人体识别智能监控系统

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人体识别智能监控系统

上传时间: 2003-12-12 20:53:06 作者:吴瑜

浅析人脸识别技术

摘要:在我们的项目人体识别智能监控系统中,虽然预期目标只需实现人体的检测的定位。但是,最终目的是要根据所定位的人体进行人脸识别。这样不但增强了系统的抗干扰性,提高了正确预警率,还增强了系统的实用性。本文总结了近年来的人脸识别技术的发展情况,分析其实现途径和技术难点。

关键词:人脸识别,定位,检测

人脸识别就是对于输入的人脸图像或者视频,首先判断其中是否存在人脸,如果存在人脸,则进一步的给出每个人脸的位置、大小和各个主要面部器官的位置信息,并依据这些信息,进一步提取每个人脸中所蕴含的身份特征,并将其与已知人脸库中的人脸进行对比,从而识别每个人脸的身份。人脸识别的过程可以分为以下三个部分:

1、人脸检测:判断输入图像中是否存在人脸,如果有,给出每个人脸的位置,大小;

2、面部特征定位:对找到的每个人脸,检测其主要器官的位置和形状等信息;

3、人脸比对:根据面部特征定位的结果,与库中人脸对比,判断该人脸的身份信息;

从应用的角度,人脸识别包括两大类:

1、人脸身份识别:即根据人脸图像识别出人物的身份,解决是谁的问题;

2、人脸身份确认/验证:判断图像中的人脸是否是指定的人,即解决是不是某人的问题;

人脸识别技术具有广泛的应用前景,在国家安全、军事安全和公共安全领域,智能门禁、智能视频监控、公安布控、海关身份验证、司机驾照验证等是典型的应用;在民事和经济领域,各类银行卡、金融卡、信用卡、储蓄卡的持卡人的身份验证,社会保险人的身份验证等具有重要的应用价值;在家庭娱乐等领域,人脸识别也具有一些有趣有益的应用,比如能够识别主人身份的智能玩具、家政机器人,具有真实面像的虚拟游戏玩家等等。

下面我就对以上技术作详细的介绍。

1、人脸检测与跟踪技术

显然,要识别图像中出现的人脸,首要的一点就是要找到人脸。人脸检测与跟踪研究的就是如何从静态图片或者视频序列中找出人脸,如果存在人脸,则输出人脸的数目、每个人脸的位置及其大小。人脸跟踪就是要在检测到人脸的基础上,在后续的人脸图像中继续捕获人脸的位置及其大小等性质。人脸检测是人脸身份识别的前期工作。同时,人脸检测作为完整的单独功能模块,在智能视频监控、视频检索和视频内容组织等方面有直接的应用。

一种可实现的在复杂背景下的人脸检测与跟踪系统,可采用模板匹配、特征子脸、彩色信息等人脸检测技术,能够检测平面内旋转的人脸,并可以跟踪任意姿态的运动的人脸。该技术简述如下:它是一个两级结构的算法,对于扫描窗口,首先和人脸模板进行匹配,如果匹配,那么将其投影到人脸子空间,由特征子脸技术判断是否为人脸。模板匹配的方法是:按照人脸特征,将人脸图像划分成14个不同区域,用每个区域的灰度统计值表示该区域,用整个样本的灰度平均值归一化,从而得到用特征向量表示的人脸模板。通过非监督学习的方法对训练样本聚类,得到参考模板族。将测试图像的模板与参考模板在某种距离测度下匹配,通过阈值判断匹配程度。特征子脸技术的基本思想是:从统计的观点,寻找人

脸图像分布的基本元素,即人脸图像样本集协方差矩阵的特征向量,以此近似地表征人脸图像。这些特征向量称为特征脸(Eigenface)。实际上,特征脸反映了隐含在人脸样本集合内部的信息和人脸的结构关系。将眼睛、面颊、下颌的样本集协方差矩阵的特征向量称为特征眼、特征颌和特征唇,统称特征子脸。特征子脸在相应的图像空间中张成子空间,称为子脸空间。计算出测试图像窗口在子脸空间的投影距离,若窗口图像满足阈值比较条件,则判断其为人脸。

除此,根据国际上最新的研究成果,一种基于AdaBoost的实时人脸检测方法其检测速度可以达到平均15帧/秒(图像大小是384x288)。而且他还可以很容易的扩展到多姿态人脸检测上去。

2、面部关键特征定位及人脸2D形状检测技术

在人脸检测的基础上,面部关键特征检测试图检测人脸上的主要的面部特征点的位置和眼睛和嘴巴等主要器官的形状信息。灰度积分投影曲线分析、模板匹配、可变形模板、Hough变换、Snake算子、基于Gabor小波变换的弹性图匹配技术、主动性状模型和主动外观模型是常用的方法。

可变形模板的主要思想是根据待检测人脸特征的先验的形状信息,定义一个参数描述的形状模型,该模型的参数反映了对应特征形状的可变部分,如位置、大小、角度等,它们最终通过模型与图像的边缘、峰、谷和灰度分布特性的动态地交互适应来得以修正。由于模板变形利用了特征区域的全局信息,因此可以较好地检测出相应的特征形状。由于可变形模板要采用优化算法在参数空间内进行能量函数极小化,因此算法的主要缺点在于两点:一、对参数初值的依赖程度高,很容易陷入局部最小;二、计算时间长。针对这两方面的问题,可采用了一种由粗到细的检测算法:首先利用人脸器官构造的先验知识、面部图像灰度分布的峰谷和频率特性粗略检测出眼睛、鼻子、嘴、下巴的大致区域和一些关键的特征点;然后在此基础上,给出了较好的模板的初始参数,从而可以大幅提高算法的速度和精度。

眼睛是面部最重要的特征,它们的精确定位是识别的关键。文献[34]提出了一种基于区域增长的眼睛定位技术,该技术在人脸检测的基础上,充分利用了眼睛是面部区域内脸部中心的左上方和右上方的灰度谷区这一特性,可以精确快速的定位两个眼睛瞳孔中心位置。该算法采用了基于区域增长的搜索策略,在人脸定位算法给出的大致人脸框架中,估计鼻子的初始位置,然后定义两个初始搜索矩形,分别向左右两眼所处的大致位置生长。该算法根据人眼灰度明显低于面部灰度的特点,利用搜索矩形找到眼部的边缘,最后定位到瞳孔的中心。

主动形状模型(ASM)和主动外观模型(AAM)是近年来流行的一般对象形状提取算法,其核心思想是在某种局部点模型匹配的基础上,利用统计模型对待识别的人脸的形状进行约束,从而转化为一个优化的问题,并期望最终收敛到实际的人脸形状上去。我们对ASM和AAM进行了跟踪研究,发现了ASM的一些缺点,在局部模型和局部特征约束方面作了一些改进,同时,注意到ASM速度快,精度较低,而AAM 复杂度高、速度慢的缺点,可建立了二者的融合模型。

3、人脸确认与识别技术

主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较好的效果;基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。特征脸方法是90年代初期由Turk和Pentland提出的目前最流行的算法之一,具有简单有效的特点,现在Eigenface算法已经与经典的模板匹配算法一起成为测试人脸识别系统性能的基准算法;而自1991年特征脸技术诞生以来,研究者对其进行了各种各样的实验和理论分析,FERET'96测试结果也表明,改进的特征脸算法是主流的人脸识别技术,也是具有最好性能的识别方法之一。

近年来,国内学者在对特征脸技术进行认真研究的基础上,尝试了基于特征脸特征提取方法和各种

相关文档
最新文档