传感器的分类及应用论文.
关于传感器的论文

传感器关键字:光电效应 光电元件 光电特性 传感器分类 传感器应用 摘要:在科学技术高速发展的现代社会中,人类已经入瞬息万变的信息时代,人们在日常生活,生产过程中,主要依靠检测技术对信息经获取、筛选和传输,来实现制动控制,自动调节,目前我国已将检测技术列入优先发展的科学技术之一。
由于微电子技术,光电半导体技术,光导纤维技术以及光栅技术的发展,使得光电传感器的应用与日俱增。
这种传感器具有结构简单、非接触、高可靠性、高精度、可测参数多、反应快以及结构简单,形式灵活多样等优点,在自动检测技术中得到了广泛应用,它一种是以光电效应为理论基础,由光电材料构成的器件。
正文:一、理论基础——光电效应光电效应一般有外光电效应、光导效应、光生伏特效应。
光照在照在光电材料上,材料表面的电子吸收的能量,若电子吸收的能量足够大是,电子会克服束缚脱离材料表面而进入外界空间,从而改变光电子材料的导电性,这种现象成为外光电效应根据爱因斯坦的光电子效应,光子是运动着的粒子流,每种光子的能量为hv(v 为光波频率,h 为普朗克常数,h =6.63*10-34 J/HZ),由此可见不同频率的光子具有不同的能量,光波频率越高,光子能量越大。
假设光子的全部能量交给光子,电子能量将会增加,增加的能量一部分用于克服正离子的束缚,另一部分转换成电子能量。
根据能量守恒定律:式中,m 为电子质量,v 为电子逸出的初速度,A 微电子所做的功。
由上式可知,要使光电子逸出阴极表面的必要条件是h>A 。
由于不同材料具有不同的逸出功,因此对每一种阴极材料,入射光都有一个确定的频率限,当入射光的频率低于此频率限时,不论光强多大,都不会产生光电子发射,此频率限称为“红限”。
相应的波长为 式中,c 为光速,A 为逸出功。
当受到光照射时,吸收电子能量,其电阻率降低的导电现象称为光导效应。
它属于内光电效应。
当光照在半导体上是,若电子的能量大与半导体禁带的能级宽度,则电子从价带跃迁到导带,形成电子,同时,价带留下相应的空穴。
传感器应用与原理论文

传感器一、传感器分类在高中物理选修3—2第六章中,介绍了关于传感器方面的知识。
我们通过学习并发现生活中的传感器的种类有很多,比如:光敏传感器—视觉,声敏传感器—听觉,气敏传感器—嗅觉,化学传感器—味觉,压敏、温敏、流体传感器—触觉等。
传感器的分类可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。
根据传感器工作原理,可分为物理传感器和化学传感器二大类传感器。
随着社会的进步,时代的发展,科技的创新,传感器已经步入人类的生活中。
在家庭中所具有的电视遥控器、空调遥控器、声控灯等的内部构造都具有不同形式的传感器。
它们都在随着人类的需要不断的在更新,在创新!在学习中,我们了解到,传感器是的原理大多数是将被测量的非电学量转换成模拟电信号,从而达到人们所需要的效果。
传感器使能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换成为电压、电流等电学量,或转换成为电路的通断这样一类的元件。
在课本中介绍了光敏电阻,热敏电阻,金属热电阻等传感器。
二、传感器的原理角度位移速度电压压力 传感器 电流温度 电阻湿度 电容声强光照非电学量→敏感元件→转换器件→转换电路→电学量生活中力传感器的工作电路简图:测物体质量 应变式加速度计电饭锅的结构 话筒构造及原理四、霍尔元件1、霍尔元件的工作原理: 所谓霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。
金属的霍尔效应是1879年被美国物理学家霍尔发现的。
当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。
半导体中的霍尔效应比金属箔片中更为明显,而铁磁金属在居里温度以下将呈现极强的霍尔效应。
UH=KIB/d其中,d为薄片的厚度,k为霍尔系数,它的大小与薄片的材料有关。
一个霍尔元件的d、k 为定值,再保持I恒定,则UH的变化就与B成正比。
传感器的原理及其应用论文范文

传感器的原理及其应用1. 介绍本文将介绍传感器的原理和其在各个领域的应用。
传感器是一种用于检测和测量环境中各种物理量的设备。
它们广泛应用于工业、医疗、环境保护、军事等领域。
本文将首先介绍传感器的工作原理,然后详细讨论传感器在不同领域的应用。
2. 传感器的工作原理传感器的工作原理基于各种物理现象,如光电效应、热敏效应、压电效应等。
以下是几种常见的传感器工作原理:2.1 光电传感器光电传感器利用光电效应测量光的强度和特性。
当光照射到光电传感器上时,光会激发光电元件内的电子,产生电流。
通过测量电流的大小,可以得知光的强度和特性。
光电传感器广泛应用于自动化控制、安防和光通信等领域。
2.2 温度传感器温度传感器根据物质的热敏性质来测量温度。
常见的温度传感器包括热电偶和热电阻。
热电偶利用两种不同金属的电极在不同温度下产生电势差,从而测量温度。
热电阻则根据电阻值随温度变化的特性来测量温度。
温度传感器广泛应用于气象、工业过程控制和家用电器等领域。
2.3 压力传感器压力传感器用于测量压力的大小。
它们通过将压力转化为力或位移,再测量这些参数来得知压力。
常见的压力传感器包括电阻应变式传感器和压电传感器。
电阻应变式传感器根据压力引起的电阻变化来测量压力。
压电传感器则利用压电效应,将压力转化为电荷来测量压力。
压力传感器广泛应用于工业自动化、汽车、航空航天等领域。
2.4 气体传感器气体传感器用于检测环境中的气体浓度。
常见的气体传感器包括气敏传感器和红外线传感器。
气敏传感器基于物质与气体之间的化学反应来测量气体浓度。
红外线传感器利用气体对红外线的吸收特性来测量气体浓度。
气体传感器广泛应用于空气质量监测、工业过程控制和燃气检测等领域。
3. 传感器的应用传感器在各个领域都有广泛的应用。
以下是几个领域中传感器的应用示例:3.1 工业控制在工业控制中,传感器被用于监测和控制生产过程中的各种参数。
例如,温度传感器可用于监测设备和物料的温度,以确保生产过程的稳定性。
传感器原理以及应用的论文

传感器原理以及应用1. 介绍传感器是一种能够感知和测量环境中各种物理量和化学量的设备或装置,广泛应用于工业、农业、医疗和消费电子等领域。
本文将介绍传感器的工作原理以及其在不同领域的应用。
2. 传感器的工作原理传感器的工作原理基于不同的物理效应,常见的工作原理包括电阻、电容、电感、磁阻、热敏、光敏、声敏和化学敏感等。
2.1 电阻传感器电阻传感器是基于材料的电阻随外界物理量变化而变化的原理工作的。
常见的电阻传感器包括压力传感器、温度传感器和光敏电阻等。
2.2 电容传感器电容传感器是基于材料的电容随外界物理量变化而变化的原理工作的。
常见的电容传感器包括湿度传感器和接近传感器等。
2.3 电感传感器电感传感器是基于材料的电感随外界物理量变化而变化的原理工作的。
常见的电感传感器包括接近传感器和速度传感器等。
2.4 磁阻传感器磁阻传感器是基于材料的磁阻随外界物理量变化而变化的原理工作的。
常见的磁阻传感器包括磁力传感器和角度传感器等。
2.5 热敏传感器热敏传感器是基于材料的电阻随温度变化而变化的原理工作的。
常见的热敏传感器包括温度传感器和热流量传感器等。
2.6 光敏传感器光敏传感器是基于材料的电阻或电压随光线强度变化而变化的原理工作的。
常见的光敏传感器包括光电传感器和光纤传感器等。
2.7 声敏传感器声敏传感器是基于材料的电阻或电压随声音强度变化而变化的原理工作的。
常见的声敏传感器包括声压传感器和声音传感器等。
2.8 化学敏感传感器化学敏感传感器是基于材料的电阻或电压随化学物质浓度变化而变化的原理工作的。
常见的化学敏感传感器包括气体传感器和化学传感器等。
3. 传感器的应用传感器在各个领域都有广泛的应用,以下列举了一些常见的应用场景。
3.1 工业自动化•温度传感器用于监测和控制工业过程中的温度变化。
•压力传感器用于测量液体或气体的压力,用于流量控制和工艺控制。
•光电传感器用于检测和计数生产线上的物体,实现自动包装和分拣。
传感器 毕业论文

传感器毕业论文传感器毕业论文近年来,随着科技的快速发展和人们对智能化生活的追求,传感器作为一种重要的技术手段,逐渐成为了人们生活中不可或缺的一部分。
传感器可以将各种物理量、化学量或生物量转化为电信号,从而实现对环境的感知和监测。
在工业、医疗、农业等领域,传感器的应用越来越广泛,其重要性也日益凸显。
一、传感器的概念和分类传感器是一种能够感知并测量物理量、化学量或生物量的装置。
根据其测量原理和应用领域的不同,传感器可以分为多种类型,如温度传感器、压力传感器、光学传感器、生物传感器等。
每种传感器都有其独特的特点和应用场景。
二、传感器的工作原理和应用传感器的工作原理主要包括感知、转换和输出三个环节。
感知环节通过感知元件将被测量的物理量转化为电信号;转换环节将电信号转化为可供测量的形式;输出环节将测量结果以可读取或可处理的形式输出。
传感器的应用非常广泛,例如在工业生产中,传感器可以用于测量温度、压力、流量等参数,实现对生产过程的监控和控制;在医疗领域,传感器可以用于监测患者的生命体征,如心率、血压等,为医生提供准确的数据支持;在农业领域,传感器可以用于监测土壤湿度、气候变化等,帮助农民科学管理农田。
三、传感器的发展趋势和挑战随着科技的不断进步,传感器也在不断发展和演进。
未来的传感器将更加小型化、智能化和多功能化。
例如,微纳传感器的出现使得传感器可以更加精确地感知微小的物理量;智能传感器的出现使得传感器可以进行数据处理和分析,实现自动化控制和决策;多功能传感器的出现使得传感器可以同时感知多种物理量,提高传感器的综合性能。
然而,传感器的发展也面临着一些挑战。
例如,传感器的功耗问题,尤其是对于无线传感器网络而言,如何降低传感器的功耗,延长其使用寿命,是一个亟待解决的问题;另外,传感器的数据安全问题也需要引起重视,如何保护传感器所采集的数据不被恶意攻击和篡改,是一个重要的研究方向。
四、传感器在智能城市建设中的应用随着城市化进程的加快,智能城市建设成为了未来城市发展的重要方向。
温度传感器论文 (2)

温度传感器论文摘要本论文研究了温度传感器在工业自动化领域中的应用。
首先介绍了温度传感器的原理和分类。
然后详细讨论了温度传感器在自动化控制系统中的作用。
接着探讨了温度传感器的性能指标以及影响温度传感器精度的因素。
最后,通过实验验证了温度传感器的可靠性和精度。
引言温度是一个重要的物理量,在工业生产和实验研究中具有广泛的应用。
温度传感器作为测量温度的主要工具,其在工业自动化领域中起到了至关重要的作用。
本论文旨在研究温度传感器的原理和应用,以及其在自动化控制系统中的作用。
温度传感器的原理和分类温度传感器是一种能够将物理量(温度)转换成电信号的装置。
根据原理的不同,温度传感器可以分为电阻式温度传感器、热电偶和热敏电阻等多种类型。
电阻式温度传感器电阻式温度传感器是利用材料的温度对电阻值产生影响的原理来测量温度的。
常见的电阻式温度传感器有铂电阻温度传感器(PT100)、铜电阻温度传感器(CT100)等。
其中,PT100是一种常用的高精度温度传感器,广泛应用于温度测量领域。
热电偶热电偶是利用两种不同金属的热电效应来测量温度的。
它由两段不同金属的导线组成,两段导线的接触处称为冷端,另一端则称为热端。
当热电偶的热端与被测温度相接触时,产生的温差会在电压表上显示出热电动势,进而推算出温度。
热敏电阻热敏电阻是指在不同温度下电阻值发生变化的电阻。
常见的热敏电阻有二极管热敏电阻和热敏电阻。
热敏电阻的工作原理是基于半导体材料的特性,通过测量电阻值来间接反映温度。
温度传感器在自动化控制系统中的作用温度传感器在自动化控制系统中扮演着非常重要的角色。
它可以实时感知环境温度,并将温度信号转换为电信号输送给控制器。
控制器根据温度传感器的反馈信号来调整系统的工作状态,以达到设定温度的目标。
温度传感器的准确性和稳定性对系统的控制精度至关重要,因此选择合适的温度传感器对系统性能至关重要。
温度传感器的性能指标精度精度是指温度传感器输出值与真实温度之间的误差。
传感器技术与应用3篇

传感器技术与应用传感器技术与应用(一)传感器是一种能够对物理量进行检测并输出电信号的器件,它是信息化时代最为重要的基础元器件之一。
随着科技的发展和现代工业技术的不断升级,传感器技术和应用也日新月异,其涉及的范围越来越广泛,性能要求也越来越高。
本文将从传感器技术的原理和分类以及传感器在工业、医疗、环保等方面的应用等方面进行介绍。
一、传感器技术的原理与分类传感器原理是通过一定的敏感元件,将被测量的物理量转换成与之成正比的电信号,如电压、电流、电阻等。
根据敏感元件不同可以将传感器分为多种类型,如:压力传感器、温度传感器、声音传感器、位移传感器、磁力传感器等。
1. 压力传感器压力传感器是一种将压力转化成电信号输出的敏感器件。
它们广泛应用于流量控制和气体压力测量等领域。
压力传感器作用于流体、气体或压力元件上,并输出电信号。
2. 温度传感器温度传感器用于测量环境或物体的温度。
根据测量温度的位置和场合,温度传感器可以分为接触式温度传感器、非接触式温度传感器和热电偶式温度传感器。
3. 位移传感器位移传感器是一种用于测量物体位移的传感器。
它可以测量线性、角度、旋转和振荡运动等。
位移传感器具有灵敏度高、反应时间快、可靠性好等特点。
4. 声音传感器声音传感器是测量声音强度的传感器。
它们通常被用于噪音监测、音频测量和语音分析应用。
5. 磁力传感器磁力传感器是一种测量磁场性质的传感器。
它可以检测磁场的大小和方向,并把这些信息转化为电信号输出。
二、传感器在工业应用中的应用1. 机器人在工业自动化方面,机器人是使用最广泛的设备之一。
现代工业中的机器人需要高精度、高灵敏度和高速度的传感器来控制和感知周围环境。
例如,机器人可以通过视觉传感器来探测餐具的位置和数量,同时可以使用力传感器来检测餐具摆放的压力和重量。
2. 汽车在汽车行业中,传感器应用十分广泛。
传感器可以用于测量引擎的负荷和温度、发动机的振动和压力等方面。
它们还可以用来监测车辆的行驶速度、方向和位置等信息。
传感器的原理及其应用论文

传感器的原理及其应用论文摘要本论文主要介绍了传感器的原理及其在各个领域中的应用。
首先,论文阐述了传感器的定义和基本原理。
接着,详细讨论了各种类型传感器的工作原理,包括光学传感器、压力传感器、温度传感器等。
随后,论文探讨了传感器在环境监测、医疗领域、智能交通系统、工业生产等领域的应用案例。
最后,论文总结了传感器的发展趋势和未来的研究方向。
1. 引言传感器是一种能够感知环境中各种物理量并将其转化为可用信号的设备。
它是现代科技中不可或缺的一部分,广泛应用于各个领域。
本章将介绍传感器的基本概念,以及其在不同领域中的重要性和应用前景。
2. 传感器的定义和基本原理2.1 定义传感器是一种能够感知并感知环境中某种物理量,并将其转化为可以用来测量、监测或控制的其他形式的信号的设备。
2.2 基本原理传感器的基本原理是通过感受外部物理量的变化,并将其转化为可测量的电信号或其他形式的输出信号。
传感器通常包括感受部件、转换部件、输出部件和电路部分。
3. 传感器类型及其工作原理3.1 光学传感器光学传感器是一种利用光学原理检测并测量环境物理量的传感器。
它通过感受环境中光线的变化来判断目标物体的位置、颜色、形状等特征。
光学传感器工作原理可分为透射式光电传感器、反射式光电传感器和光纤传感器等。
3.2 压力传感器压力传感器是用于测量系统中气体或液体压力的传感器。
它通过感受被测介质对传感器施加的力来转化为电信号输出。
按其测量原理可分为机械式压力传感器、电阻式压力传感器和微电子压力传感器等。
3.3 温度传感器温度传感器是用于测量环境中温度变化的传感器。
常见的温度传感器有热电偶、热电阻和半导体温度传感器等。
这些传感器通过测量物体的温度并将其转化为电流或电压信号来实现温度测量。
4. 传感器的应用案例4.1 环境监测传感器在环境监测中起着重要的作用。
例如,大气压力传感器可以用于气象学研究和天气预报,土壤温湿度传感器可以用于农业生产监测,水质传感器可以用于水环境监测等。
传感器技术的研究与应用

传感器技术的研究与应用随着科技的不断发展,传感器技术已经成为了当前最具前瞻性和实用性的技术之一。
传感器技术是指使用现代科技手段,研究和开发一种能够感知和响应物理和环境变化的微型装置,并且根据传感器所获取的数据信息,在保证准确性的同时,进行处理和分析。
传感器技术的研究和应用,已经涵盖了工业、军事、医疗、环境保护、航天等多个领域,并且是中国产业升级的重要方向之一。
本文从传感器技术的种类、发展历程和应用前景三个方面,来讨论传感器技术的重要性和现状。
一、传感器技术的种类传感器技术的种类非常多,涉及了温度、湿度、压力、流量、电容等多种类型的传感器。
下面分别介绍几种类型的传感器。
1、温度传感器温度传感器是用来测量温度变化的传感器,可以分为接触式和非接触式两种。
接触式的温度传感器需要与被测物品直接接触,主要适用于固体材料等需要直接接触的场景;非接触式的温度传感器则可以通过其自身的热辐射来测量物体的温度。
2、湿度传感器湿度传感器主要用于测量空气的湿度,可以分为电容式和电阻式两种。
其中,电容式的湿度传感器是利用了物质在不同湿度下的介电常数不同,而形成测量原理的。
电阻式则是利用了电阻在不同湿度下变化不同的特性,从而获得湿度变化的信息。
3、压力传感器压力传感器主要用于测量气体和液体的压力,从而获得物体受力的信息。
其具体测量原理与结构各有不同,但主要可分为压阻式、电容式、振荡式等多种类型。
4、流量传感器流量传感器是用来感知和测量液体或气体的流量状况的传感器。
主要分为浮子式、热式、振荡式等多种类型,具体使用场景和测量方法也各有不同。
二、传感器技术的发展历程传感器技术的历史可以追溯到19世纪初期,当时主要是关于温度、压力和湿度等性质的研究。
随着科技的不断进步,传感器技术变得越来越重要,在20世纪60年代,传感器技术开始成为一个独立的研究领域。
在此后的20年间,传感器技术得到了迅速的发展,涉及了越来越多的应用领域,例如机器人、医疗和交通管理等。
传感器的分类和应用

传感器的分类和应用《传感器的分类和应用》早上,我刚走进公司大楼,就看到保安李大爷正拿着一个类似小盒子的东西在门口晃悠。
我好奇地凑过去问:“李大爷,您这是拿的啥呀?神神秘秘的。
”李大爷笑着说:“这你就不懂了吧,这是个温度传感器。
现在不是疫情嘛,咱们这大楼得时刻监控温度呢。
”嘿,这就引出了传感器这个神奇的东西。
传感器就像我们生活中的小侦探,默默地探测着周围环境的各种信息。
那传感器都有哪些类型呢?首先呢,就像李大爷拿的温度传感器一样,这属于物理类传感器。
温度传感器可重要啦,它就像一个体温监测员。
在我们的日常生活中,家里的空调就有温度传感器。
夏天的时候,我们热得像热锅上的蚂蚁,空调里的温度传感器就会察觉到室内温度过高,然后告诉空调主机:“嘿,老兄,赶紧制冷吧,这里像个蒸笼啦!”于是空调就开始呼呼地吹冷气,让我们凉快下来。
在工业上,它也像一个严谨的监督员,在炼钢厂里监测熔炉的温度,要是温度太高或者太低,那可就麻烦了,就像做饭的时候火候不对,那炼出来的钢质量肯定不好。
还有光传感器呢。
我们可以把它想象成一个追光者。
在路灯上就有光传感器的身影。
白天的时候,阳光充足,光传感器就像个聪明的小管家,告诉路灯:“白天啦,你可以休息啦,不需要亮着浪费电。
”到了晚上,天色暗下来,光传感器又会大喊:“嘿,路灯兄弟,该你上场了,给大家照亮道路。
”手机里也有光传感器,当你从明亮的地方走到黑暗的地方,手机屏幕会自动调整亮度,这也是光传感器在悄悄发挥作用呢。
压力传感器也很常见。
它就像一个压力测试员。
汽车的轮胎里就有压力传感器。
你想啊,汽车在路上跑,轮胎就像人的脚一样重要。
如果轮胎压力不正常,那就像人穿着不合脚的鞋子走路,既不舒服又危险。
压力传感器能随时检测轮胎里的气压,要是气压低了,它就会提醒车主:“喂,你的轮胎气不足啦,赶紧去打气吧,不然我可撑不住啦。
”在一些自动化流水生产线上,压力传感器也起着关键作用,它确保各种机械装置在合适的压力下工作,就像指挥交通的交警,让每个环节都有条不紊地进行。
传感器的主要工作原理及应用论文

传感器的主要工作原理及应用论文1. 引言在现代科技的发展中,传感器起着非常重要的作用。
传感器是一种能够将物理量或化学量转化为电信号的装置,用于监测和测量各种物理和化学现象。
本文将介绍传感器的主要工作原理以及一些常见的应用。
2. 传感器的工作原理传感器的工作原理主要分为以下几个方面:2.1 电阻式传感器•电阻式传感器根据物理量的变化改变其电阻值,从而实现对物理量的测量。
•常见的电阻式传感器包括温度传感器、压力传感器以及湿度传感器等。
•电阻式传感器的原理是根据被测物理量对传感器内电阻的影响,从而改变电阻值。
2.2 光电传感器•光电传感器是利用光电效应将光信号转化为电信号的装置。
•光电传感器常用于测量光强、距离以及颜色等参数。
•光电传感器的工作原理是通过光源发出光,被测物体对光的反射或吸收产生光电效应。
2.3 压电传感器•压电传感器是利用压电效应将机械形变转化为电信号的装置。
•压电传感器常用于测量压力、力量和加速度等参数。
•压电传感器的原理是在压力或力作用下,压电材料会产生电荷积累,从而产生电信号。
2.4 磁电传感器•磁电传感器是利用磁电效应将磁场变化转化为电信号的装置。
•磁电传感器常用于测量磁场强度、位置以及速度等参数。
•磁电传感器的工作原理是通过磁场的变化引起传感器内的磁电效应,从而产生电信号。
3. 传感器的应用传感器在各个领域都有广泛的应用,下面列举了一些常见的应用场景:3.1 工业制造•传感器在工业制造中起着至关重要的作用,如温度传感器用于控制和监测工厂内的温度,湿度传感器用于测量空气湿度,以及压力传感器用于监测设备的运行状态等。
3.2 智能家居•在智能家居领域,传感器被广泛应用。
例如,温度传感器用于控制室内温度,光传感器用于控制室内照明,以及门窗传感器用于监测门窗的开关状态等。
3.3 医疗领域•在医疗领域,传感器的应用非常广泛。
例如,心电传感器用于监测心脏的电活动,血压传感器用于测量血压,以及血糖传感器用于监测血糖水平等。
传感器技术论文范文

传感器技术论文范文传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。
这是店铺为大家整理的传感器技术论文范文,仅供参考!传感器技术论文范文篇一传感器及其概述摘要传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。
目前,传感器转换后的信号大多是电信号,因而从狭义上讲,传感器是把外界输入的非电信号转换为电信号的装置。
【关键词】传感器种类新型1 前言传感器是测试系统的一部分,其作用类似于人类的感觉器官,也可以认为是人类感官的延伸。
人们借助传感器可以去探测那些人们无法用或不便用感官直接感知的事物,如用热电偶可以测量炽热物体的温度;用超声波换能器可以测海水深度;用红外遥感器可从高空探测地面形貌、河流状态及植被的分布等。
因此,可以说传感器是人们认识自然界事物的有力工具,是测量仪器与被测量物体之间的接口。
通常情况下,传感器处于测试装置的输入端,是测试系统的第一个环节,其性能直接影响着整个测试系统,对测试精度有很大影响。
2 传感器的分类按被测物理量的不同,可以分为位移、力、温度、流量传感器等;按工作的基础不同,可以分为机械式传感器、电气式传感器、光学式传感器、流体式传感器等;按信号变换特征可以分为物性型传感器和结构型传感器;根据敏感元件与被测对象直接的能量关系,可以分为能量转换型传感器与能量控制型传感器。
3 常见传感器介绍3.1 电阻应变式传感器电阻应变式传感器又叫电阻应变计,其敏感元件是电阻应变。
应变片是在用苯酚,环氧树脂等绝缘材料浸泡过的玻璃基板上,粘贴直径为0.025mm左右的金属丝或金属箔制成。
敏感元件也叫敏感栅。
其具有体积小、动态响应快、测量精度高、使用简单等优点。
在航空、机械、建筑等各行业获得了广泛应用。
电阻应变片的工作原理是基于金属的应变效应,即金属导体在外力作用下产生机械形变,其电阻值随机械变形的变化而变化。
传感器的分类及应用论文.

传感器的分类及应用(宁夏大学新华学院,银川)摘要传感器是新技术革命和信息社会的重要技术基础,是当今世界极其重要的高科技,一切现代化仪器、设备几乎都离不开传感器。
它是一门正在蓬勃发展的现代化传感器技术,是涉及微机械与微电子技术、计算机技术、信号处理技术、电路与系统、传感技术、神经网络技术以及模糊控制理论等多种学科的综合性技术,而该技术也广泛应用到了军事、太空探索、智能家居、农业、医疗等领域。
本文主要介绍传感器的的分类和应用。
关键词:传感器,应用一、传感器的定义:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
它是实现自动检测和自动控制的首要环节。
二、传感器的分类:传感器有许多分类方法,但常用的分类方法有两种,一种是按被测物理量来分;另一种是按传感器的工作原理来分。
按被测物理量划分的传感器,常见的有:温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等。
按工作原理可划分为:1.电学式传感器电学式传感器是非电量电测技术中应用范围较广的一种传感器,常用的有电阻式传感器、电容式传感器、电感式传感器、磁电式传感器及电涡流式传感器等。
电阻式传感器是利用变阻器将被测非电量转换为电阻信号的原理制成。
电阻式传感器一般有电位器式、触点变阻式、电阻应变片式及压阻式传感器等。
电阻式传感器主要用于位移、压力、力、应变、力矩、气流流速、液位和液体流量等参数的测量。
电容式传感器是利用改变电容的几何尺寸或改变介质的性质和含量,从而使电容量发生变化的原理制成。
主要用于压力、位移、液位、厚度、水分含量等参数的测量。
电感式传感器是利用改变磁路几何尺寸、磁体位置来改变电感或互感的电感量或压磁效应原理制成的。
传感器的发展及应用 (论文)

传感器的发展及应用 (论文)传感器的发展及应用引言概述:传感器是现代科技中不可或缺的重要组成部分,它们能够将各种物理量转化为可测量的电信号,广泛应用于工业、医疗、农业等领域。
本文将从五个方面详细阐述传感器的发展及应用。
一、传感器的种类及原理1.1 压力传感器:介绍压力传感器的工作原理、应用领域以及常见的型号和特点。
1.2 温度传感器:介绍温度传感器的工作原理、应用领域以及常见的型号和特点。
1.3 光学传感器:介绍光学传感器的工作原理、应用领域以及常见的型号和特点。
二、传感器的发展历程2.1 早期传感器的发展:回顾早期传感器的发展历程,介绍早期传感器的特点和应用情况。
2.2 现代传感器的发展:介绍现代传感器的发展趋势,包括微型化、智能化和多功能化等方面的进展。
2.3 未来传感器的发展:展望未来传感器的发展方向,包括纳米级传感器、无线传感器网络和生物传感器等新兴技术的应用前景。
三、传感器在工业领域的应用3.1 自动化生产:介绍传感器在自动化生产中的应用,包括机器人控制、流水线监测等方面。
3.2 能源管理:探讨传感器在能源管理中的作用,如智能电表、能源监测系统等。
3.3 安全监测:阐述传感器在工业安全监测中的应用,如火灾预警、气体泄漏监测等。
四、传感器在医疗领域的应用4.1 生命体征监测:介绍传感器在生命体征监测中的应用,如心率、血压、体温等的监测。
4.2 医疗设备控制:探讨传感器在医疗设备控制中的作用,如手术机器人、呼吸机等。
4.3 病人定位与追踪:阐述传感器在病人定位与追踪中的应用,如智能医院系统、病房监控等。
五、传感器在农业领域的应用5.1 土壤监测:介绍传感器在土壤监测中的应用,如土壤湿度、养分含量等的检测。
5.2 精准灌溉:探讨传感器在精准灌溉中的作用,如根据土壤湿度自动控制灌溉系统。
5.3 农作物生长监测:阐述传感器在农作物生长监测中的应用,如气象传感器、光照传感器等。
结论:传感器的发展已经取得了巨大的成就,并在各个领域得到了广泛的应用。
传感器的原理与应用论文

传感器的原理与应用引言传感器是一种能够将感知到的信息转化为可用信号的装置。
它通过测量、检测或监视特定的物理量或化学量来获取信息,并将其转换为电信号或其他形式的信号输出。
传感器广泛应用于工业生产、科学研究、医疗诊断等领域。
本文将介绍传感器的原理与应用。
传感器的原理1. 物理传感器的原理物理传感器基于物质或材料的特性来感知物理量。
常见的物理传感器包括温度传感器、压力传感器、加速度传感器等。
•温度传感器:温度传感器基于材料的热传导特性来测量温度。
常见的温度传感器有热电偶和热敏电阻。
热电偶利用两种材料的热电效应产生电动势,从而测量温度。
热敏电阻则利用材料电阻与温度的相关性来测量温度。
•压力传感器:压力传感器通过测量压力对传感器内部材料力学性能的变化来测量压力。
常见的压力传感器有压阻传感器、电容传感器和压细管传感器等。
压阻传感器利用荷重电阻的方式来测量压力。
电容传感器则通过测量电容的变化来获得压力信息。
•加速度传感器:加速度传感器能够感知物体的加速度。
它们通常基于质量的惯性原理来工作。
常见的加速度传感器包括压电加速度传感器和微机械加速度传感器。
压电加速度传感器利用压电材料的形变来测量加速度。
微机械加速度传感器则利用微机械结构的变形来感知加速度。
2. 化学传感器的原理化学传感器用于检测和测量化学物质的存在、浓度、组成和化学活性等。
常见的化学传感器包括气体传感器、湿度传感器和PH传感器等。
•气体传感器:气体传感器用于检测和测量空气中的气体成分。
它们通常基于化学反应的原理来工作。
常见的气体传感器有电化学传感器、光学传感器和半导体传感器等。
电化学传感器利用化学反应产生的电流来检测和测量气体成分。
光学传感器则利用气体分子与光的相互作用来测量气体浓度。
•湿度传感器:湿度传感器用于测量空气或其他气体中的湿度水分含量。
常见的湿度传感器有电容式湿度传感器、电阻式湿度传感器和共振式湿度传感器等。
电容式湿度传感器利用材料的电介质特性和湿度之间的关系来测量湿度。
传感器论文

传感器论文文章一:传感器在环境监测中的应用摘要:传感器在环境监测中起着重要的作用。
本文将从传感器的分类、原理以及在环境监测中的应用等方面进行综述。
通过对传感器的研究,可以更好地了解环境,保护生态环境。
引言:随着工业化进程的推进,环境问题已经成为全球关注的热点。
为了保护生态环境、预防和解决环境污染问题,传感器被广泛应用于环境监测中。
传感器具有监测范围广、可靠性高以及成本较低等特点,可以实时收集环境信息,为环境保护和治理工作提供数据支持。
一、传感器的分类传感器根据应用领域可以分为生物传感器、化学传感器、物理传感器和气体传感器等。
生物传感器主要用于生物领域,如生物医学和生物分析等。
化学传感器常用于环境监测中,可以检测空气中的有害物质。
物理传感器用于测量和监测物理量,如温度、压力和光强等。
气体传感器主要用于检测和测量气体成分和浓度。
二、传感器的原理传感器主要通过感知环境中的信息,并将其转化为电信号输出。
传感器一般由传感器元件和信号处理电路组成。
传感器元件负责感知环境信息,信号处理电路负责处理传感器元件输出的信号。
三、传感器在环境监测中的应用传感器在环境监测中有着广泛的应用。
例如,空气质量监测中常常使用气体传感器,可以监测和测量空气中的有害气体成分和浓度。
水质监测中可以使用化学传感器,检测水中的有毒物质和污染物。
土壤监测中可以使用物理传感器,测量土壤温度、湿度以及土壤中的有害物质含量。
此外,还可以利用传感器监测噪声、振动和辐射等环境参数。
四、传感器的优势和挑战传感器在环境监测中具有许多优势,如监测范围广、精度高、响应速度快等。
然而,传感器也面临着一些挑战,如灵敏度受环境条件影响、寿命有限以及准确度不高等。
结论:传感器在环境监测中发挥着重要的作用。
通过对传感器的分类、原理和应用等方面的综述,可以更好地了解传感器在环境监测中的作用和意义,为环境保护和治理提供数据支持。
文章二:传感器在智能交通系统中的应用摘要:传感器在智能交通系统中的应用,可以提高交通管理的效率和安全性。
传感器的工作原理及应用论文范文

传感器的工作原理及应用1. 引言传感器是一种能够感知和测量某种物理量或化学量的装置,广泛应用于工业自动化、环境监测、医疗仪器等领域。
本文将介绍传感器的工作原理以及在不同领域中的应用。
2. 传感器的工作原理传感器的工作原理主要有以下几种:2.1 电阻传感器电阻传感器是根据被测量物理量对电阻值的影响来进行测量的传感器。
它通过将被测量量与电阻值建立数学关系,从而间接测量被测量量的变化。
常见的电阻传感器有温度传感器和压力传感器。
2.2 压电传感器压电传感器是利用压电效应来进行测量的传感器。
当外力施加在压电材料上时,压电材料会产生电荷,这个电荷与外力有关。
通过测量压电材料上的电荷大小来推断外力的大小。
压电传感器广泛应用于振动测量和压力测量领域。
2.3 光电传感器光电传感器是利用光电效应来进行测量的传感器。
它通过将光信号转化为电信号来测量光的强度、光的颜色等。
光电传感器广泛应用于自动化控制、光电检测等领域。
2.4 惯性传感器惯性传感器是利用物体的惯性特性来进行测量的传感器。
它通过测量物体的加速度和角速度来推断物体的位置和姿态。
惯性传感器广泛应用于导航系统、运动跟踪系统等领域。
3. 传感器的应用传感器在各个领域中有着广泛的应用,以下列举几个常见的应用领域:3.1 工业自动化在工业生产过程中,传感器可以用来监测温度、压力、流量等物理量,从而实现自动化控制。
传感器的应用能大大提高工业生产的效率和质量。
•温度传感器用于监测设备的温度,以保证设备正常运行。
•压力传感器用于监测设备的压力,以确保设备在安全范围内运行。
•流量传感器用于监测液体或气体的流量,以强化流程控制。
3.2 环境监测传感器在环境监测领域中起着重要作用,可以监测空气质量、水质和噪音等环境信息,以提供及时的监测数据。
•气体传感器用于监测空气中的有害气体浓度,以保证室内空气质量。
•水质传感器用于监测水体中的PH值、浊度等指标,以评估水质状况。
•声音传感器用于监测噪音水平,以提供安静的工作和生活环境。
传感器的种类及应用

传感器的种类及实际应用情况1. 引言传感器是现代科技中的重要组成部分,它能够感知和测量物理量并将其转换为电信号,为各个领域的应用提供准确的数据支持。
传感器的种类众多,按照测量的物理量不同可以划分为温度传感器、压力传感器、光学传感器、湿度传感器、加速度传感器等。
本文将分别对这些传感器进行详细描述,包括它们的应用背景、应用过程和应用效果等。
2. 温度传感器2.1 应用背景温度传感器是一种用于测量环境或物体温度的设备,广泛应用于工业、医疗、农业等领域。
在工业领域,温度传感器常用于监测设备和设施的温度,以确保其正常运行。
在医疗领域,温度传感器被用于测量患者的体温,及时监测患者的健康状况。
在农业领域,温度传感器被应用于监测大棚内外的温度,以帮助农民调整环境,提高作物的产量。
2.2 应用过程温度传感器的应用过程主要包括传感器采集温度数据、将数据转换为电信号、通过信号传输给控制系统,并由控制系统作出相应的响应。
首先,传感器感知环境或物体的温度,通过温敏元件将温度转化为电信号。
温敏元件是一种能够随温度变化而改变电阻值或电压值的元件,常见的有热电阻和热敏电阻。
热电阻的电阻值随温度的升高而增加,而热敏电阻的电阻值随温度的升高而减小。
其次,传感器将采集到的电子信号转化为标准的电信号,如模拟信号或数字信号。
模拟温度传感器将温度转化为连续的模拟电压信号或电流信号。
而数字温度传感器将温度转化为数字信号,可以直接与数字电路相连。
数字传感器的优点是多样化且易于集成,可以直接与微控制器或数字信号处理器相连,方便信号处理和数据分析。
最后,传感器通过信号传输将温度数据传送给控制系统。
信号传输方式多样,可以通过有线方式(如电缆或总线)或无线方式(如无线传感网络)进行传输。
有线传输方式稳定可靠,但受到布线限制;而无线传输方式灵活性高,但对信号传输的稳定性要求较高。
2.3 应用效果温度传感器的应用效果主要体现在以下几个方面:1.提供精确的温度数据:温度传感器能够提供精确的温度数据,确保生产过程中的温度控制准确无误,减少生产工艺中的温度波动,提高产品质量和产量。
传感器的应用论文

传感器的应用【关键字】传感器原理应用【摘要】对传感器下的定义是:“能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。
1传感器及其工作原理1.1什么是传感器1.1.1传感器的定义英文名称:transducer / sensor国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
它是实现自动检测和自动控制的首要环节。
“传感器”在新韦式大词典中定义为:“从一个系统接受功率,通常以另一种形式将功率送到第二个系统中的器件”。
根据这个定义,传感器的作用是将一种能量转换成另一种能量形式,所以不少学者也用“换能器-Transducer”来称谓“传感器-Sensor”。
1.2功能常将传感器的功能与人类5大感觉器官相比拟:光敏传感器——视觉声敏传感器——听觉气敏传感器——嗅觉化学传感器——味觉压敏、温敏、流体传感器——触觉1.2.1敏感元件的分类:①物理类,基于力、热、光、电、磁和声等物理效应。
②化学类,基于化学反应的原理。
③生物类,基于酶、抗体、和激素等分子识别功能。
通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将敏感元件分46类)。
1.2.2常见的元件光敏电阻光敏电阻又称光导管,常用的制作材料为硫化镉,另外还有硒、硫化铝、硫化铅和硫化铋等材料。
这些制作材料具有在特定波长的光照射下,其阻值迅速减小的特性。
这是由于光照产生的载流子都参与导电,在外加电场的作用下作漂移运动,电子奔向电源的正极,空穴奔向电源的负极,从而使光敏电阻器的阻值迅速下降。
1.传感器分类及应用

1.传感器分类及应用传感器,这玩意儿,可真是现代科技的千里眼和顺风耳。
它们默默无闻地工作,却在我们的生活中扮演着至关重要的角色。
你可能没怎么注意过,但它们无处不在,从智能手机到智能家居,从汽车到航天飞机,传感器都像勤劳的小蜜蜂一样,不知疲倦地收集着各种信息。
首先,咱们得聊聊温度传感器。
这东西就像是家里的温度计,但它更聪明,能自动调节空调和暖气,确保咱们的家冬暖夏凉。
想象一下,炎炎夏日,一进家门,凉风习习,这背后可少不了温度传感器的功劳。
它就像一个贴心的管家,时刻关注着家里的温度变化,确保咱们过得舒舒服服的$2$。
再来,就是那些在汽车里大显身手的传感器了。
它们是汽车安全的守护神。
比如,防抱死制动系统(ABS)里的轮速传感器,它能实时监测车轮的转速,确保在紧急刹车时,车轮不会锁死,让驾驶员还能控制方向,避免了可能的事故。
这就像在高速公路上,突然遇到紧急情况,有了这些传感器,咱们就能像老司机一样,稳稳地把住方向盘,化险为夷$3$。
说到智能,怎么能不提智能手机里的传感器呢?它们就像是手机的五感,让手机不仅仅是打电话发短信的工具,而是变成了一个多功能的个人助理。
光线传感器让屏幕亮度自动调节,接近传感器让手机在咱们脸贴近时关闭屏幕,避免误触。
这些小玩意儿,让咱们的手机更加人性化,更加懂咱们$4$。
在医疗领域,传感器的作用更是不可小觑。
比如,心率监测器,它能实时监测咱们的心跳,一旦发现异常,就能及时发出警报。
这就像给咱们的心脏装了个24小时的贴身保镖,随时准备着在危险时刻拉咱们一把$5$。
最后,咱们不得不提的是那些在工业生产中大显身手的传感器。
它们是工业自动化的眼睛和耳朵。
比如,压力传感器,它能精确测量气体或液体的压力,确保生产过程中的安全和效率。
这就像一个经验丰富的老工人,对生产过程中的每一个细节都了如指掌,确保整个工厂运转得井井有条$6$。
总之,传感器就像是现代科技的隐形英雄,它们在幕后默默付出,却让我们的生活变得更加便捷、安全和舒适。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传感器的分类及应用
(宁夏大学新华学院,银川)
摘要
传感器是新技术革命和信息社会的重要技术基础,是当今世界极其重要的高科技,一切现代化仪器、设备几乎都离不开传感器。
它是一门正在蓬勃发展的现代化传感器技术,是涉及微机械与微电子技术、计算机技术、信号处理技术、电路与系统、传感技术、神经网络技术以及模糊控制理论等多种学科的综合性技术,而该技术也广泛应用到了军事、太空探索、智能家居、农业、医疗等领域。
本文主要介绍传感器的的分类和应用。
关键词:传感器,应用
一、传感器的定义:
“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
它是实现自动检测和自动控制的首要环节。
二、传感器的分类:
传感器有许多分类方法,但常用的分类方法有两种,一种是按被测物理量来分;另一种是按传感器的工作原理来分。
按被测物理量划分的传感器,常见的有:温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等。
按工作原理可划分为:
1.电学式传感器
电学式传感器是非电量电测技术中应用范围较广的一种传感器,常用的有电阻式传感器、电容式传感器、电感式传感器、磁电式传感器及电涡流式传感器等。
电阻式传感器是利用变阻器将被测非电量转换为电阻信号的原理制成。
电阻式传感器一般有电位器式、触点变阻式、电阻应变片式及压阻式传感器等。
电阻式传感器主要用于
位移、压力、力、应变、力矩、气流流速、液位和液体流量等参数的测量。
电容式传感器是利用改变电容的几何尺寸或改变介质的性质和含量,从而使电容量发生变化的原理制成。
主要用于压力、位移、液位、厚度、水分含量等参数的测量。
电感式传感器是利用改变磁路几何尺寸、磁体位置来改变电感或互感的电感量或压磁效应原理制成的。
主要用于位移、压力、力、振动、加速度等参数的测量。
磁电式传感器是利用电磁感应原理,把被测非电量转换成电量制成。
主要用于流量、转速和位移等参数的测量。
电涡流式传感器是利用金屑在磁场中运动切割磁力线,在金属内形成涡流的原理制成。
主要用于位移及厚度等参数的测量。
2.磁学式传感器
磁学式传感器是利用铁磁物质的一些物理效应而制成的,主要用于位移、转矩等参数的测量。
3.光电式传感器
光电式传感器在非电量电测及自动控制技术中占有重要的地位。
它是利用光电器件的光电效应和光学原理制成的,主要用于光强、光通量、位移、浓度等参数的测量。
4.电势型传感器
电势型传感器是利用热电效应、光电效应、霍尔效应等原理制成,主要用于温度、磁通、电流、速度、光强、热辐射等参数的测量。
5.电荷传感器
电荷传感器是利用压电效应原理制成的,主要用于力及加速度的测量。
6.半导体传感器
半导体传感器是利用半导体的压阻效应、内光电效应、磁电效应、半导体与气体接触产生物质变化等原理制成,主要用于温度、湿度、压力、加速度、磁场和有害气体的测量。
7.谐振式传感器
谐振式传感器是利用改变电或机械的固有参数来改变谐振频率的原理制成,主要用来测量压力。
8.电化学式传感器
电化学式传感器是以离子导电为基础制成,根据其电特性的形成不同,电化学传感器
可分为电位式传感器、电导式传感器、电量式传感器、极谱式传感器和电解式传感器等。
电化学式传感器主要用于分析气体、液体或溶于液体的固体成分、液体的酸碱度、电导率及氧化还原电位等参数的测量。
另外,根据传感器对信号的检测转换过程,传感器可划分为直接转换型传感器和间接转换型传感器两大类。
前者是把输入给传感器的非电量一次性的变换为电信号输出,如光敏电阻受到光照射时,电阻值会发生变化,直接把光信号转换成电信号输出;后者则要把输入给传感器的非电量先转换成另外一种非电量,然后再转换成电信号输出,如采用弹簧管敏感元件制成的压力传感器就属于这一类,当有压力作用到弹簧管时,弹簧管产生形变,传感器再把变形量转换为电信号输出
三、传感器的应用
1. 电阻式传感器
电阻式传感器的基本原理是将被测量的变化转化成为传感元件电阻值的变化再经过转换电路变成电信号输出。
应用:1、应变电阻传感器,用来测量拉压应力,以及基于此的其它物理量; 热敏电阻传感器,用来测量温度;滑臂式电阻传感器,用来测量几何位置(角度,位移);磁敏电阻传感器,用来测量磁场。
;光敏电阻传感器,用来测量光的强度;吸湿媒质电阻传感器,用来测量湿度;液体电阻率传感器,用来测量水溶离子浓度。
2. 电容式传感器
压电微位移、振动台,电子显微镜微调,天文望远镜镜片微调,精密微位移测量,量测液体位准、湿度、以及物质成分等。
3. 电感式传感器
检测距离的衰减性。
滑翘为铁质,适合电感式传感器检测;而滑翘被测部分的尺寸略小于标准检测物尺寸(标准被测物尺寸为3倍额定检测距离,此应用中,标准尺寸应为120*120mm),这样的话就会有一定的衰减;现场抗干扰能力。
这个是不容忽视的问题,普通电感式传感器容易被电机或变频器干扰,很多技术人员只对在此附近的应用选择相应强抗电磁干扰的传感器。
但在汽车制造车间,厂房大,现场技术人员习惯使用对讲机沟通,尤其是边走边用对讲机对话时,会不经意的靠近传感器,导致短暂失效;安装方面。
随着电感式传感器的普及,传感器不仅仅在电气性能方面有所提升,其机械方面的设计也越来越人性化。
要在最大程度的实现人性化安装。
减少了多种近似产品的备货和
减少了安装、维护的时间;稳定运行的保障。
在车厂的使用中,要杜绝任何油污、尘污的侵蚀。
另外,滑翘经过轨道时,震动是长期存在的,优异的抗震动性同样是有着非常重要的作用。
4. 磁电式传感器
磁电式传感器主要用于振动测量。
其中惯性式传感器不需要静止的基座作为参考基准,它直接安装在振动体上进行测量,因而在地面振动测量及机载振动监视系统中获得了广泛的应用。
常用地测振传感器有动铁式振动传感器、圈式振动速度传感器等。
5. 电涡流式传感器
电涡流式传感器可应用于测量振动,位移,厚度,转数,温度,硬度等参数,还可以进行无损探伤。
KD2306电涡流式传感器在位移方面的应用,可用于旋转机器轴向位移和胀差检测。
6. 电势型传感器
电感式传感器具有结构简单、动态响应快、易实现非接触测量等突出的优点,特别适合用于酸类,碱类,氯化物,有机溶剂,液态CO2,氨水,PVC 粉料,灰料,油水界面等液位测量,目前在冶金、石油、化工、煤炭、水泥、粮食等行业中应用广泛。
7. 半导体传感器
半导体传感器的主要应用领域是工业自动化、遥测、工业机器人、家用电器、环境污染监测、医疗保健、医药工程和生物工程。
半导体传感器按输入信息分为物理敏感、化学敏感和生物敏感半导体传感器三类。
8. 谐振式传感器
谐振式传感器具有体积小、重量轻、结构紧凑、分辨率高、精度高以及便于数据传输、处理和存储等优点。
主要用于测量压力,也用于测量转矩、密度、加速度和温度等。
9. 电化学式传感器
化学传感器在环境与卫生监测中的应用 :在环境与卫生监测中,常用于湿球温湿度计、手摇湿温度计和通风湿温度计等仪器测定空气湿度。
电化学生物传感器在疾病早期诊断中的应用:DNA电化学生物传感器是近几年国际热点研究的一类新型生物传感器,其
具有特异性强、灵敏度高、检测快速、简单经济的特点,因此在肿瘤等重大疾病的早期诊断中具有重要的意义。
参考文献
[1]贺展开,汽车传感器的检测北京机械工业出版社 2011
[2]赵燕,传感器原理及应用北京大学出版社 2010
[3]王芳.热电阻式温度传感器的测温原理与应用.黑龙江冶金,2007(2):33~35。