建筑材料的基本性质(精)
建筑材料的基本性质
![建筑材料的基本性质](https://img.taocdn.com/s3/m/6a76cee805a1b0717fd5360cba1aa81144318fe0.png)
建筑材料的基本性质第⼀章建筑材料的基本性质1.建筑材料的基本物理性质密度:材料在绝对密实状态下单位体积的质量。
表观密度:材料在⾃然状态下单位体积的质量堆积密度:散粒或粉状材料,如砂、⽯⼦、⽔泥等,在⾃然堆积状态下单位体积的质量。
孔隙率:在材料⾃然体积内孔隙体积所占的⽐例。
空隙率:散粒材料⾃然堆积体积中颗粒之间的空隙体积所占的⽐例。
空隙率的⼤⼩反映了散粒材料的颗粒互相填充的致密程度。
材料的压实度:散粒堆积材料被碾压或振压等压实的程度。
相对密度:散粒材料压实程度的另⼀种表⽰⽅法。
2.材料与⽔有关的性质①亲⽔性:材料能被⽔润湿的性质(亲⽔性材料与⽔分⼦的亲和⼒⼤于⽔分⼦⾃⾝的内聚⼒)憎⽔性:材料不能被⽔润湿的性质。
②吸⽔性:材料浸⼊⽔中吸收⽔的能⼒(材料吸⽔率是固定的)吸湿性:材料在潮湿空⽓中吸收⽔分的性质。
【平衡含⽔率】:在⼀定温度和湿度条件下,材料与空⽓湿度达到平衡时的含⽔率。
③耐⽔性:材料长期在⽔作⽤下不破坏,且其强度也不显著降低的性质。
④抗渗性:材料抵抗压⼒⽔渗透的性质。
⑤抗冻性:材料在吸⽔饱和状态下,能经受多次冻融作⽤⽽不破坏,且强度和质量⽆显著降低的性质。
3.①材料的强度:材料在外⼒作⽤下抵抗破坏的能⼒。
影响材料强度的因素:孔隙率低,强度⾼温度⾼含⽔率⾼,强度低②材料的⽐强度:是材料的强度与其表观密度的⽐值③材料的理论强度:指结构完整的理想固体从材料结构的理论上分析,材料所能承受的最⼤应⼒。
4.弹性:材料在外⼒作⽤下产⽣变形,当外⼒除去后,变形能完全恢复的性质。
塑性:材料在外⼒作⽤下产⽣变形,外⼒除去后,仍保持变形后的形状,并不破坏的性质5.耐久性:材料在所处环境下,抵抗所受破坏作⽤,在规定的时间内,不变质、不损坏,保持其原有性能的性质。
6.材料(微观结构):晶体、玻璃体、胶体晶体类型:原⼦晶体,离⼦晶体,分⼦晶体,⾦属晶体第三章⽓硬性胶凝材料1.胶凝材料:在⼀定条件下,通过⾃⾝的⼀系列变化⽽把其他材料胶结成具有强度的整体的材料①有机胶凝材料:以天然或⼈⼯合成的⾼分⼦化合物为主要成分的胶凝材料。
建筑材料-第二章 建筑材料的基本性质
![建筑材料-第二章 建筑材料的基本性质](https://img.taocdn.com/s3/m/9fc70be1970590c69ec3d5bbfd0a79563d1ed416.png)
建筑材料-第二章建筑材料的基本性质建筑材料第二章建筑材料的基本性质建筑材料是构成建筑物的物质基础,其性能的优劣直接影响着建筑物的质量、耐久性和使用功能。
在建筑工程中,了解建筑材料的基本性质是至关重要的,这有助于我们合理选择和使用材料,确保建筑的安全、舒适和经济。
一、物理性质(一)密度密度是指材料在绝对密实状态下单位体积的质量。
对于大多数固体材料而言,绝对密实状态是指不含任何孔隙的状态。
但在实际情况中,完全不含孔隙的材料几乎不存在,因此在测定密度时,通常会将材料磨成细粉,然后用李氏瓶等方法测定其体积,从而计算出密度。
(二)表观密度表观密度是指材料在自然状态下单位体积的质量。
这里的自然状态包括材料内部存在的孔隙。
例如,对于块状材料,在计算表观密度时,其体积是指材料的整体体积,包括内部孔隙。
(三)堆积密度堆积密度是指粉状或粒状材料在堆积状态下单位体积的质量。
堆积状态下的体积不仅包括材料颗粒的体积,还包括颗粒之间的空隙体积。
(四)孔隙率孔隙率是指材料内部孔隙的体积占材料总体积的百分比。
孔隙的存在会对材料的性能产生重要影响,例如,孔隙率较大的材料通常保温隔热性能较好,但强度可能相对较低。
(五)空隙率空隙率是指散粒状材料在堆积体积中,颗粒之间的空隙体积占堆积体积的百分比。
空隙率的大小反映了材料颗粒之间的填充程度,对材料的堆积密度和施工性能有重要意义。
(六)吸水性吸水性是指材料在水中吸收水分的能力。
通常用吸水率来表示,吸水率又分为质量吸水率和体积吸水率。
质量吸水率是指材料吸水饱和时所吸收水分的质量占材料干燥质量的百分比;体积吸水率是指材料吸水饱和时所吸收水分的体积占材料自然体积的百分比。
(七)吸湿性吸湿性是指材料在潮湿空气中吸收水分的性质。
吸湿性的大小用含水率表示,即材料中所含水分的质量占材料干燥质量的百分比。
(八)耐水性耐水性是指材料长期在水的作用下不破坏,其强度也不显著降低的性质。
通常用软化系数来表示,软化系数越大,说明材料的耐水性越好。
建筑材料的基本性质
![建筑材料的基本性质](https://img.taocdn.com/s3/m/7f62034cf342336c1eb91a37f111f18583d00cd8.png)
θ
γSL
(a)
γL
(b)
材料的润湿示意图 a亲水性材料;b憎水性材料
二 材料的吸水性与吸湿性
1.吸水性Water Absorption
材料在水中能吸收水分的性质称吸水性.材料的吸水
性用吸水率Ratio of Water Absorption表示,
有质量吸水率与体积吸水率两种表示
方法.
1质量吸水率
二、 材料的孔隙率与空隙率
1. 密实度Dense 密实度是指材料的固体物质部分的体积占总体积的比例,
说明材料体积内被固体物质所充填的程度,即反映了材料 的致密程度,按下式计算:
DV V0
2.孔隙率Porosity
孔隙率材料内部孔隙的体积占材料总体积的百分率,称
为材料的孔隙率P.可用下式表示:
PV0 V V0
第二章 建筑材料的基本性质
建筑材料在建筑物的各个部位的功能不同,均要承受 各种不同的作用,因而要求建筑材料必须具有相应的基本 性质.
基本性质主要包括物理性质、力学性质、耐久性、 装饰性、防火性、防放射性等 物理性质包括密度、密实性、空隙率计算材料用量、 构件自重、配料计算、确定堆放空间 力学性质包括强度、弹性、塑脆韧性、硬度.
如混凝土抗冻等级F15是指所能承受的最大冻融次数是15次在15℃的温度冻结后,再在20 ℃的水中融化,为一次冻融循环,这时 强度损失率不超过25%,质量损失不超过5%.
五材料的抗冻性Frost Resistance
• 材料的抗冻性与材料的强度、孔结构、耐水性和吸水饱 和程度有关. • 材料抗冻等级的选择,是根据结构物的种类、使用条件、气 候条件等来决定的.
Wv Wm0
材料的吸水性与其亲水性、疏水性、孔隙率大小、孔隙特征有关.
建筑材料的基本性质整理
![建筑材料的基本性质整理](https://img.taocdn.com/s3/m/c122ac91be1e650e52ea99f7.png)
建筑材料的基本性质整理-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、建筑材料的物理性质①材料的密度、表观密度、堆积密度(1)密度:材料在绝对密度状态下单位体积的重量。
(2)表观密度:材料在自然状态下单位体积德重量。
(3)堆积密度:粉状或散粒材料在堆积状态下单位体积德重量。
②材料的孔隙率空隙率(1)孔隙率:材料体积内空隙体积所占的比例。
(2)空隙率:散装粒状材料在某堆积体积中,颗粒之间的空隙体积所占的比列。
③材料的亲水性和憎水性(1)润湿角的材料为亲水材料,如建材中的混凝土、木材、砖等。
亲水材料表面做憎水处理,可提高其防水性能。
(2)润湿角的材料为亲水材料,如建材中的沥青、石蜡等。
④材料的吸水性和吸湿性(1)吸水性:在水中能吸收水分的性质。
吸水率(2)吸湿性:材料吸收空气中水分的性质。
含水率。
⑤材料的耐水性、抗渗性和抗冻性(1)耐水性:材料长期在饱和水的作用下不破坏,而且强度也不显着降低的性质。
(2)抗渗性:材料抵抗压力水渗透的性质。
一般用渗透系数K或抗渗等级P表示。
混凝土材料的抗渗等级P=10H-1,H-六个试件中三个试件开始渗水时的水压力。
K越小或P越高,表明材料的抗渗性越好。
(3)抗冻性:材料在吸水饱和状态下,能经受多次冻融循环作用而不破坏、强度又不明显降低的性质,常用抗冻等级F表示。
孔隙率小及具有封闭孔的材料有较高的抗渗性和抗冻性;具有细微而连通的空隙对材料的抗渗性和抗冻性不利。
(4)材料的导热性导热性:材料传到热量的性质。
用导热系数表示,通常将的材料称为绝热材料。
孔隙率越大、表观密度越小,导热系数越小。
2、建筑材料的力学性能①强度与比强度强度是材料抵抗外力破坏的能力。
强度分为抗拉强度、抗压强度、抗弯强度和抗剪强度。
孔隙率越大,强度越低。
比强度是按单位重量计算的材料强度,等于材料的强度与其表观密度之比。
②弹性与塑性(1)弹性:材料在外力作用下产生变形,当外力去除后,能完全恢复原来形状的性质。
建筑材料 基本性质
![建筑材料 基本性质](https://img.taocdn.com/s3/m/82b130316d175f0e7cd184254b35eefdc8d3150d.png)
胶体是建筑材料中常见的一种微观结构形式,通常是由极细微的固体颗粒均匀分 布在液体中所形成。胶体与晶体和玻璃体最大的不同是可呈分散相和网状结构两种结 构形式,分别祢为溶胶和凝胶。溶胶失水后成为具有一定强度的凝胶结构,可以把材 料中的晶体或其他固体颗粒粘结为整体,如气硬性胶凝材料水玻璃和硅酸盐水泥石中 的水化硅酸钙和水化铁酸钙都呈胶体结构。
(2)体积密度 也称容重,是指材料在自然状态下,单位体积所具有的质量,按下式计算
材料在自然状态下的体积是指包含材料内部孔隙在内的体积。 当材料含有水分时,其质量和体积就均有所变化。故测定体积密度时,须注明 含水情况。 在烘干状态下的体积密度,称为干体积密度。
(3)堆积密度 堆积密度是指粉状、颗粒或纤维材料在自然堆积状态下,单位体积(包含颗粒
材料的含水率大小,除与材料本身的特性有关外,还与周围环境的温度、湿度 有关。气温越低、相对湿度越大,材料的含水率也就越大。材料堆放在工地现场, 不断向空气中挥发水分,又同时从空气中吸收水分,其稳定的含水率是达到挥发与 吸收动态平衡时的一种状态。在混凝土施工配合比设计中要考虑砂、石料含水率的 影响。
材料含水或吸水对材料的影响:会使材料的表观胀,木材腐朽等结果。
5.层状构造 该种构造形式最适合于制造复合材料,可以综合各层材料的性能优势, 其性能往往呈各向异性。胶合板、复合木地板、纸面石膏板、夹层玻璃都 是层状构造。
2.1.4 建筑材料的孔隙
材料实体内部和实体间常常部分被空气所占据,一般称材料实体内部 被空气所占据的空间为孔隙,而材料实体之间被空气所占据的空间称为空 隙。孔隙状况对建筑各种基本性质具有重要的影响。
《建筑材料》建筑材料基本性质(整理)
![《建筑材料》建筑材料基本性质(整理)](https://img.taocdn.com/s3/m/00ae3794b52acfc789ebc9fb.png)
建筑材料地基本性质教案要求:了解材料地组成与结构以及它们与材料性质地关系;要求掌握材料与质量有关地性质、与水有关地性质及与热有关地性质地概念及表示方法,并能较熟练地运用;要求了解材料地力学性质及耐久性地基本概念.建筑物是由各种建筑材料建筑而成地,这些材料在建筑物地各个部位要承受各种各样地作用,因此要求建筑材料必须具备相应性质.如结构材料必须具备良好地力学性质;墙体材料应具备良好地保温隔热性能、隔声吸声性能;屋面材料应具备良好地抗渗防水性能;地面材料应具备良好地耐磨损性能等等.一种建筑材料要具备哪些性质,这要根据材料在建筑物中地功用和所处环境来决定.一般而言,建筑材料地基本性质包括物理性质、化学性质、力学性质和耐久性.第一节材料地物理性质一、材料地基本物理性质(一)实际密度材料在绝对密实状态下,单位体积地质量称为密度.用公式表示如下:ρ=m/v式中ρ——材料地密度,g/cm3;m——材料在干燥状态下地质量,g;V——干燥材料在绝对密实状态下地体积,cm3.材料在绝对密实状态下地体积是指不包括孔隙在内地固体物质部分地体积,也称实体积.在自然界中,绝大多数固体材料内部都存在孔隙,因此固体材料地总体积(V0)应由固体物质部分体积(V)和孔隙体积(V P)两部分组成,而材料内部地孔隙又根据是否与外界相连通被分为开口孔隙(浸渍时能被液体填充,其体积用V k表示)和封闭孔隙(与外界不相连通,其体积用V b表示).测定固体材料地密度时,须将材料磨成细粉(粒径小于0.2mm),经干燥后采用排开液体法测得固体物质部分体积.材料磨得越细,测得地密度值越精确.工程所使用地材料绝大部分是固体材料,但需要测定其密度地并不多.大多数材料,如拌制混凝土地砂、石等,一般直接采用排开液体地方法测定其体积——固体物质体积与封闭孔隙体积之和,此时测定地密度为材料地近似密度(又称为颗粒地表观密度).(二)体积密度整体多孔材料在自然状态下,单位体积地质量称为体积密度.用公式表示如下:ρo=m/V o式中ρo——材料地体积密度,kg/m3;m——材料地质量,kg;V o——材料在自然状态下地体积,m3.整体多孔材料在自然状态下地体积是指材料地固体物质部分体积与材料内部所含全部孔隙体积之和,即V0 = V + V p.对于外形规则地材料,其体积密度地测定只需测定其外形尺寸;对于外形不规则地材料,要采用排开液体法测定,但在测定前,材料表面应用薄蜡密封,以防液体进入材料内部孔隙而影响测定值.一定质量地材料,孔隙越多,则体积密度值越小;材料体积密度大小还与材料含水多少有关,含水越多,其值越大.通常所指地体积密度,是指干燥状态下地体积密度.(三)堆积密度散粒状(粉状、粒状、纤维状)材料在自然堆积状态下,单位体积地质量称为堆积密度.用公式表示如下:ρ0′=m/V0′式中ρ0′——材料地堆积密度,kg/m3;m——散粒材料地质量,kg;V0′——散粒材料在自然堆积状态下地体积,又称堆积体积,m3.在建筑工程中,计算材料地用量、构件地自重、配料计算、确定材料堆放空间,以及材料运输车辆时,需要用到材料地密度.二、材料地密实度与孔隙率(一)密实度密实度是指材料内部固体物质填充地程度.用公式表示如下:D=V/V0(二)孔隙率孔隙率是指材料内部孔隙体积占自然状态下总体积地百分率.用公式表示如下:P=(V0-V)/V0孔隙率一般是通过实验确定地材料密度和体积密度求得.材料地孔隙率与密实度地关系为:P + D = 1材料地孔隙率与密实度是相互关联地性质,材料孔隙率地大小可直接反映材料地密实程度,孔隙率越大,则密实度越小.孔隙按构造可分为开口孔隙和封闭孔隙两种;按尺寸地大小又可分为微孔、细孔和大孔三种.材料孔隙率大小、孔隙特征对材料地许多性质会产生一定影响,如材料地孔隙率较大,且连通孔较少,则材料地吸水性较小,强度较高,抗冻性和抗渗性较好,导热性较差,保温隔热性较好.三、材料地填充率与空隙率(一)填充率′填充率是指装在某一容器地散粒材料,其颗粒填充该容器地程度.用公式表示如下:D′=V0/V0/(二)空隙率空隙率是指散粒材料(如砂、石等)颗粒之间地空隙体积占材料堆积体积地百分率.用公式表示如下:P′=(1-V0/V0/)×%=(1-ρ0′/ρo)×%式中ρo——颗粒状材料地表观密度,kg/m3;ρ0′——颗粒状材料地堆积密度,kg/m3.散粒材料地空隙率与填充率地关系为:P′+D′= 1.空隙率与填充率也是相互关联地两个性质,空隙率地大小可直接反映散粒材料地颗粒之间相互填充地程度.散粒状材料,空隙率越大,则填充率越小.在配制混凝土时,砂、石地空隙率是作为控制集料级配与计算混凝土砂率地重要依据.四、材料与水有关地性质(一)亲水性与憎水性材料与水接触时,根据材料是否能被水润湿,可将其分为亲水性和憎水性两类.亲水性是指材料表面能被水润湿地性质;憎水性是指材料表面不能被水润湿地性质.当材料与水在空气中接触时,将出现图 1.3所示地两种情况.在材料、水、空气三相交点处,沿水滴地表面作切线,切线与水和材料接触面所成地夹角称为润湿角(用θ表示).当θ越小,表明材料越易被水润湿.一般认为,当θ≤90°时,,材料表面吸附水分,能被水润湿,材料表现出亲水性;当θ>90°时,则材料表面不易吸附水分,不能被水润湿,材料表现出憎水性.亲水性材料易被水润湿,且水能通过毛细管作用而被吸入材料内部.憎水性材料则能阻止水分渗入毛细管中,从而降低材料地吸水性.建筑材料大多数为亲水性材料,如水泥、混凝土、砂、石、砖、木材等,只有少数材料为憎水性材料,如沥青、石蜡、某些塑料等.建筑工程中憎水性材料常被用作防水材料,或作为亲水性材料地覆面层,以提高其防水、防潮性能.(二)吸水性与吸湿性1.吸水性材料在水中吸收水分地性质称为吸水性.吸水性地大小用吸水率表示,吸水率有两种表示方法:质量吸水率和体积吸水率.(1)质量吸水率材料在吸水饱和时,所吸收水分地质量占材料干质量地百分率.用公式表示如下:Wm=(m湿-m干)/m干式中W m——材料地质量吸水率,%;m湿——材料在饱和水状态下地质量,g;m干——材料在干燥状态下地质量,g.(2)体积吸水率材料在吸水饱和时,所吸收水分地体积占干燥材料总体积地百分率.用公式表示如下:W V==(m湿-m干)/V o×1/ρ水式中W V——材料地体积吸水率,%;V o——干燥材料地总体积,cm3;ρ水——水地密度,g/cm3.常用地建筑材料,其吸水率一般采用质量吸水率表示.对于某些轻质材料,如加气混凝土、木材等,由于其质量吸水率往往超过100%,一般采用体积吸水率表示.材料吸水率地大小,不仅与材料地亲水性或憎水性有关,而且与材料地孔隙率和孔隙特征有关.材料所吸收地水分是通过开口孔隙吸入地.一般而言,孔隙率越大,开口孔隙越多,则材料地吸水率越大;但如果开口孔隙粗大,则不易存留水分,即使孔隙率较大,材料地吸水率也较小;另外,封闭孔隙水分不能进入,吸水率也较小.2.吸湿性材料在潮湿空气中吸收水分地性质称为吸湿性.吸湿性地大小用含水率表示,用公式表示如下:W含=(m含-m干)/m干式中W含——材料地含水率,%;m含——材料在吸湿状态下地质量,g;m干——材料在干燥状态下地质量,g.材料地含水率随空气地温度、湿度变化而改变.材料既能在空气中吸收水分,又能向外界释放水分,当材料中地水分与空气地湿度达到平衡,此时地含水率就称为平衡含水率.一般情况下,材料地含水率多指平衡含水率.当材料内部孔隙吸水达到饱和时,此时材料地含水率等于吸水率.材料吸水后,会导致自重增加、保温隔热性能降低、强度和耐久性产生不同程度地下降.材料含水率地变化会引起体积地变化,影响使用.(三)耐水性材料长期在饱和水作用下不破坏,强度也不显著降低地性质称为耐水性.材料耐水性用软化系数表示,用公式表示如下:K软=?饱/?干式中K软——材料地软化系数;?饱——材料在饱和水状态下地抗压强度,MPa;?干——材料在干燥状态下地抗压强度,MPa.软化系数地大小反映材料在浸水饱和后强度降低地程度.材料被水浸湿后,强度一般会有所下降,因此软化系数在0~1之间.软化系数越小,说明材料吸水饱和后地强度降低越多,其耐水性越差.工程中将K软>0.85地材料称为耐水性材料.对于经常位于水中或潮湿环境中地重要结构地材料,必须选用K软>0.85耐水性材料;对于用于受潮较轻或次要结构地材料,其软化系数不宜小于0.75.(四)抗渗性材料抵抗压力水渗透地性质称为抗渗性.材料地抗渗性通常采用渗透系数表示.渗透系数是指一定厚度地材料,在单位压力水头作用下,单位时间内透过单位面积地水量,用公式表示如下:K=Qd/hAt式中K——材料地渗透系数,cm/h;W——透过材料试件地水量,cm3;d——材料试件地厚度,cm;A——透水面积,cm2;t——透水时间,h;h——静水压力水头,cm.渗透系数反映了材料抵抗压力水渗透地能力,渗透系数越大,则材料地抗渗性越差.对于混凝土和砂浆,其抗渗性常采用抗渗等级表示.抗渗等级是以规定地试件,采用标准地实验方法测定试件所能承受地最大水压力来确定,以“P n”表示,其中n为该材料所能承受地最大水压力(MPa)地10倍值.材料抗渗性地大小,与其孔隙率和孔隙特征有关.材料中存在连通地孔隙,且孔隙率较大,水分容易渗入,故这种材料地抗渗性较差.孔隙率小地材料具有较好地抗渗性.封闭孔隙水分不能渗入,因此对于孔隙率虽然较大,但以封闭孔隙为主地材料,其抗渗性也较好.对于地下建筑、压力管道、水工构筑物等工程部位,因经常受到压力水地作用,要选择具有良好抗渗性地材料;作为防水材料,则要求其具有更高地抗渗性.(五)抗冻性材料在饱和水状态下,能经受多次冻融循环作用而不破坏,且强度也不显著降低地性质,称为抗冻性.材料地抗冻性用抗冻等级表示.抗冻等级是以规定地试件,采用标准实验方法,测得其强度降低不超过规定值,并无明显损害和剥落时所能经受地最大冻融循环次数来确定,以“F n”表示,其中n为最大冻融循环次数.材料经受冻融循环作用而破坏,主要是因为材料内部孔隙中地水结冰所致.水结冰时体积要增大,若材料内部孔隙充满了水,则结冰产生地膨胀会对孔隙壁产生很大地应力,当此应力超过材料地抗拉强度时,孔壁将产生局部开裂;随着冻融循环次数地增加,材料逐渐被破坏.材料抗冻性地好坏,取决于材料地孔隙率、孔隙地特征、吸水饱和程度和自身地抗拉强度.材料地变形能力大,强度高,软化系数大,则抗冻性较高.一般认为,软化系数小于0.80地材料,其抗冻性较差.在寒冷地区及寒冷环境中地建筑物或构筑物,必须要考虑所选择材料地抗冻性.五、材料与热有关地性质为保证建筑物具有良好地室内小气候,降低建筑物地使用能耗,因此要求材料具有良好地热工性质.通常考虑地热工性质有导热性、热容量.(一)导热性当材料两侧存在温差时,热量将从温度高地一侧通过材料传递到温度低地一侧,材料这种传导热量地能力称为导热性.材料导热性地大小用导热系数表示.导热系数是指厚度为1m地材料,当两侧温差为1K时,在1s时间内通过1m2面积地热量.用公式表示如下:λ=Qd/(T2-T1)At式中λ——材料地导热系数,W/(m·K);Q——传递地热量,J;α——材料地厚度,m;A——材料地传热面积,m2;t——传热时间,s;T2-T1——材料两侧地温差,K.材料地导热性与孔隙率大小、孔隙特征等因素有关.孔隙率较大地材料,内部空气较多,由于密闭空气地导热系数很小〔λ=0.023W/(m·K)〕,其导热性较差.但如果孔隙粗大,空气会形成对流,材料地导热性反而会增大.材料受潮以后,水分进入孔隙,水地导热系数比空气地导热系数高很多〔λ=0.58W/(m·K)〕,从而使材料地导热性大大增加;材料若受冻,水结成冰,冰地导热系数是水导热系数地4倍,为λ=2.3W/(m·K),材料地导热性将进一步增加.建筑物要求具有良好地保温隔热性能.保温隔热性和导热性都是指材料传递热量地能力,在工程中常把1/λ称为材料地热阻,用R表示.材料地导热系数越小,其热阻越大,则材料地导热性能越差,其保温隔热性能越好.(二)热容量材料容纳热量地能力称为热容量,其大小用比热表示.比热是指单位质量地材料,温度每升高或降低1K时所吸收或放出地热量.用公式表示如下:C=Q/m(T2-T1)式中c——材料地比热,J/(kg·K);Q——材料吸收或放出地热量,J;m——材料地质量,kg;T2-T1——材料加热或冷却前后地温差,K.比热地大小直接反映出材料吸热或放热能力地大小.比热大地材料,能在热流变动或采暖设备供热不均匀时,缓和室内地温度波动.不同地材料其比热不同,即使是同种材料,由于物态不同,其比热也不同.第二节材料地力学性质材料地力学性质是指材料在外力作用下地变形性和抵抗破坏地性质,它是选用建筑材料时首要考虑地基本性质.一、材料地强度材料在荷载(外力)作用下抵抗破坏地能力称为材料地强度.当材料受到外力作用时,其内部就产生应力,荷载增加,所产生地应力也相应增大,直至材料内部质点间结合力不足以抵抗所作用地外力时,材料即发生破坏.材料破坏时,达到应力极限,这个极限应力值就是材料地强度,又称极限强度.强度地大小直接反映材料承受荷载能力地大小.由于荷载作用形式不同,材料地强度主要有抗压强度、抗拉强度、抗弯(抗折)强度及抗剪强度等.实验测定地强度值除受材料本身地组成、结构、孔隙率大小等内在因素地影响外,还与实验条件有密切关系,如试件形状、尺寸、表面状态、含水率、环境温度及实验时加荷速度等.为了使测定地强度值准确且具有可比性,必须按规定地标准实验方法测定材料地强度.材料地强度等级是按照材料地主要强度指标划分地级别.掌握材料地强度等级,对合理选择材料,控制工程质量是十分重要地.对不同材料要进行强度大小地比较可采用比强度.比强度是指材料地强度与其体积密度之比.它是衡量材料轻质高强地一个主要指标.以钢材、木材和混凝土为例,见表1.4所示.钢材、木材和混凝土地强度比较材料体积密度,kg/m3抗压强度f c,MPa 比强度f c/ρo低碳钢松木普通混凝土7860500240041534.3(顺纹)29.40.0530.0690.012由表数值可见,松木地比强度最大,是轻质高强材料.混凝土地比强度最小,是质量大而强度较低地材料.二、材料地弹性与塑性材料在外力作用下产生变形,当外力取消后,能够完全恢复原来形状地性质称为弹性,这种变形称为弹性变形,其值地大小与外力成正比;不能自动恢复原来形状地性质称为塑性,这种不能恢复地变形称为塑性变形,塑性变形属永久性变形.完全弹性材料是没有地.一些材料在受力不大时只产生弹性变形,而当外力达到一定限度后,既产生塑性变形,如低碳钢.很多材料在受力时,弹性变形和塑性变形同时产生,如普通混凝土.三、材料地脆性与韧性材料受外力作用,当外力达到一定限度时,材料发生突然破坏,且破坏时无明显塑性变形,这种性质称为脆性,具有脆性地材料称为脆性材料.脆性材料地抗压强度远大于其抗拉强度,因此其抵抗冲击荷载或震动作用地能力很差.建筑材料中大部分无机非金属材料均为脆性材料,如混凝土、玻璃、天然岩石、砖瓦、陶瓷等.材料在冲击荷载或震动荷载作用下,能吸收较大地能量,同时产生较大地变形而不破坏地性质称为韧性.材料地韧性用冲击韧性指标表示.在建筑工程中,对于要求承受冲击荷载和有抗震要求地结构,如吊车梁、桥梁、路面等所用材料,均应具有较高地韧性.第三节材料地耐久性材料在使用过程中能长久保持其原有性质地能力,称为耐久性.材料在使用过程中,除受到各种外力作用外,还长期受到周围环境因素和各种自然因素地破坏作用.这些破坏作用主要有以下几个方面:物理作用.包括环境温度、湿度地交替变化,即冷热、干湿、冻融等循环作用.材料经受这些作用后,将发生膨胀、收缩或产生应力,长期地反复作用,将使材料逐渐被破坏.化学作用.包括大气和环境水中地酸、碱、盐等溶液或其它有害物质对材料地侵蚀作用,以及日光、紫外线等对材料地作用.生物作用.包括菌类、昆虫等地侵害作用,导致材料发生腐朽、虫蛀等而破坏.机械作用.包括荷载地持续作用,交变荷载对材料引起地疲劳、冲击、磨损等.耐久性是对材料综合性质地一种评述,它包括如抗冻性、抗渗性、抗风化性、抗老化性、耐化学腐蚀性等内容.对材料耐久性进行可靠地判断,需要很长地时间.一般采用快速检验法,这种方法是模拟实际使用条件,将材料在实验室进行有关地快速实验,根据实验结果对材料地耐久性作出判定.在实验室进行快速实验地工程主要有:冻融循环;干湿循环;碳化等.提高材料地耐久性,对节约建筑材料、保证建筑物长期正常使用、减少维修费用、延长建筑物使用寿命等,均具有十分重要地意义.复习思考题1.2.3.4.。
报告一-建筑材料基本性质
![报告一-建筑材料基本性质](https://img.taocdn.com/s3/m/0750670cbf1e650e52ea551810a6f524ccbfcbcf.png)
报告一-建筑材料根本性质1. 引言建筑材料是建筑领域中不可或缺的重要组成局部。
不同的建筑材料具有不同的根本性质,这些性质直接影响着建筑物的质量和性能。
本文将介绍建筑材料的根本性质,包括强度、耐火性、耐久性和热性能。
2. 强度强度是建筑材料的最根本性质之一。
它衡量了材料抵抗外力破坏的能力。
常用于衡量材料强度的参数有抗拉强度、抗压强度和抗弯强度等。
抗拉强度是指材料在拉伸作用下的最大承受能力,抗压强度是指材料在压缩作用下的最大承受能力,抗弯强度是指材料在受弯曲作用下的最大承受能力。
建筑中常用的高强度材料有混凝土和钢材等。
耐火性是建筑材料的另一个重要性质。
它衡量了材料在高温环境下的抗火能力。
耐火性能好的材料可以有效阻止火势的蔓延,保护建筑物和人员的平安。
钢结构常用的耐火材料有耐火砖、耐火板等,混凝土结构常用的耐火材料有耐火混凝土和耐火涂料等。
4. 耐久性耐久性是建筑材料的长期使用性能。
它反映了材料在各种环境条件下的稳定性和持久性。
耐久性能好的材料可以减少维修和更换的频率,降低维护本钱。
常用于衡量材料耐久性的参数有抗腐蚀性、抗风化性和抗老化性等。
例如,高耐久性的建筑涂料可以保证建筑物外观的长期美观。
热性能是建筑材料在热环境下的性能表现。
它包括导热性、保温性和隔热性等。
导热性是指材料传热的能力,保温性是指材料保持室内温度稳定的能力,隔热性是指材料阻止热量传递的能力。
高性能的保温材料可以有效降低建筑物的能耗,提高能源利用效率。
6. 结论建筑材料的根本性质对于建筑物的质量和性能具有重要影响。
强度、耐火性、耐久性和热性能是评价建筑材料性能的重要指标。
选择适合的建筑材料可以提高建筑物的平安性、耐久性和舒适性,并降低能源消耗。
在建筑设计和施工过程中,需要充分考虑材料的根本性质,以保证建筑物的质量和可持续开展。
建筑材料的基本性质_课件
![建筑材料的基本性质_课件](https://img.taocdn.com/s3/m/dce336d570fe910ef12d2af90242a8956becaab2.png)
密实度与孔隙率
固体材料的体积由 ①固体物质部分 ②孔隙部分
(一)密实度
指材料体积内被固体物质所充实的程度。
D
V 0 V0
100
%
(二)孔隙率
指材料(在自然状态下单位)体积内,孔隙所占的比例。
P
V0 V V0
V 1
V0
1
0
100%
一、材料的理论强度
理论抗拉强度
ft
E
d
二、材料的强度
材料在外力(荷载)作用下抵抗破坏的能力。
抗压、抗拉和抗剪强度 :
f Fmax A
材料的抗弯强度与受力情况有关,一般试验方法
是将条形试件放在两支点上,中间作用一集中荷载,
对于矩形截面试件,则抗弯强度 :
fm
3Fm a xL 2bh2
二、材料的强度
三、材料的填充率与空隙率
(一)填充率 散粒材料在某堆积体积中,被颗粒填充的程度。
D'
V0 V0'
100%
' 0
0
100%
(二)空隙率
散粒材料在某堆积体积中,颗粒之间孔隙体积所占的比例。 反映散粒材料的颗粒填充的致密程度。可作为控制混凝土骨料集 配与计算含砂率的依据。
P' 1 D'
四、材料的亲水性与憎水性
第一节材料的组成、结构和构造
1、材料的组成 2、材料的结构和构造
第二节 材料的基本物理性质
1、密度、表现密度与堆积密度 2、密实度与孔隙率 3、材料的填充率与空隙率 4、材料的亲水性与憎水性 5、材料的吸水性与吸湿性 6、材料的耐水性 7、材料的抗渗性
1建筑材料的基本性质
![1建筑材料的基本性质](https://img.taocdn.com/s3/m/89099ee5f424ccbff121dd36a32d7375a417c604.png)
1建筑材料的基本性质建筑材料的基本性质指的是材料在建筑工程中所表现出来的特性和本质。
建筑材料的基本性质对于建筑设计、施工和维护具有重要的影响,下面将介绍建筑材料的几个基本性质。
1.强度和稳定性:建筑材料的强度是指材料抵抗外部力的能力。
建筑材料应具有足够的强度来承受荷载和维持结构的稳定。
不同的建筑材料具有不同的强度,如混凝土、钢材和木材等。
此外,建筑材料还应具有稳定性,即在长期使用和环境变化的情况下,材料的性能应保持稳定。
2.耐久性:建筑材料的耐久性是指在长期使用和环境条件下材料的性能是否能够保持。
耐久性对于建筑工程的整体安全和使用寿命至关重要。
一般来说,建筑材料应具有耐久性,能够抵抗腐蚀、变形、老化等现象。
3.导热性:建筑材料的导热性是指材料对热的传导能力。
建筑中需要考虑材料的导热性,以确保室内温度的控制和节能效果的实现。
例如,保温材料通常具有较低的导热性,能够防止室外热量传导到室内。
4.导电性:建筑材料的导电性是指材料对电流的传导能力。
对于一些建筑结构,如电气系统和照明系统,需要考虑材料的导电性以确保电流的安全传输。
5.吸声性:建筑材料的吸声性是指材料对声音的吸收能力。
在室内设计中,吸声性是非常重要的,可以减少噪音的传播和反射,提供良好的声学环境。
6.抗震性:建筑材料的抗震性是指材料在地震或其他振动情况下的稳定性和抵抗能力。
建筑材料应具有足够的抗震性能,以确保在地震等自然灾害中建筑结构的安全性。
7.可塑性和可加工性:建筑材料的可塑性和可加工性是指材料能够通过加工和成型来满足建筑设计的要求。
可塑性通常指材料的变形能力,而可加工性指材料的加工难易程度。
8.轻质性和重质性:建筑材料的轻质性和重质性是指材料的密度和重量。
不同的建筑材料具有不同的重量和密度特性,这将直接影响到建筑结构的设计和施工成本。
9.可回收性:建筑材料的可回收性是指材料能否进行再利用或回收利用。
建筑工程产生的废弃材料对环境造成很大的影响,因此可回收性成为了现代建筑施工的一个重要考量因素。
建筑材料的基本性质
![建筑材料的基本性质](https://img.taocdn.com/s3/m/e3bbf9a5112de2bd960590c69ec3d5bbfd0ada89.png)
建筑材料的基本性质1.力学性能:建筑材料的力学性能包括强度、刚度和韧性等。
强度是材料抵抗外部负荷的能力,是材料在拉伸、压缩、剪切和弯曲等力学行为中所表现出的性能。
刚度是材料对外部力反应的刚性程度,反映了材料在受力时的变形能力。
韧性是材料在受力过程中的延展能力,表征了材料在受到剪切力或冲击力时的抵抗能力。
2.耐久性:建筑材料的耐久性是指材料在使用环境中长期抵抗自然环境和人为因素的侵蚀能力。
材料的耐久性直接影响建筑物的使用寿命和维护成本。
主要影响材料耐久性的因素包括水分、温度、紫外线、化学腐蚀、微生物和物理破坏等。
3.热学性能:建筑材料的热学性能包括导热性、热膨胀性和隔热性等。
导热性是指材料传导热量的能力,是设计建筑物保温节能的重要指标。
热膨胀性是指材料在受热后体积变化的能力,影响着建筑物在温差变化时的变形和破坏。
隔热性是指材料对热量传递的阻止作用,是建筑物保温隔热的基础。
4.声学性能:建筑材料的声学性能包括隔声性和吸声性。
隔声性是指材料抵制声音传导的能力,是建筑物降低室内外噪音干扰的重要指标。
吸声性是指材料对声音能量的吸收能力,用于调节建筑内部声学环境。
5.光学性能:建筑材料的光学性能包括透光性、反射性和折射性等。
透光性是指材料对光的透过能力,影响建筑物室内外的采光和景观观赏效果。
反射性是指材料对光的反射作用,决定了建筑表面的光亮度和光线分布。
折射性是指材料对光的弯曲偏折作用,影响着建筑物玻璃幕墙和光学设备的使用效果。
6.造型性能:建筑材料的造型性能是指材料在加工和施工过程中的可塑性和可加工性。
可塑性是指材料在受力后的变形能力,影响着建筑结构设计和装饰效果。
可加工性是指材料在加工过程中的易加工性和加工效果,影响着建筑物施工工艺和表面质量。
总的来说,建筑材料的基本性质是多方面的,涵盖了力学、耐久、热学、声学、光学和造型等各方面。
这些性质的综合考虑对建筑设计和施工起着决定性的作用,能够保证建筑物的结构稳定、功能合理和寿命长久。
1建筑材料的基本性质
![1建筑材料的基本性质](https://img.taocdn.com/s3/m/3c738144773231126edb6f1aff00bed5b8f37358.png)
1建筑材料的基本性质建筑材料是构筑建筑物的基础,其性质直接影响建筑物的质量、寿命和安全性。
基本的建筑材料包括石材、木材、金属和混凝土等,每种材料都有其独特的性质和特点。
下面将介绍建筑材料的基本性质。
1.强度:建筑材料的强度是其最基本的特性之一、强度可以分为抗压强度、抗拉强度、抗弯强度等。
各种材料的强度不同,因此在选材时需根据实际需要进行选择。
一般来说,混凝土的抗压强度较高,适合用于承受大量压力的结构,而钢材的抗拉强度较高,适合用于受拉受力较大的部位。
2.耐久性:建筑材料的耐久性是指其在环境中长期使用时的稳定性和耐用性。
耐久性取决于材料的化学性质、力学性能和物理性质等因素。
一些材料容易受到环境因素的影响而产生老化或破损,因此在选材时需考虑到其耐久性。
3.导热性和隔热性:建筑材料的导热性和隔热性直接影响建筑物的保温能力。
导热性较好的材料能够迅速传递热量,而隔热性较好的材料可以有效减少热量的传递。
因此,在建筑物的设计中,需根据当地气候条件和建筑的用途选择合适的材料以确保室内温度的舒适度。
4.吸水性和防水性:建筑材料的吸水性和防水性直接关系到建筑物的防水和防潮能力。
吸水性较好的材料会吸收大量水分,在潮湿环境中容易发生腐蚀和变质,因此建筑材料的防水性是十分重要的。
一些材料的表面会经过特殊处理以提高其防水性能。
5.施工性能:建筑材料的施工性能包括其加工性、粘接性、可塑性等。
这些性能直接影响建筑物的施工工艺和施工质量。
一些材料的施工性能较差,可能会导致施工过程中出现问题,因此在选材时需考虑其施工性能。
综上所述,建筑材料的基本性质包括强度、耐久性、导热性和隔热性、吸水性和防水性、施工性能等。
选择合适的建筑材料对于建筑物的质量、寿命和安全性至关重要,需要综合考虑各种因素并根据实际需要进行选择。
建筑材料的性质直接关系到建筑物的整体质量和性能,因此在设计和建造过程中需对建筑材料进行科学合理的选用和应用。
建筑材料基本性质介绍
![建筑材料基本性质介绍](https://img.taocdn.com/s3/m/08171180c67da26925c52cc58bd63186bdeb9241.png)
陶瓷:用于墙面、 地面等建筑材料, 具有强度高、耐 久性好等特点
玻璃:用于门窗、 幕墙等建筑材料, 具有透光性好、 耐久性好等特点
石材:用于墙面、 地面等建筑材料, 具有强度高、耐 久性好等特点
有机材料
01
04
沥青:天然有机材料, 具有良好的防水、防潮 性能
03
橡胶:合成有机材料, 具有优良的弹性、耐磨 性和耐腐蚀性
景观装饰:使用各种建筑材料,如雕塑、喷泉、 绿化等,提升建筑物周边的景观效果
建筑构件装饰:使用各种建筑材料,如门窗、栏 杆、屋顶等,增强建筑物的艺术感和功能性
建筑功能
结构功能:支撑建筑物, 承受荷载
围护功能:保护建筑物内部 空间,抵御外界环境影响
装饰功能:美化建筑物外观, 节能功能:降低建筑物能耗,
提高建筑物的艺术价值
提高能源利用效率
环保功能:减少环境污染, 提高建筑物的环保性能
智能功能:实现建筑物的智 能化控制和管理,提高建筑 物的使用效率和舒适性。
02
塑料:合成有机材料, 具有轻质、耐腐蚀、易 成型等特点
木材:天然有机材料, 具有优良的保温、隔音 性能
复合材料
STEP1
STEP2
STEP3
STEP4
复合材料是由两种 或两种以上的材料 通过物理或化学方 法结合而成的材料。
复合材料的优点包 括:强度高、重量 轻、耐腐蚀、耐高 温、耐磨损等。
常见的复合材料包括: 玻璃纤维增强塑料 (FRP)、碳纤维增 强塑料(CFRP)、 金属基复合材料 (MMC)等。
10
耐老化性:抵 抗老化的能力
力学性质
● 强度:材料抵抗外力破坏的能力 ● 弹性:材料在外力作用下产生变形,外力消失后恢复原状的能力 ● 塑性:材料在外力作用下产生永久变形的能力 ● 硬度:材料抵抗外力压入的能力 ● 韧性:材料抵抗冲击破坏的能力 ● 耐磨性:材料抵抗磨损的能力 ● 耐腐蚀性:材料抵抗化学物质侵蚀的能力 ● 导热性:材料传递热量的能力 ● 导电性:材料传递电流的能力 ● 磁性:材料在磁场中表现出的性质
《建筑材料》模块一建筑材料的基本性质
![《建筑材料》模块一建筑材料的基本性质](https://img.taocdn.com/s3/m/d85a484fbb1aa8114431b90d6c85ec3a87c28b82.png)
《建筑材料》模块一建筑材料的基本性质建筑材料是指用于建筑工程中的材料,包括天然材料和人工材料两大类。
建筑材料的基本性质是指材料在使用过程中所具有的一些基本特性,包括物理性能、力学性能、化学性能、热性能和耐久性等。
一、物理性能:1.密度:指材料的单位体积质量,常用单位是千克/立方米。
密度高的材料一般耐磨、耐腐蚀、耐高温等性能较好,但相对较重,施工和运输相对困难。
2.体积稳定性:指材料在不同温度和湿度下,体积是否发生变化。
体积稳定性好的材料,能保证建筑物整体结构的稳定性和使用寿命。
3.热膨胀系数:指材料在温度变化时,单位温度变化下对应的长度变化比例。
热膨胀系数高的材料易受温度变化影响,可能导致构件变形、开裂甚至结构破坏。
二、力学性能:1.强度:指材料在外力作用下变形和破坏的抵抗能力。
常用指标有抗压强度、抗拉强度、抗弯强度等。
建筑材料的强度直接关系到建筑物的安全性能。
2.韧性:指材料在承受外力时能够发生塑性变形的能力。
韧性好的材料能够吸收冲击能量,防止结构突然破坏。
3.刚度:指材料在外力作用下产生的变形量,与外力的大小成正比。
刚度高的材料具有较小的变形量和较大的弹性回复能力。
三、化学性能:1.耐酸碱性:指材料在酸碱环境中的抵抗能力。
耐酸碱性好的材料适用于潮湿、酸碱环境下的建筑结构。
2.耐腐蚀性:指材料在腐蚀性介质中的抵抗能力。
耐腐蚀性好的材料适用于高腐蚀性环境中的建筑结构。
四、热性能:1.热导率:指材料导热的能力。
热导率高的材料有较好的热传递性能,适用于保温建筑结构。
2.热膨胀系数:同物理性能中的热膨胀系数。
五、耐久性:1.抗冻性:指材料在低温下的抵抗能力。
抗冻性好的材料能够在低温环境中使用而不受冻害。
2.抗渗性:指材料对水、湿气渗透的抵抗能力。
抗渗性好的材料能够保护建筑结构免受水分侵蚀和渗透。
总之,建筑材料的基本性质对于建筑的安全性、耐用性和舒适性有着重要的影响。
施工人员在选择建筑材料时,需要根据不同的工程要求和环境条件综合考虑材料的各项性能指标。
建筑材料的基本性质
![建筑材料的基本性质](https://img.taocdn.com/s3/m/3a8d44abd5bbfd0a795673b1.png)
混凝土强度等级:C30、C35等 硅酸盐水泥强度等级:42.5级、52.5级等
强度值与强度等级不能混淆,强度 值是表示材料力学性质的指标,强度等 级是根据强度值划分的级别。
(3)比强度
思考:不同的材料如何比较强度?
比强度是衡量材料轻质高强的一个 指标,材料的强度与其表观密度之比,即:
比强度 f
0
几种主要材料的比强度值
材料
低碳钢 烧结普通砖
松木 普通混凝土
表观密度
' 0
(kg/m3)
7850
1700
500
2400
强度f (MPa)
420 10 100 40
比强度(f/ρo)
0.054 0.006 0.200 0.017
1.2.2 弹性和塑性
材料在外力作用下产生变形,外力撤 掉后变形能完全恢复的性质,称为弹性。 相应的变形称为弹性变形。
V0
0
2)空隙率
指散粒材料在其堆积体积中,颗粒之 间空隙体积占材料堆积体积的百分率 。
P ' V0 V0 100% (1 0 ) 100% 1 D
V0
0
P’+D’=1
1.1.2 材料与水有关的性质
思考:水滴在粘土砖表面和塑料表面有什 么不同?
材料在与水接触时,不同材料遇水后 和水的互相作用情况是不一样的,根据材 料表面被水润湿的情况,分为亲水性材料 和憎水性材料。
W含
m含 - m干 m干
100%
影响吸湿性的因素:
材料本身的性质,如亲水性或憎水性; 孔隙大小及孔隙特征等; 周围空气的温度和湿度 。 平衡含水率:与空气湿度相平衡时的含水率。
例:有100g湿砂,含水率为10%, 请问干砂有多少?
建筑材料的基本性质有哪些
![建筑材料的基本性质有哪些](https://img.taocdn.com/s3/m/965022a218e8b8f67c1cfad6195f312b3069eb71.png)
建筑材料的基本性质有哪些1.力学性能:建筑材料需要具备一定的强度和刚度,以承受荷载并保持结构的稳定性。
强度指材料抗拉、抗压和抗弯的能力,刚度指材料在受力下变形的能力。
2.耐久性:建筑材料需要耐久,即在长期使用和环境影响下仍能保持其性能和功能。
耐久性受到材料的化学稳定性、耐热性、耐候性和耐腐蚀性等因素的影响。
3.导热性和隔热性:建筑材料需要具备良好的导热性和隔热性能。
导热性指材料传导热量的能力,隔热性指材料阻止热量传导的能力。
合适的导热性和隔热性能可以节约能源,并提高建筑的舒适度。
4.导电性:对于一些特殊需求,如电气工程中,材料的导电性成为一个重要的性能指标。
导电性指材料能否传导电流的能力。
5.透明性:建筑材料的透明性是指材料对可见光的透过能力。
对于建筑物中的窗户和立面材料,透明性是重要的设计和功能要求。
6.阻燃性:建筑材料需要具备一定的阻燃性能,以保证建筑物在火灾发生时不易燃烧及蔓延,并提供逃生通道和安全时间。
7.声学性能:建筑材料对声音的传播和吸收具有不同的性能。
声学性能的好坏直接影响建筑物的声学环境。
8.环境友好性:建筑材料的环境友好性包括对环境的污染程度、可再生性和回收利用率等方面。
环境友好的材料可减少对环境的影响,并推动可持续发展。
9.施工性能:建筑材料需要具备良好的施工性能,方便加工、搬运、安装和连接。
施工性能可以影响工程进度和质量。
10.经济性:建筑材料的经济性是指材料的成本效益和使用寿命之间的关系。
材料的经济性需要综合考虑材料的性能、价格和维护等因素。
综上所述,建筑材料的基本性质涉及了力学性能、耐久性、导热性和隔热性、导电性、透明性、阻燃性、声学性能、环境友好性、施工性能和经济性等方面。
在选择和使用建筑材料时,需要综合考虑这些性质的要求,并根据具体的工程需求做出合适的选择。
建筑材料的基本性质
![建筑材料的基本性质](https://img.taocdn.com/s3/m/85a7b044bf23482fb4daa58da0116c175f0e1ecc.png)
1.1 基本物理性质
含孔材料的体积组成示意图如图1-1所示。从图-1可知,含孔材料 的体积可用以下三种方式表示。
(1)材料绝对密实体积。用V表示,是指材料在绝对密实状态下的体
积。
(2)材料的孔体积。用VP 表示,指材料所含孔隙的体积,分为开口 孔体积(记为VK)和闭口孔体积(记为VB )。
材料的堆积密度定义中亦未注明材料的含水状态。根据散粒材料的 堆积状态,堆积体积分为自然堆积体积和紧密堆积体积(人工捣实后)。 由紧密堆积测得的堆积密度称为紧密堆积密度。
常用建筑材料的密度、表观密度和堆积密度如表1-1所示。
三、密实度与孔隙率、填充率与空隙率
1.密实度
密实度是指材料体积内被固体物质所充实的程度,即材料的绝对密 实体积与总体积之比。可按材料的密度与表观密度计算如下:
2.孔隙率
孔隙率是指材料内部孔隙(开口的和封闭的)体积所占总体积的比例 ,按下式计算:
上一页
下一页 返回
1.1 基本物理性质
P V0 V 1 V 1 0 1 D
V0
V0
式中 P —— 材料的孔隙率,常以(%)表示。
材料的孔隙率与密实度是从两个不同方面反映材料的同一个性质。 通常采用孔隙率表示,孔隙率可分为开口孔隙率和闭口孔隙率。
V 0 = V0+ Vj = V + VP +Vj;
上一页
下一页 返回
1.1 基本物理性质
二、材料的密度、表观密度和堆积密度 1.密度 密度是指多孔固体材料在绝对密实状态下,单位体积的质量(俗称 比重)。用下式计算:
m
V
式中 ρ—— 材料的密度(g/cm3或kg/m3)
m —— 材料的质量(干燥至恒重)(g或kg)
建筑材料的基本性质
![建筑材料的基本性质](https://img.taocdn.com/s3/m/bd9714231fd9ad51f01dc281e53a580216fc50b7.png)
建筑材料的基本性质引言建筑材料是建筑行业中最基本、最重要的组成部分之一。
它们对建筑工程的质量和寿命具有重要影响。
本文将介绍建筑材料的基本性质,包括物理性质、力学性质和化学性质等方面。
通过了解这些性质,可以更好地选择和使用适合的建筑材料,确保建筑工程的质量和安全性。
物理性质密度和比重建筑材料的密度是指单位体积的质量,通常以千克/立方米(kg/m3)来衡量。
不同的建筑材料具有不同的密度。
比重是材料的密度与水的密度之比,可以用来比较不同材料的轻重程度。
湿热性能是指建筑材料在潮湿环境下的性能表现。
某些材料在潮湿环境中容易吸湿膨胀或发生腐蚀,从而影响建筑结构的稳定性。
因此,在选择建筑材料时,需要考虑其湿热性能。
热性能热性能是指建筑材料对热的传导、吸收和保持能力。
不同的建筑材料具有不同的热性能。
一些具有良好热性能的建筑材料可以提供良好的隔热效果,降低能源消耗。
光学性能光学性能是指建筑材料对光的吸收、反射和透射能力。
不同的建筑材料具有不同的光学性能。
一些材料具有良好的透明性,可以提供良好的采光效果,同时一些材料具有良好的反射能力,可以减少室内照明需求。
声学性能是指建筑材料对声音的吸收、反射和传导能力。
不同的建筑材料具有不同的声学性能。
一些材料具有良好的吸音性能,可以减少噪音的传递和反射。
力学性质强度和刚度强度是指建筑材料的抵抗外力破坏的能力。
刚度是指建筑材料对变形的抵抗能力。
强度和刚度是衡量建筑材料力学性能的重要指标。
可塑性和脆性可塑性和脆性是建筑材料在受力过程中的表现形式。
可塑性是指材料能够发生塑性变形并恢复原状的能力,而脆性是指材料容易发生断裂的倾向。
疲劳性能是指建筑材料在交替荷载作用下的耐久性能。
一些材料在长期受到交替荷载的作用下容易产生疲劳破坏,因此在设计建筑结构时需要考虑疲劳性能。
化学性质耐腐蚀性耐腐蚀性是指建筑材料在酸碱和其他化学物质的作用下的稳定性能。
一些材料具有良好的耐腐蚀性,可以延长建筑材料的使用寿命。
建筑材料的基本性质知识
![建筑材料的基本性质知识](https://img.taocdn.com/s3/m/66c2f2e5b1717fd5360cba1aa8114431b90d8ed0.png)
建筑材料的基本性质知识引言建筑材料是构建建筑物的基石,其性质影响着建筑物的安全性、耐久性和舒适性。
在建筑设计和施工过程中,了解建筑材料的基本性质至关重要。
本文将介绍建筑材料的几个基本性质,包括力学性能、热性能、耐久性、声学性能和光学性能。
一、力学性能1.强度:建筑材料的强度是指材料在外力作用下的承载能力。
常见的建筑材料强度指标包括抗拉强度、抗压强度和抗弯强度等。
2.刚度:材料的刚度决定了其在受力时的变形程度。
刚度越大,材料的变形能力越低。
建筑材料的刚度直接影响着结构的稳定性和变形控制能力。
3.蠕变性:蠕变性是材料在持续应力作用下随时间发生的变形。
蠕变性对建筑结构长期稳定性的影响非常重要,特别是在高温环境或大荷载条件下。
二、热性能1.导热性:建筑材料的导热性能决定着建筑物的保温和隔热性能。
低导热性能的材料可以减少热量传导,提高室内环境的舒适度。
2.热膨胀性:热膨胀性是指材料在受到温度变化时的体积变化。
材料的热膨胀特性在建筑物的设计和施工中需要考虑,以避免由热膨胀引起的不良影响。
三、耐久性1.风化性:建筑材料暴露在自然环境中,容易受到风化作用的影响。
了解建筑材料的风化性能可以选择适合的材料,延长建筑物的使用寿命。
2.耐久性:建筑材料需要能够承受长期使用和环境的影响,包括化学物质、湿气、紫外线等。
耐久性好的材料可以减少维修和更换频率,降低维护成本。
四、声学性能1.隔音性:建筑材料的隔音性能对室内环境的舒适度和私密性有着重要的影响。
合适的隔音材料可以减少噪音传递,创造安静的室内环境。
2.吸音性:吸音性是指材料对声波的吸收能力。
在建筑物中使用吸音材料可以降低噪声反射和回声,改善室内声学环境。
五、光学性能1.透光性:光线在建筑材料中的穿透能力决定了室内的采光效果。
透光性好的材料可以提高室内的自然采光,减少对人工照明的依赖。
2.折射性:建筑材料对光线的折射效果影响着建筑物的外观和视觉效果。
合适的折射性可以提高建筑物的美观度和视觉吸引力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考题:比较密度和表观密度的大小?
m ?思考题:如何 测定材料的表观密度? 0 v0
一、测定材料的干质量m:
取材料样品
磨细
烘干
冷却到室温
烘箱1050C~1100C 干燥器 天平
称量质量 m
二、测定材料的自然体积Vo,分两种情况:
(1)对于形状规则的材料,如砖、石块等: 用游标卡尺可定材料的自然体积; a) 对于六面体,测定长、宽、高; b) 对于圆柱体,测定其直径和高;
(1)致密结构 内部无孔隙,如钢材、 玻璃、天然石材等;
(2)细观结构:用光学显微镜观察到的 微米级的组织结构;
(3)微观结构:用电子显微镜、X光射线
衍射仪等手段来研究材料分子、原子级的 微观组织,称为微观结构;
微观结构可分晶体和非晶体两类;
构成的晶体,如金刚石 ; (1)原子晶体:由中性原子 (2)离子晶体:由正负离子 构成的晶体,如氯化钙 等; ( a )晶 体 ( 3 )分子晶体:由分子构成 的晶体,如有机化合物 ; (4)金属晶体:由金属阳离 子构成的金属晶体,如 钢、铁 ( b )非 晶 体 :
(2)对于形状不规则的材料,如卵石、碎 石等,采用排液法确定其自然体积;
*排液法测定不规则材料自然体积V石:
三、计算材料的表观密度 o :
m石 m m石 0 v0 V石 m2 m1 m石
质量(m) : g ; 体积(V ):cm3 * *单位规定: 0 3 水的密度为 1g / cm
项目一 工程材料的基本性质
(1)教学目的与要求:
物理性质:密度、表观密度、堆积度;
孔隙率、填充率度和空隙率 力学性质:材料的强度、弹性和塑性、脆性与韧性; 材料与水有关的性质:亲水性和疏水性、吸水性和 吸湿性;耐水性;抗渗性和抗冻性; 材料的热工性能:比热、导热性;
材料的耐久性能; 材料的组成结构、构造与材料性质的关系;
m v
*材料在致密状态下的体积指的是不包含材 料内部孔隙的实体积; 对于致密材料(如钢材、玻璃等)而言, 内部是不含孔隙的,故体积很容易测定;
但是对于绝大多数材料而言,在自然状态 下材料是含有一些孔隙的;
有孔隙材料的体积测定方法:
一般采用李氏瓶测定有孔材料的实体积
?思考题: 如何测量有孔隙材料的密度?
?思考题:如何测量木材的表观密度?
3 堆积密度: 指的是颗粒状或粉状材料在堆积状态下, 单位体积的质量; m ' * 计算公式为: 0 '
— 堆积密度(kg/m3)
' 0
V0
m—材料在干燥状态下的质量(kg);
V0' —材料在堆积状态下的体积(m3);
?思考题:如何测定砂和石子的堆积密度? (1)首先采用前述方法测定其干质量m; (2)然后采用容量升来测定砂子、石子的堆积 ' 体积 V0,方法如下: a)砂子采用1L、5L的容量升来测堆积体积; b)石子采用10L、20L、30L的容量升来 测定 其堆积体积; m (3)利用公式计算堆积密度: '
(2)教学重点、难点:材料的物理、力学性质 (3)课堂讲授: 1 课时+0.5课时习题课
2.1 材料组成、结构及构造对性质的影响
2.2.1 材料的组成 材料的组成包括化学组成和矿物组成; (1)化学组成: 定义:化学组成是指构成材料的化学成分。
化学组成对材料性质的影响:
不同化学组成的材料其性质不同;
例:化学元素碳对钢材性质的影响如下图:
硬度 抗拉强度
断面收缩率 冲击韧性 1
伸长率
含碳量C% 1.4
(2 矿物组成
许多无机非金属材料都是由各种矿物组成
的。
相同的化学成分组成的材料,不同矿物的
矿物成分,材料的性质也是不同的。
例如:硅酸盐水泥熟料中,铝酸三钙、硅
酸三钙、硅酸二钙和铁铝酸四钙的性能都是
熔 融 物 迅 速 冷 却 使 得点 质来 不 及 按 一 定 规 律 排 列 而 得 到 的 固 体 ,粉 如煤 灰
2.2 材料的物理性质
2.2.1密度、表观密度和堆积密度
1 密度:
指的是材料在绝对密实状态下,单位体积的 干质量, 计算公式为:
上式中, — 密度(g/cm3) m—材料在干燥状态下的质量(g); v—材料在绝对密实状态下的体积(cm3);
0
V
*53, 其干燥质量为2487g,孔隙率为 37%,求其密度和表观密度?
2.2.2 材料的密实度和孔隙率
一、材料的密实度和孔隙率: 1、材料的密实度:
是指材料体积内被固体物质充实的程度, 也就是固体体积占总体积的比例,用D来表示。
V D 100% V0
*测量有孔隙材料密度的方法与步骤:
2表观密度:
指的是材料在自然状态下,单位体积的干质量;
m 表观密度的计算公式为: 0 v 30
上式中, 0 — 表观密度(kg/m )
m—材料在干燥状态下的质量(kg);
vo—材料在自然状态下的体积(m3);
*自然状态下的体积vo= 密实状态下的体积v +孔隙体积v孔
不同的;
2.1.2 材料的结构和构造
(1)宏观结构;(2)细观结构;(3)微观结构
(1)宏观结构:用肉眼或放大镜能够分辨的 毫米级以上的粗大组织;
泡沫塑料等; (2)多孔结构 内部具有粗大孔隙:如 (3)微孔结构 建筑石膏等; (4)纤维结构:内部组织 具有方向性,如木材、 玻璃纤维增强塑料; (5)片状或层状结构 如胶合板、夹心板等; (6)散粒结构 如砂子、石子等;
(m ) 0 V 100%(2.4) 或D 100% 100% V0 (m )
0
2 孔隙率:
是指材料体积内,孔隙体积占总体积的百分率, 用P表示。
P=(V0-V)/V0*100%
=(1-V/V0)*100%
0 (1 ) 100% (2.5)