行走机器人运动结构特性分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第19卷第3期湖 北 工 学 院 学 报2004年6月
V ol.19N o.3 Journal of H ubei Polytechnic U niversity Jun.2004
[收稿日期]2004-03-01
[作者简介]段成龙(1980-),男,湖北武汉人,中国地质大学(武汉)硕士研究生,研究方向:机械设计及理论.
[文章编号]1003-4684(2004)0620017202
行走机器人运动结构特性分析
段成龙,张 萌
(中国地质大学机械与电子工程学院,湖北武汉430074)
[摘 要]介绍了行走机器人的发展、分类、结构和运动特性,并详细叙述了几种典型的机器人行走机构和特
点,最后介绍采用U G 设计软件对机器人结构设计的模拟仿真.[关键词]机器人;行走机构;仿真[中图分类号]TP24[文献标识码]:A
行走机器人是机器人学中的一个重要分支.关于行走机器人的研究涉及许多方面,首先,要考虑移动方式,可以是轮式的、履带式的和腿式的等.其次,必须考虑驱动器的控制,以使机器人达到期望的行为.第三,必须考虑导航或路径规划.因此,行走机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合系统.
1 行走机器人的结构设计技术发展现
状
机器人的机械结构形式的选型和设计,应该根据实际需要进行.在机器人机构方面,应当结合机器人在各个领域及各种场合的应用,开展丰富而富有创造性的工作.对于行走机器人,研究能适应地上、地下、水中、空中、宇宙等作业环境的各种移动机构.
当前,对足式步行机器人、履带式和特种机器人研究较多,但大多数仍处于实验阶段,而轮式移动机器人由于其控制简单,运动稳定和能源利用率高等特点,正在向实用化迅速发展,从阿波罗登月计划中的月球车到美国最近推出的NASA 行星漫游计划中的六轮采样车,从西方各国正在加紧研制的战场巡逻机器人、侦察车到新近研制的管道清洗检测机器人,都有力地显示出行走机器人正在以其使用价值和广阔的应用前景而成为智能机器人发展的方向之一.
2 几种行走机器人行走机构特点
2.1 轮式行走机器人
轮式行走机器人是机器人中应用最多的一种机
器人,滚轮由电机直接驱动,它一般是将具有独立驱动装置、换向装置和制动装置的滚轮安装在由电机驱动的腿结构的末端,这些机构和装置在增强了行走机器人可操作性能的同时,也增加了机器人的重量,一定程度上限制了其机动性能.图1所示机器人是一种特殊的轮式机器人从动轮式机器人
.
从动轮式机器人作为特殊的轮式机器人,其滚轮是作为从动轮,滚轮上无任何附加主动力,通过水平连杆、垂直连杆和滚轮的协调动作,利用滚轮受到的法向摩擦力远大于切向力的特点,可以使系统受到的摩擦力合力指向前方,产生机器人驱动力,驱动机器人运动.从动轮式机器人可实现多种运动姿态,其功能相当于万向轮式行走机器人,具有较大的灵活性[1].
该机器人是由四个装有滚轮的机械腿和机器人本体构成.每个腿有水平连杆和垂直连杆构成,四个腿协调运动.每个机械腿分别有两个直流控制电机驱动.第一个电机控制水平连杆的前后摆动,另一个电机控制垂直连杆内外摆动.根据运动形式,确定四个腿的水平连杆的初始摆角,通过四个腿上的水平连杆和垂直连杆的协调动作,可以调节机器人所受合力的大小和方向,使机器人按要求的路径滑行.
2.2 履带式行走机器人
履带式行走机器人的行走机构支撑面积大,接地比压小,适合于松软或泥泞场地作业,下陷小,滚动阻力小,对路况具有较强的适应性,常见于军用机器人.履带行走方式具有爬坡能力强、承载能力大的特点,因此也常被设计成某些民用机器人.
图2所示机器人是一种特殊的履带式机器人四周履带式机器人的履带结构
.
该机器人采用四周履带驱动,并且多节串连,除可实现一般的直线移动和曲线移动外,还能在爬坡、越障、翻倒、翻滚、严重歪斜以致侧面受阻的状态下继续移动,它的移动状态比较特殊,其一般的曲线和直线移动相对较少,较多的情况则是在侧翻或倾覆状态、机身两面着地或者前后节相互扭转时的移动;在过沟或过台阶的情况下首节抬头越障时的移动.考虑到情况的复杂性,所以借鉴仿生学原理,采用四周履带行走机构,微电机驱动,整机的行走既可协调控制,又可各节单独控制,如整机中的某一节因倾斜而导致侧面受阻时,通过倾斜传感器控制侧面履带工作,从而使各节之间的推拉作用和履带控制转向的灵活性得到充分发挥,在抬头机构的协调作用下实现适应复杂地形的蛇形移动和整机翻滚移动的功能.
该移动机器人整机结构采用多节串联构成(一般不少于3节),每一节都可以单独控制并自行移动,其本身又是由几个独立的履带驱动单元构成四周履带驱动机构.整机主要由行走系、传动系、绞接系、抬头系4部分组成.节与节之间采用广义万向节结构相连;首末2节各有一套柔性抬头机构[2].
2.3 足式行走机器人
根据调查,在地球上近一半的地面不适合于传统的轮式或履带式车辆行走.但是一般多足动物却能在这些地方行动自如,显然足式与轮式及履带式行走方式相比具有独特的优势.足式行走对崎岖路面具有很好的适应能力,足式运动方式的立足点是离散的点,可以在可能到达的地面上选择最优的支撑点,而轮式运载工具必须面临最坏的地形上的几乎所有点.足式运动方式还具有主动隔振能力[3].尽管地面高低不平,机身的运动仍然可以相当平稳.足式行走在不平地面和松软地面上的运动速度较高,能耗较少.足式机器人种类繁多,有单腿跳跃型、四腿移动型、仿生多足爬行类,以及高级的仿人双腿行走型等.
3 行走机器人的仿真研究
Unigraphics (简称U G )是目前先进的CAD 软
件.该软件可以用来模拟各种机器设备的工作、运动状态,从而验证设备结构设计及参数设定的正确性和优化性.将U G 设计软件应用于机器人行走机构设计中,可以对机器人建立三维几何模型,实现可视化的运动过程模拟.同时,运用其本身的模块可进行一般的运动仿真,如将其模型用Parasolid 导入到ADAM 软件,则可进行更加详细和复杂的运动不和动力学分析.
[ 参 考 文 献 ]
[1] 李金良.混合机构式机器人的动力学建模及参数变化
[J ].机械科学与技术,2003,6(6):22-24.
[2] 江 浩.新型移动机器人的结构设计[J ].应用科技,
2002,3(3):56-58.
[3] 殷际英.关节型机器人[M ].北京:化工工业出版社,
2003.
Movement Characteristic Analysis of R obot
and Movement Emulation
DUAN Cheng 2long ,ZHAN G Meng
(Faculty of Mechanical &Elect ronic Engi n.,Chi na U niv.of Geosciences ,W uhan 430074,Chi na )
Abstract :The development of the robot and its classification ,structure and movement characteristics are introd 2uled and walking structure of several kinds of typical robots and their characterisistcs are described in detail U G software is applied to the emulation of the fobit structual design K eyw ords :robot ;walking structure ;emulation
[责任编辑:张培炼]
8
1湖 北 工 学 院 学 报 2004年第3期