π(cm).同理,A 1A 2︵的圆心角为60°,半径为3cm,从而求出A 1A 2︵的长为60π×3180=π(cm),从而得点A 翻滚到A 2位置时总共走过的路径长为52π+π=72►类型之九用转化的方法求曲线长16.如图所示,已知圆柱体底面的半径为2π,高为2,AB,CD 分别是两底面的直径,AD,BC 是母线.若一只小虫从点D 出发,从侧面爬行到点B,则小虫爬行的最短路线的长度是________(结果保留根号).[答案]22[解析]沿AD,BC 将圆柱侧面剪开,并展开得到矩形B 1C 1D 1A 1,如图2-ZT-19所示,B 1C 1=BC=2,A 1B 1=2×2π×π×12=2,B 1D 1=22+22=2 2.即小虫爬行的最短路线的长度是22.。

切线计算与证明范文

切线计算与证明范文

切线计算与证明范文切线是数学中一个重要的概念,在几何学和微积分中都有广泛的应用。

切线可以在曲线上的每一点处定义,它是曲线在该点处的局部近似线性化的结果。

切线在求解曲线性质和解决实际问题时起到了关键作用。

下面将详细介绍切线的计算和证明。

一、切线的计算:给定曲线y=f(x),我们要求曲线上一点(x0,y0)处的切线。

切线的斜率表示为k,可以通过以下步骤计算:1.求函数f(x)在点x0处的导数f'(x0);2.将x0代入函数f(x)得到y0;3.将x0和f'(x0)代入直线的斜截式方程y-y0=k(x-x0)中,得到切线的表达式。

例如,对于函数y=x^2,我们要求曲线上点(2,4)处的切线。

1.求函数f(x)=x^2在点x=2处的导数f'(x)。

函数f(x)的导数为f'(x)=2x,将x=2代入,得到f'(2)=42.将x0=2代入函数f(x)=x^2,得到y0=43.将x0=2和f'(2)=4代入直线的斜截式方程y-y0=k(x-x0),得到切线的表达式y-4=4(x-2)。

切线的表达式为y=4x-4,它通过点(2,4)且斜率为4,是曲线y=x^2在点(2,4)处的切线。

二、切线的证明:要证明一条直线为曲线的切线,必须满足两个条件:直线必须经过曲线上的一点,并且直线在该点处的斜率等于曲线在该点处的斜率。

设曲线的方程为y=f(x),要证明直线L通过曲线上的一点(x0,y0)且斜率等于曲线在该点的斜率。

1.证明直线L通过曲线上的一点(x0,y0):将点(x0,y0)代入直线L的方程,如果等式成立,则表明直线L通过曲线上的一点。

2.证明直线L的斜率等于曲线在该点的斜率:首先,设直线L的斜率为k。

根据直线的斜截式方程y-y0=k(x-x0),将x0代入y0,有y0=k(x0-x0)=0。

也就是说,直线L经过点(x0, y0)时,函数值为0。

因此,直线L的方程可以写为y=k(x-x0)+0。

专题复习与圆的切线有关的证明与计算剖析

专题复习与圆的切线有关的证明与计算剖析
线与该半径垂直,即“有交点,作半径,证垂直”.
(2)如果直线与圆没有明确的交点,则过圆心作该直线的垂 线段,证明垂线段等于半径,即“无交点,作垂直,证半径”.
有交点,连半径,证垂直
1.如图9所示,点O在∠APB的平分线上,⊙ O与PA相切 于点C. (1)求证:直线 PB与⊙O相切 (2)PO的延长线与⊙ O交于点E,若⊙O的半径为 3, PC=4. 求弦 CE 的长.
解:(1)如图,连结BD, ∵AB是⊙O直径, ∴∠ACB=∠ADB=90°. 在Rt △ABC中, ∵CD平分∠ACB,
AC= AB2-BC2= 102-62=8 cm.
︵︵ ∴AD=BD,∴ AD=BD.
∴Rt △ABD 为等腰直角三角形, AD=BD=5 2cm.
求证:AC是⊙ O的切线。
证明:过O作OE⊥AC于E
∵ AO平分∠BAC
OD⊥AB
∴ OE=OD
E
∵ OE是⊙O的半径
∴ AC是⊙O的切线
【教材原型 】
已知:如图, A是圆⊙O外一点,AO的延长线交⊙ O 于点C,点B在圆上,且 AB=BC,∠A=30°, 求证:直线 AB是⊙O的切线.
证明:连结OB,∵OB=OC,AB=BC, ∠A=30°, ∴∠OBC=∠C=∠A=30°, ∴∠AOB=∠C+∠OBC=60°. ∵∠ABO=180°-(∠AOB+∠A)
证明:( 1)如图 1,连接 OE , ∵OA=OE , ∴∠EAO=∠AEO, ∵AE平分∠ FAH, ∴∠EAO=∠FAE, ∴∠FAE=∠AEO, ∴AF∥OE, ∴∠AFE+∠OEF=180°, ∵AF⊥GF, ∴∠AFE=∠OEF=90°, ∴OE⊥GF, ∵点E在圆上, OE是半径, ∴GF是⊙O的切线.

证明圆的切线的七种常用方法-圆的切线证明7种方法

证明圆的切线的七种常用方法-圆的切线证明7种方法

证明圆的切线的七种常用方法证明一条直线是圆的切线的方法及辅助线的作法1、连半径、证垂直:当直线和圆有一个公共点时,把圆心和这个公共点连接起来,然后证明直线垂直于这条半径,简称“连半径,证垂直”2、作垂直,证半径:当直线和圆的公共点没有明确时,可以过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称“作垂直,证半径”类型一、有公共点:连半径,证垂直方法1、勾股定理逆定理法证垂直1.如图,AB为⊙O的直径,点P为AB延长线上一点,点C为圆⊙O上一点,PC=8,PB =4,AB=12,求证:PC是⊙O的切线.方法2、特殊角计算法证垂直2、如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求∠P的度数;(2)求证:P A是⊙O的切线;(3)若PD=5,求⊙O的直径.方法3、等角代换法证垂直3、如图,已知Rt △ABC 中,∠C =90°,D 为BC 的中点,以AC 为直径的⊙O 交AB 于点E 。

求证:DE 是⊙O 的切线;方法4、平行线性质法证垂直4、如图,已知平行四边形OABC 的三个顶点A 、B 、C 在以O 为圆心的半圆上,过点C 作CD ⊥AB ,分别交AB 、AO 的延长线于点D 、E ,AE 交半圆O 于点F ,连接CF .且︒=∠30E ,点B 是的中点(1)判断直线DE 与半圆O 的位置关系,并说明理由;(2)求证CF=OC(2)若半圆O 的半径为6,求DC 的长.方法5 全等三角形法证垂直5、如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,且四边形AOCD 是平行四边形,过点D 作⊙O 的切线,交OC 的延长线于点F ,连接BF ,求证:BF 是⊙O 的切线。

A B O D CF类型二、无公共点:做垂直,证半径方法6 角平分线的性质法证半径6.如图,在Rt △ABC 中,∠B =90°,∠BAC 的平分线交BC 于点D ,E 为AB 上的一点,DE =DC ,以D 为圆心,DB 长为半径作⊙D ,AB =5,EB =2.(1)求证:AC 是⊙D 的切线;(2)求线段AC 的长.方法7 全等三角形法证半径7.已知四边形ABCD 中,∠BAD =∠ABC =90°,CD BC AD =+,以AB 为直径的⊙O 。

切线定理的证明与应用解析

切线定理的证明与应用解析

切线定理的证明与应用解析切线定理,又称为切角定理,是解析几何中的一个重要定理,用于描述平面上一条曲线与其切线的关系。

本文将对切线定理的证明及其应用进行详细的解析。

一、切线定理的证明为了证明切线定理,我们首先需要了解什么是切线以及切线的性质。

在平面几何中,给定一条曲线和曲线上的一点P,过点P且与曲线仅有一个公共点的直线称为曲线在点P处的切线。

证明切线定理的关键是利用导数的概念和性质。

假设曲线的参数方程为x=f(t),y=g(t),其中f(t)和g(t)分别是x和y关于参数t的函数。

取曲线上一点P(x0,y0),并选取一条过P的切线L。

切线L的斜率可以表示为dy/dx。

由于切线仅与曲线在点P处相切,因此曲线上的其他点(x,y)也必须满足曲线方程g(x)-y=0与切线方程dy/dx(x-x0)-y+y0=0的联立条件。

通过解联立方程,我们可以得到一个关于dx和dy的方程。

对该方程进行一阶泰勒展开,可以得到一般形式的切线方程:dy/dx = [dy/dt] / [dx/dt] = g'(t) / f'(t)这个方程给出了曲线在任意一点处切线的斜率。

切线定理则是该定理的特殊情况,即当t=t0时的情况。

在切线上,有t=t0,因此切线方程简化为:dy/dx = g'(t0) / f'(t0)这个结果就是切线定理。

二、切线定理的应用切线定理在解析几何中有着广泛的应用。

下面我们将介绍切线定理在求曲线的切线、判定曲线凹凸性以及估算近似值等方面的应用。

1. 求曲线的切线通过切线定理,我们可以根据给定曲线的函数表达式,求出曲线在任意点处的切线方程。

我们只需要求出函数的导数,然后在给定点处代入即可得到切线的斜率。

再根据切线的斜率和经过给定点的条件,可以得到切线的方程。

2. 判定曲线的凹凸性对于曲线上的某一点P(x0,y0),切线定理可以用来判定该点所在的曲线的凹凸性。

如果切线的斜率dy/dx大于零,则该点位于曲线的上凸部分;若切线的斜率小于零,则该点位于曲线的下凸部分。

切线长定理公式及证明

切线长定理公式及证明

切线长定理公式及证明一、引言在数学中,切线是曲线上的一条特殊直线,它与曲线仅在一个点相切。

切线长定理是描述切线与半径的关系的重要定理,它可以帮助我们计算切线的长度。

本文将介绍切线长定理的公式及其证明过程。

二、切线长定理公式设直径为d的圆上的一条切线与半径的交点距离圆心的距离为x,则切线的长度L可以由以下公式表示:L = 2√(xd)三、切线长定理的证明为了证明切线长定理,我们首先需要了解一些基本的几何概念和性质。

1. 切线的定义与性质:在圆上的一点的切线是与该点相切且仅与该点相切的直线。

切线与半径垂直。

2. 平行四边形的性质:对于平行四边形,对角线互相平分。

现在开始证明切线长定理。

证明:设O为圆心,A为圆上的一点,C为切点,OB为半径,CD为切线。

由于切线与半径垂直,所以∠CDO为直角。

由平行四边形的性质可知,OD平分BC,即BO=OC。

设切点到圆心的距离为x,则BD=2x。

根据勾股定理,可以得到:BC^2 = BO^2 + OC^2(2x)^2 = x^2 + d^24x^2 = x^2 + d^23x^2 = d^2x^2 = d^2/3x = √(d^2/3)x = d/√3再根据切线长公式可以得到:L = 2√(xd)L = 2√(d * d/√3)L = 2√(d^2/√3)L = 2 * d/√3L = (2√3/3) * d切线长定理得到证明。

四、应用举例切线长定理在几何问题的解决中有很多应用,我们来看一个例子。

例:已知圆的直径为10 cm,求切线的长度。

解:根据切线长定理,可以直接套用公式,得到:L = (2√3/3) * dL = (2√3/3) * 10L ≈ 11.54 cm所以,切线的长度约为11.54 cm。

五、总结切线长定理是描述切线与半径的关系的重要定理,它可以帮助我们计算切线的长度。

通过证明过程,我们可以看到切线长定理的推导过程是基于几何性质和勾股定理的。

切线长定理在解决几何问题中有广泛的应用,可以帮助我们快速计算切线的长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

切线的证明及计算1.如图,已知AB 是☉O 的直径,弦AC 平分∠DAB ,过点C 作直线CD ,使得CD ⊥AD 于D .(1)求证:直线CD 与☉O 相切;(2)若AD =3,AC =23,求直径AB 的长.2.如图,☉O 的圆心在Rt△ABC 的直角边AC 上,☉O 经过C 、D 两点,与斜边AB 交于点E ,连接BO 、ED ,有BO∥ED ,作弦EF ⊥AC 于G ,连接DF .(1)求证:CO ·CD =DE ·BO ;(2)若☉O 的半径为5,sin∠DFE =53,求EF 的长.3.如图,已知AB 是☉O 的直径,C 是☉O 上的点,且OE ⊥AC 于点E ,过点C 作☉O 的切线,交OE 的延长线于点D ,交AB 的延长线于点F ,连接AD .(1)求证:AD 是☉O 的切线;第1题图第2题图第3题图(2)若cos∠BAC=54,AC =8,求线段AD 的长.4.如图,AB 为☉O 的直径,点C 在☉O 上,点P 是直径AB 上的一点,(不与A ,B 重合),过点P 作AB 的垂线交BC 的延长线于点Q .(1)点D 在线段PQ 上,且DQ =DC ,求证:CD 是☉O的切线;(2)若sin∠DFE =53,BP =6,AP =2,求QC 的长.5.如图,AB 是☉O 的直径,AC 是☉O 的切线,BC 与☉O 相交于点D ,点E 在☉O 上,且DE =DA ,AE 与BC 相交于点F .(1)求证:FD =DC ;(2)若AE =8,DE =5,求☉O 的半径.6.如图,AB 为☉O 直径,C 是☉O 上一点,CO ⊥AB 于点O ,第4题图第5题图弦CD 与AB 交于点F ,过点D 作∠CDE ,使∠CDE =∠DFE ,DE 交AB 的延长线于点E ,过点A 作☉O 的切线交ED 的延长线于点G .(1)求证:GE 是☉O 的切线;(2)若OA =2,∠G =50〫,求AD 的长;(3)若OF :OB =1:3,BE =4,求OB 的长.第6题图7.如图,点D 为☉O 上的一点,点C 在直径BA 的延长线上,并且∠CDA =∠CBD .(1)求证:CD 是☉O 的切线;(2)过点B 作☉O 的切线,交CD 的延长线于点E ,若BC =12,tan∠CDA =32,求BE 的长.第7题图8.如图,PA 为☉O 的切线,A 为切点.过A 作OP 的垂线AB ,垂足为点C,交☉O于点B.延长BO与☉O交于点D,与PA的延长线交于点E.(1)求证:PB为☉O的切线;a)若OC=1,AB=23,求图中阴影部分的面积S;(2)若OCOP=41,求sin E的值.9.如图,AB是☉O的直径,BC为☉O的切线,D为☉O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为☉O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)第9题图10.如图,△ABC内接于半圆,圆心为O,AB是直径,过A 作直线MN,若∠MAC=∠ABC.(1)求证:MN是半圆的切线;(2)设D是弧AC的中点,连接BD交AC于点G,过D第8题图作DE ⊥AB 于点E ,交AC 于点F.求证:DE =21AC ;(3)在(2)的条件下,若△DFG 的面积为S ,且DG =a ,GC =b,试求△BCG 的面积.(用a 、b 、s 的代数式表示)第10题图参考答案1.(1)证明:如解图,连接OC.∵OA =OC,∴∠OAC =∠OCA,∵AC 平分∠DAB,∴∠DAC =∠OAC,∴∠DAC =∠OCA,∴OC∥AD,∵AD ⊥CD,∴OC ⊥CD,又∵OC 是⊙O 的半径,∴直线CD 与⊙O 相切于点C ;(2)解:连接BC ,则∠ACB =90°.∵∠DAC =∠OAC ,∠ADC =∠ACB =90°,∴△ADC ∽△ACB ,∴AD AC =AC AB,∴AB =2AC AD=3322)(=4.2.(1)证明:如解图,连接CE ,∵CD 为⊙O 的直径,∴∠CED =90°,∵∠BCA =90°,∴∠CED =∠BCA ,∵BC∥DE ,∴∠BOC =∠CED ,∴△CBO ∽△ECD ,第2题解图第1题解图∴DE OC =CDBO,∴OC ·CD =DE ·BO ;(2)解:∵∠F =∠ECO ,CD =2·OC =10;由于CD 为⊙O 的直径,∴在Rt△CDE 中有:ED =CD ·sin∠ECO =CD ·sin∠DFE =,65310=⨯CE =22ED CD -=22610-=8,在Rt△CEG 中,EG =sin∠ECO =3,∴EG =3×8=24,根据垂直定理得:EF =2EG =548.3.(1)证明:连接OC ,如解图所示,∵DC 是⊙O 的切线,∴OC ⊥DF ,∴∠OCD =90°,∵OC =OA ,OE ⊥AC ,∴∠COD =∠AOD ,在△OAD 和△OCD 中,OA OC AOD COD OD OD =⎧⎪∠=∠⎨⎪=⎩,∴△COD≌△AOD (SAS),第3题解图∴∠OAD =∠OCD =90°,∵OA 为⊙O 的半径,∴AD 是⊙O 的切线;(2)解:∵∠OAD =90°,AC ⊥OD ,∴∠ODA =∠BAC ,AE =CE =21AC =4,在Rt△ADE 中,cos∠BAC =cos∠ADE =DE AD=54,∴设DE =4x ,AD =5x ,则AE =3x =4,∴x =34,AD =320.4.(1)证明:如解图,连接OC .∵DQ =DC ,∴∠Q =∠QCD ,∵OC =OB ,∴∠B =∠OCB .∵QP ⊥BP ,∴∠QPB =90〫即∠B +∠Q =90〫,∴∠QCD +∠OCB =90〫,∴∠OCD =90〫,∵OC 为⊙O 的半径,∴CD ⊥OC ,即CD 是⊙O 的切线;(2)解:如解图,作OH⊥BC,H 为垂足.第4题解图∵BP =6,AP =2,∴AB=8,OB=12AB=4.在Rt△BQP中,sinQ=635 BPBQ BQ==,∴BQ=10,cos∠B=sin∠Q=3 5,∴BH=12 5.∵OH⊥BC,∴BC=2BH=2×125=245,∴CQ=BQ-BC=26 5.5.(1)证明:∵AC是⊙O的切线,∴BA⊥AC∴∠2+∠BAD=90°,∴AB是☉O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∴∠B=∠2,∵DA=DE,∴∠1=∠E,而∠B=∠E,∴∠B=∠1,∴∠1=∠2,∴AF=AC,而AD⊥CF,∴FD=DC;(2)解:如解图,作DH⊥AE于点H,∵DA =DE =5,∴AH =EH =21AE =4,在Rt△DEH 中,DH =22EH DE =3,∵∠B =∠E ,∠ADB =∠DHE =90°,∴△BDA ∽△EHD ,∴DE AB =DH AD ,即5AB =35,∴AB =325,∴☉O 的半径为625.6.(1)证明:如解图,连接OD ,∵∠1=∠2,而∠2=∠3,∴∠3=∠1,∵OC ⊥AB ,∴∠3+∠C =90〫,∴∠1+∠C =90〫,而OC =OD ,∴∠C =∠4,∴∠1+∠4=90〫,即∠ODE =90〫,∴OD ⊥DE ,∴GE 是⊙O 的切线;(2)解:∵AG 为切线,∴AG ⊥AB ,∴∠OAG =90〫,而∠ODG =90〫,第5题解图第6题解图∴∠AOD =180〫-50〫=130〫,∴ AD 的长=130213=1809⋅⋅ππ;(3)解:设OF =x ,则OB =3x ,∴BF =2x ,∵∠1=∠2,∴ED =EF =2x +4,在Rt△ODE 中,∵222OD DE OE +=,∴222(3)(24)(43)x x x ++=+,解得x =2,∴OB =3x =6.7.(1)证明:如解图,连接OD ,OE ,∵AB 为直径,∴∠ADB =90°,即∠ADO +∠1=90°,又∵∠CDA =∠CBD ,而∠CBD =∠1,∴∠1=∠CDA ,∴∠CDA +∠ADO =90°,即∠CDO =90°,∴CD 是⊙O 的切线;(2)解:∵EB 为⊙O 的切线,∴ED =EB ,OE ⊥DB ,∴∠ABD +∠DBE =90°,∠OEB +∠DBE =90°,∴∠ABD =∠OEB ,∴∠CDA =∠OEB .而tan∠CDA =32,∴tan∠OEB =OB =2,第7题解图∵Rt△CDO ∽Rt△CBE ,∴CB CD =BE OD =BE OB =32,∴CD =32×12=8,在Rt△CBE 中,设BE =x ,∴()28+x =2212+x ,解得x =5.即BE 的长为5.8、(1)证明:连接OA ,∵PA 为⊙O 的切线,∴∠PAO =90°,∵OA =OB ,OP ⊥AB 于点C ,∴BC =CA ,PB =PA ,∴△PBO ∽△PAO ,∴∠PBO =∠PAO =90°,∴PB 为⊙O 的切线.(2)解:∵OP ⊥AB ,∴BC =AC =3,第8题解图在Rt△OBC 中,由tan∠BOC =3知,∠BOC =60°,则∠BOA =120°,OB =2,∴∠DOA=60°,∵PA 为⊙O 的切线,∴∠OAE=90°,∴∠E=30°,又∵OA=OB=2,∴AE=23,∴OEA ODA S S S -=扇形△=21×2×23-260π2360⨯=23-2π3.(3)解:连接AD ,∵BD 是直径,∠BAD =90°,由(1)知∠BCO =90°,∴AD∥OP ,∴△ADE ∽△POE ,∴EP EA=OP AD,∵AD∥OC ,∴AD =2OC ,∵OP OC=41,∴OP =4OC ,设OC =t,则AD =2t,OP =4t,∴EP EA=OP AD =21,∴EA =AP ,∴EP =2PA ,∵PA =PB ,∴EP =2PB ,∴sin E =EP PB=21.9.(1)证明:连接OD ,∵BC 是⊙O 的切线,∴∠ABC =90°,第9题解图∵CD =CB ,∴∠CBD =∠CDB ,∵OB =OD ,∴∠OBD =∠ODB ,∴∠ODC =∠ABC =90°,即OD ⊥CD ,∵点D 在⊙O 上,∴CD 是⊙O 的切线;(2)证明:如解图,∠DOE =∠ODB +∠OBD =2∠DBE ,由(1)得:OD ⊥EC 于点D ,∴∠E +∠C =∠E +∠DOE =90°,∴∠C =∠DOE =2∠DBE ;(3)解:作OF ⊥DB 于点F,连接AD ,由EA =AO 可得:AD 是Rt△ODE 斜边的中线,∴AD =AO =OD ,∴∠DOA =60°,∴∠OBD =30°,又∵OB =AO =2,OF ⊥BD ,∴OF =1,BF =3,∴BD =2BF =23,∠BOD =180°-∠DOA =120°,∴-BOD OBD S S S =阴影△扇形=21202360π⨯-21×23×1=43π-3.10.(1)证明:∵AB 是直径,∴∠C =90°,∴∠CBA +∠BAC =90°,又∵∠MAC =∠ABC ,∴∠MAC +∠CAB =90°,即∠BAM =90°,∴OA ⊥MN ,∴MN 是⊙O 的切线;(2)证明:连接OD 交AC 于H ,∵D 是AC 的中点,∴OD ⊥AC ,AH =21AC ,∵∠DOE =∠AOH ,∠OHA =∠OED =90°,OA =OD ,∴△OAH ∽△ODE ,∴DE =AH =21AC ;(3)解:连接AD ,由(2)知△OAH ∽△ODE ,∴∠ODE =∠OAH ,又∵OA =OD ,∴∠ODA =∠OAD ,∴∠ODA -∠ODE =∠OAD -∠OAH ,即∠FDA =∠FAD ,∴FD =FA ,∵AB 是直径,∴∠BDA=90°∴∠FDA +∠GDF =90°,∠DAF +∠DGF =90°,∴∠GDF =∠DGF ,∴FG =DF ,∴FG =FA =FD ,∴DGF S △=21ADG S △,易证△BCG ∽△ADG ,∴BCG S △:ADG S △=2⎪⎭⎫ ⎝⎛DG CG =2⎪⎭⎫⎝⎛a b ,第10题解图H∴BCG S △=222aS b .下载路径:万唯教育官网→下载专区→万唯书外书→面对面→兰州。

相关文档
最新文档