浙教版九年级《数学》上册
2024年浙教版数学九年级上册1.1《二次函数》教学设计
![2024年浙教版数学九年级上册1.1《二次函数》教学设计](https://img.taocdn.com/s3/m/eeeb847c905f804d2b160b4e767f5acfa1c7832f.png)
2024年浙教版数学九年级上册1.1《二次函数》教学设计一. 教材分析《二次函数》是2024年浙教版数学九年级上册的教学内容,本节课主要让学生掌握二次函数的定义、性质以及图象。
通过学习,学生能够理解二次函数在实际生活中的应用,提高解决问题的能力。
教材内容安排合理,由浅入深,逐步引导学生掌握二次函数的知识。
二. 学情分析九年级的学生已经具备了一定的函数知识,对一次函数和二次函数有一定的了解。
但学生在学习二次函数时,可能会觉得比较抽象,难以理解。
因此,在教学过程中,需要注重引导学生从实际问题中提炼出二次函数模型,培养学生的抽象思维能力。
三. 教学目标1.了解二次函数的定义及其一般形式;2.掌握二次函数的性质,包括开口方向、对称轴、顶点等;3.能够通过实际问题,建立二次函数模型,并解决相关问题;4.提高学生的抽象思维能力和解决问题的能力。
四. 教学重难点1.二次函数的定义及其一般形式;2.二次函数的性质,特别是开口方向、对称轴、顶点的理解;3.实际问题中二次函数模型的建立和应用。
五. 教学方法1.采用问题驱动法,引导学生从实际问题中发现二次函数的规律;2.利用数形结合法,让学生直观地理解二次函数的图象和性质;3.运用讨论法,鼓励学生积极参与,培养学生的合作意识;4.采用案例分析法,使学生能够将理论知识应用于实际问题。
六. 教学准备1.准备相关的实际问题,用于引入和巩固二次函数的知识;2.制作PPT,展示二次函数的图象和性质;3.准备一些练习题,用于让学生在课堂上练习和巩固所学知识;4.准备一些拓展问题,激发学生的思考。
七. 教学过程1.导入(5分钟)利用一个实际问题,如抛物线运动,引出二次函数的概念。
让学生观察实际问题中的数量关系,引导学生发现二次函数的规律。
2.呈现(10分钟)通过PPT展示二次函数的图象,让学生直观地了解二次函数的性质。
同时,引导学生总结二次函数的一般形式。
3.操练(10分钟)让学生根据二次函数的定义和性质,解决一些相关问题。
浙教版数学九年级上册2.1《事件的可能性》教案1
![浙教版数学九年级上册2.1《事件的可能性》教案1](https://img.taocdn.com/s3/m/8589fa258f9951e79b89680203d8ce2f0166651f.png)
浙教版数学九年级上册2.1《事件的可能性》教案1一. 教材分析《事件的可能性》是浙教版数学九年级上册第2.1节的内容,主要讲述了随机事件的定义及其可能性。
本节内容是学生对概率初步知识的拓展,对于培养学生的逻辑思维能力和概率观念具有重要意义。
通过本节课的学习,学生将能够理解随机事件的含义,掌握事件的可能性及其计算方法。
二. 学情分析九年级的学生已经具备了一定的数学基础,对概率概念有一定的了解。
但在理解和应用事件可能性方面,学生可能还存在一定的困难。
因此,在教学过程中,需要关注学生的认知水平,通过实例和练习帮助学生深入理解随机事件的含义和可能性计算方法。
三. 教学目标1.理解随机事件的定义,掌握事件的可能性及其计算方法。
2.培养学生的逻辑思维能力和概率观念。
3.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.随机事件的定义及辨识。
2.事件可能性的计算方法。
五. 教学方法1.情境教学法:通过实例和实际问题,引发学生对随机事件和可能性的思考。
2.合作学习法:学生进行小组讨论和交流,共同探讨问题的解决方法。
3.引导发现法:教师引导学生发现问题,引导学生主动探究和解决问题。
六. 教学准备1.教学课件:制作相关的教学课件,辅助教学。
2.实例和练习题:准备相关的实例和练习题,用于引导学生思考和巩固知识。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用实例引入随机事件的概念,如抛硬币、抽奖等,引导学生思考随机事件的含义。
2.呈现(10分钟)介绍随机事件的定义,通过课件展示相关概念和例子,让学生明确随机事件的特征。
3.操练(10分钟)让学生进行小组讨论,辨识一些随机事件,并计算它们的可能性。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)呈现一些实际问题,让学生运用所学知识解决。
如:某班有30名学生,其中有18名女生,求抽到女生的可能性。
5.拓展(10分钟)引导学生思考事件可能性的大小与事件发生次数的关系,引导学生发现事件发生次数越多,可能性越接近实际发生概率。
2024年浙教版数学九年级上册2.1《事件的可能性》教学设计
![2024年浙教版数学九年级上册2.1《事件的可能性》教学设计](https://img.taocdn.com/s3/m/519a50bbafaad1f34693daef5ef7ba0d4a736dcf.png)
2024年浙教版数学九年级上册2.1《事件的可能性》教学设计一. 教材分析《事件的可能性》是浙教版数学九年级上册2.1的内容,本节课主要让学生了解随机事件的定义以及如何运用概率来描述事件的可能性。
教材通过实例引导学生理解概率的概念,让学生在实际问题中体会数学的应用价值。
二. 学情分析九年级的学生已具备一定的逻辑思维能力和抽象思维能力,但对于随机事件的概率概念可能较为陌生。
因此,在教学过程中,教师需要注重从学生已有的知识基础出发,通过实例和活动引导学生理解和掌握概率的概念。
三. 教学目标1.知识与技能:让学生理解随机事件的定义,学会运用概率来描述事件的可能性。
2.过程与方法:通过实例和活动,培养学生的观察、分析和解决问题的能力。
3.情感态度与价值观:让学生感受数学在生活中的应用,培养学生的数学兴趣。
四. 教学重难点1.重点:随机事件的定义,概率的概念。
2.难点:如何运用概率来描述事件的可能性。
五. 教学方法1.情境教学法:通过实例和活动,引导学生理解和掌握概率的概念。
2.问题驱动法:提出问题,激发学生的思考,培养学生解决问题的能力。
3.合作学习法:小组讨论,培养学生交流和合作的能力。
六. 教学准备1.教学课件:制作课件,展示实例和活动。
2.教学素材:准备相关实例和活动材料。
3.教学设备:投影仪、计算机等。
七. 教学过程1.导入(5分钟)利用课件展示一个实例:抛硬币实验。
让学生观察并思考:在抛硬币的过程中,正面朝上和反面朝上的可能性是否相等?2.呈现(10分钟)展示教材中的相关实例,让学生观察并回答问题:什么是随机事件?随机事件的可能性如何描述?3.操练(15分钟)开展小组活动,让学生实际操作,观察并记录不同随机事件的可能性。
教师引导学生总结规律,得出概率的定义。
4.巩固(10分钟)利用课件展示一些实际问题,让学生运用概率的知识解决问题。
教师引导学生总结解题方法。
5.拓展(10分钟)提出一些拓展问题,让学生思考:如何求复杂事件的概率?教师引导学生探讨解决方法。
浙教版九年级数学上册知识点
![浙教版九年级数学上册知识点](https://img.taocdn.com/s3/m/2520700ea31614791711cc7931b765ce05087a6b.png)
浙教版九年级数学上册知识点课堂临时报佛脚,不如课前预习好。
其实任何学科都是一样的,学习任何一门学科,勤奋都是最好的学习方法,没有之一,书山有路勤为径。
下面是小编给大家整理的一些九年级数学的知识点,希望对大家有所帮助。
九年级上册数学单元知识点第一章证明一、等腰三角形1、定义:有两边相等的三角形是等腰三角形。
2、性质:1.等腰三角形的两个底角相等(简写成“等边对等角”)2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)3.等腰三角形的两底角的平分线相等。
(两条腰上的中线相等,两条腰上的高相等)4.等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证)7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
特殊的等腰三角形等边三角形1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。
(注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。
2、性质:⑴等边三角形的内角都相等,且均为60度。
⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。
⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。
3、判定:⑴三边相等的三角形是等边三角形。
⑵三个内角都相等的三角形是等边三角形。
⑶有一个角是60度的等腰三角形是等边三角形。
⑷有两个角等于60度的三角形是等边三角形。
二、直角三角形全等1、直角三角形全等的判定有5种:(1)、两角及其夹边对应相等的两个三角形全等;(ASA)(2)、两边及其夹角对应相等的两个三角形全等;(SAS)(3)、三边对应相等的两个三角形全等;(SSS)(4)、两角及其中一角的对边对应相等的两个三角形全等;(AAS)(5)、斜边及一条直角边对应相等的两个三角形全等;(HL)2、在直角三角形中,如有一个内角等于30o,那么它所对的直角边等于斜边的一半3、在直角三角形中,斜边上的中线等于斜边的一半4垂直平分线:垂直于一条线段并且平分这条线段的直线。
浙教版九年级上册数学教案
![浙教版九年级上册数学教案](https://img.taocdn.com/s3/m/2e91f84a2f3f5727a5e9856a561252d380eb20ff.png)
浙教版九年级上册数学教案浙教版九年级上册数学教案11.通过设臵问题,建立数学模型,?模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情. 重难点关键1.?重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,?再由一元一次方程的概念迁移到一元二次方程的概念. 教学过程一、复习引入学生活动:列方程. 问题(1)古算趣题:“执竿进屋”笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。
有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。
借问竿长多少数,谁人算出我佩服。
如果假设门的高为x?尺,?那么,?这个门的宽为_______?尺,长为_______?尺, ?根据题意,?得________.整理、化简,得:__________. 二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们次数是几次? (3)有等号吗?还是与多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的次数都是2次的;(3)?都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程.2一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.2一个一元二次方程经过整理化成ax+bx+c=0(a≠0)后,其中ax是二次项,a 是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.2分析:一元二次方程的一般形式是ax+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.解:略注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.2例2.(学生活动:请二至三位同学上台演练)将方程(x+1)+(x-2)(x+2)=?1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.22分析:通过完全平方公式和平方差公式把(x+1)+(x-2)(x+2)=1化成ax+bx+c=0(a≠0)的形式. 解:略三、巩固练习教材练习1、2补充练习:判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x=4 (3) 3x-222252 2 2=0 (4) x-4=(x+2) (5) ax+bx+c=0 x四、应用拓展22例3.求证:关于x的方程(m-8m+17)x+2mx+1=0,不论m取何值,该方程都是一元二次方程.2分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m-8m+17?≠0即可.22证明:m-8m+17=(m-4)+12∵(m-4)≥022∴(m-4)+1>0,即(m-4)+1≠0∴不论m取何值,该方程都是一元二次方程.浙教版九年级上册数学教案21.一元二次方程根的概念;2.?根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目. 教学目标了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题.提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题.重难点关键1.重点:判定一个数是否是方程的根;2.?难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.教学过程一、复习引入学生活动:请同学独立完成下列问题.2问题1.前面有关“执竿进屋”的问题中,我们列得方程x-8x+20=0列表:问题2列表:3老师点评(略) 二、探索新知提问:(1)问题1中一元二次方程的解是多少?问题2?中一元二次方程的解是多少?(2)如果抛开实际问题,问题2中还有其它解吗?22老师点评:(1)问题1中x=2与x=10是x-8x+20=0的解,问题2中,x=4是x+7x-44=0的解.(2)如果抛开实际问题,问题2中还有x=-11的解.一元二次方程的解也叫做一元二次方程的根.2回过头来看:x-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解. 2例1.下面哪些数是方程2x+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4.分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.2解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x+10x+12=0的两根.2例2.若x=1是关于x的一元二次方程a x+bx+c=0(a≠0)的一个根,求代数式20__(请自填)(a+b+c)的值2 2练习:关于x的一元二次方程(a-1) x+x+a-1=0的一个根为0,则求a的值点拨:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解.例3.你能用以前所学的知识求出下列方程的根吗?222(1)x-64=0 (2)3x-6=0 (3)x-3x=0分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义. 解:略三、巩固练习教材思考题练习1、2.四、归纳小结(学生归纳,老师点评) 本节课应掌握:(1)一元二次方程根的概念;(2)要会判断一个数是否是一元二次方程的根;(3)要会用一些方法求一元二次方程的根.(“夹逼”方法; 平方根的意义) 六、布臵作业1.教材复习巩固3、4 综合运用5、6、7 拓广探索8、9.2.选用课时作业设计.浙教版九年级上册数学教案3教学内容运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程. 教学目标理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.2提出问题,列出缺一次项的一元二次方程ax+c=0,根据平方根的意义解出这个方程,然后知识迁移到解2a(ex+f)+c=0型的一元二次方程. 重难点关键21.重点:运用开平方法解形如(x+m)=n(n≥0)的方程;领会降次──转化的数学思想.222.难点与关键:通过根据平方根的意义解形如x=n,知识迁移到根据平方根的意义解形如(x+m)=n(n≥0)的方程. 教学过程一、复习引入学生活动:请同学们完成下列各题问题1.填空222222(1)x-8x+______=(x-______);(2)9x+12x+_____=(3x+_____);(3)x+px+_____=(x +____).问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p2p) . 22问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法? 二、探索新知4上面我们已经讲了x=9,根据平方根的意义,直接开平方得x=〒3,如果x 换元为2t+1,即(2t+1)=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=〒3 即2t+1=3,2t+1=-3方程的两根为t1=1,t2=--22 2 2例1:解方程:(1)(2x-1)=5 (2)x+6x+9=2 (3)x-2x+4=-122分析:很清楚,x+4x+4是一个完全平方公式,那么原方程就转化为(x+2)=1.2解:(2)由已知,得:(x+3)=2 直接开平方,得:x+3=即所以,方程的两根x1x22例2.市政府计划2年内将人均住房面积由现在的10m提高到14.4m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.?一年后人均住房面积就应该是10+?10x=10(1+x);二年后人均2住房面积就应该是10(1+x)+10(1+x)x=10(1+x) 解:设每年人均住房面积增长率为x,2则:10(1+x)=14.42(1+x)=1.44直接开平方,得1+x=〒1.2 即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去. 所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.?我们把这种思想称为“降次转化思想”.三、巩固练习教材练习. 四、应用拓展例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x,?那么二月份的营业额就应该是(1+x),三月份的营2业额是在二月份的基础上再增长的,应是(1+x). 解:设该公司二、三月份营业额平均增长率为x.2那么1+(1+x)+(1+x)=3.31 把(1+x)当成一个数,配方得:221232)=2.56,即(x+)=2.56 22333x+=〒1.6,即x+=1.6,x+=-1.6222(1+x+方程的根为x1=10%,x2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%. 五、归纳小结本节课应掌握:由应用直接开平方法解形如x=p(p≥0),那么x=解形如(mx+n)=p(p≥0),那么mx+n=六、布臵作业1.教材复习巩固1、2.第4课时 22.2.1 配方法(1)教学内容间接即通过变形运用开平方法降次解方程. 教学目标522p浙教版九年级上册数学教案【以下为精品推荐,可删改!】【推荐一:《浙教版九年级数学下册教案》】浙教版九年级数学下册教案11.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a ≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1 复习旧知1.什么是方程?你能举一个方程的例子吗?2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.(1)2x-1 (2)mx+n=0 (3)1x+1=0 (4)x2=13.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.A.0B.1C.2D.3活动2 探究新知根据题意列方程.1.教材第2页问题1.提出问题:(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.2.教材第2页问题2.提出问题:(1)本题中有哪些量?由这些量可以得到什么?(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?(3)如果有x个队参赛,一共比赛多少场呢?3.一个数比另一个数大3,且两个数之积为0,求这两个数.提出问题:本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?活动3 归纳概念提出问题:(1)上述方程与一元一次方程有什么相同点和不同点?(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?(3)归纳一元二次方程的概念.1.一元二次方程:只含有________个未知数,并且未知数的次数是________,这样的________方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a 是二次项系数;bx是一次项,b是一次项系数;c是常数项.提出问题:(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?(2)为什么要限制a≠0,b,c可以为0吗?(3)2x2-x+1=0的一次项系数是1吗?为什么?3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4 例题与练习例1 在下列方程中,属于一元二次方程的是________.(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;(4)2x2-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的次数是 2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2 教材第3页例题.例3 以-2为根的一元二次方程是( )A.x2+2x-1=0B.x2-x-2=0C.x2+x+2=0D.x2+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.练习:1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.(1)4x2=81;(2)(3x-2)(x+1)=8x-3.3.教材第4页练习第2题.4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.答案:1.a≠1;2.略;3.略;4.k=4.活动5 课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?作业布置教材第4页习题21.1第1~7题.浙教版九年级数学下册教案221.2.1 配方法(3课时)第1课时直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重点运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.难点通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.一、复习引入学生活动:请同学们完成下列各题.问题1:填空(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3 )x2+px+________=(x+________)2.解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x 换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=-2例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.(2)由已知,得:(x+3)2=2直接开平方,得:x+3=±2即x+3=2,x+3=-2所以,方程的两根x1=-3+2,x2=-3-2解:略.例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2 解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p 转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p0,当b2-4ac≥0时,b2-4ac4a2≥0∴(x+b2a)2=(b2-4ac2a)2直接开平方,得:x+b2a=±b2-4ac2a即x=-b±b2-4ac2a∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac ≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根.例1 用公式法解下列方程:(1)2x2-x-1=0 (2)x2+1.5=-3x(3)x2-2x+12=0 (4)4x2-3x+2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.补:(5)(x-2)(3x-5)=0三、巩固练习教材第12页练习1.(1)(3)(5)或(2)(4)(6).四、课堂小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况.五、作业布置教材第17页习题4,5.21.2.3 因式分解法浙教版九年级数学下册教案3重点利用一元二次方程解决传播问题、百分率问题.难点如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.一、引入新课1.列方程解应用题的基本步骤有哪些?应注意什么?2.科学家在细胞研究过程中发现:(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?二、教学活动活动1:自学教材第19页探究1,思考教师所提问题.有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.(2)本题中有哪些数量关系?(3)如何利用已知的数量关系选取未知数并列出方程?解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?活动2:自学教材第19页~第20页探究2,思考老师所提问题.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.三、课堂小结与作业布置课堂小结1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.2.传播问题解决的关键是传播源的确定和等量关系的建立.3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n 次后的量是b,则有:a(1±x)n=b(常见n=2).4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.作业布置教材第21-22页习题21.3第2-7题.第2课时解决几何问题1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.浙教版九年级数学下册教案【推荐二:《新湘教版七年级数学上册教案》】新湘教版七年级数学上册教案1教学目标:1.了解正数与负数是实际生活的需要.2.会判断一个数是正数还是负数.3.会用正负数表示互为相反意义的量.教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.教学难点:负数的引入.教与学互动设计:(一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究举出一些生活中常遇到的具有相反意义的量,如温度是零上7 ℃和零下5 ℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.(三)应用迁移,巩固提高【例1】举出几对具有相反意义的量,并分别用正、负数表示.【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02 g,记作+0.02 g,那么-0.03 g表示什么?【例3】某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为( )A.3B.-3C.-2.5D.-7.45【点拨】读懂题意是解决本题的关键.7:45与10:00相差135分钟.(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):星期日一二三四五六(元) +16 +5.0 -1.2 -2.1 -0.9 +10 -2.6(1)本周小张一共用掉了多少钱?存进了多少钱?(2)储蓄罐中的钱与原来相比是多了还是少了?(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.(五)课堂跟踪反馈夯实基础1.填空题:(1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.(2)如果4年后记作+4年,那么8年前记作年.(3)如果运出货物7吨记作-7吨,那么+100吨表示.(4)一年内,小亮体重增加了3 kg,记作+3 kg;小阳体重减少了2 kg,则小阳增加了 .2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?提升能力3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.(六)课时小结1.与以前相比,0的意义又多了哪些内容?2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)新湘教版七年级数学上册教案2教学目标:1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.教学重点:深化对正负数概念的理解.教学难点:正确理解和表示向指定方向变化的量.教与学互动设计:(一)知识回顾和理解通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.[问题1]:“零”为什么既不是正数也不是负数呢?学生思考讨论,借助举例说明.参考例子:用正数、负数和零表示零上温度、零下温度和零度.思考“0”在实际问题中有什么意义?归纳“0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.如:水位不升不降时的水位变化,记作:0 m.。
2024年浙教版数学九年级上册2.2《简单事件的概率》教学设计
![2024年浙教版数学九年级上册2.2《简单事件的概率》教学设计](https://img.taocdn.com/s3/m/c82c9d5f78563c1ec5da50e2524de518964bd3bd.png)
2024年浙教版数学九年级上册2.2《简单事件的概率》教学设计一. 教材分析《简单事件的概率》是浙教版数学九年级上册第二章第二节的内容。
本节内容是在学生已经学习了概率的定义和一些基本概念的基础上进行的。
通过本节内容的学习,学生能够理解并掌握简单事件的概率的计算方法,提高解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于概率的基本概念已经有了一定的了解。
但是,对于如何计算简单事件的概率,学生可能还存在着一定的困难。
因此,在教学过程中,教师需要通过具体的例子,引导学生理解和掌握计算方法。
三. 教学目标1.知识与技能:使学生理解并掌握简单事件的概率的计算方法。
2.过程与方法:通过具体的例子,引导学生运用概率的知识解决问题。
3.情感态度价值观:培养学生对数学的兴趣,提高学生解决问题的能力。
四. 教学重难点1.重点:简单事件的概率的计算方法。
2.难点:如何引导学生理解和掌握简单事件的概率的计算方法。
五. 教学方法采用问题驱动法,通过具体的例子,引导学生理解和掌握简单事件的概率的计算方法。
同时,运用小组合作学习法,让学生在合作中思考,在思考中学习。
六. 教学准备1.教师准备:准备好相关的例子,制作好课件。
2.学生准备:预习相关的内容,准备好笔记本。
七. 教学过程1.导入(5分钟)教师通过一个简单的问题引导学生进入本节内容的学习,例如:“抛一枚硬币,正面朝上的概率是多少?”2.呈现(15分钟)教师通过课件呈现本节的内容,引导学生理解和掌握简单事件的概率的计算方法。
3.操练(15分钟)教师给出具体的例子,让学生运用概率的知识解决问题,例如:“抛两枚硬币,两枚都是正面朝上的概率是多少?”4.巩固(10分钟)教师通过一些练习题,让学生巩固所学的内容,例如:“抛三枚硬币,至少有两枚正面朝上的概率是多少?”5.拓展(10分钟)教师引导学生思考一些拓展问题,例如:“在抛硬币的过程中,出现正面的概率是否会随着抛硬币的次数的增加而改变?”6.小结(5分钟)教师对本节的内容进行小结,帮助学生梳理思路。
浙教版九年级数学上册精选PPT
![浙教版九年级数学上册精选PPT](https://img.taocdn.com/s3/m/33589c322cc58bd63086bd2c.png)
某饮料经营部每天的固定成本为200元,其销售的饮料每瓶进价为5元。 首先应当求出函数解析式和自变量的取值范围,然后通过配方变形,或利用公式求它的最大值或最小值。
练习48页作业题第四题
2、对这节课的学习,你还有 配方变形,或利用公式求它的最大值或最小值。
1、通过这节课的学习活动你 ①若记销售单价比每瓶进价多X元,日均毛利润〔毛利润=售价-进价-固定成本〕为y元,求Y 关于X的函数解析式和自变量的取值范围;
某饮料经营部每天的固定成本为200元,其销售的饮料每瓶进价为5元。 留意:有此求得的最大值或最小值对应的字变量的值必须在自变量的取值范围内 。
有哪些收获? 运用二次函数的性质求实际问题的最大值和最小值的一般步骤 :
练习48页作业题第四题 ②若要使日均毛利润达到最大,销售单价应定为多少元〔精确到0.1元)?最大日均毛利润为多少元?
2、对这节课的学习,你还有什么想法吗? 1、通过这节课的学习活动你有哪些收获? ①若记销售单价比每瓶进价多X元,日均毛利润〔毛利润=售价-进价-固定成本〕为y元,求Y 关于X的函数解析式和自变量的取值范围;
1、课本第48页作业题: 1、 2、 3、 4。
2、作0元,其销售的饮料每瓶进价为5元。 ②若要使日均毛利润达到最大,销售单价应定为多少元〔精确到0.1元)?最大日均毛利润为多少元?
米/小时的速度朝正西方向行驶,何时两船 2、对这节课的学习,你还有什么想法吗?
某饮料经营部每天的固定成本为200元,其销售的饮料每瓶进价为5元。 1、课本第48页作业题:
①若记销售单价比每瓶进价多X元,日均毛利润 〔毛利润=售价-进价-固定成本〕为y元,求Y 关于 X的函数解析式和自变量的取值范围;
最新浙教版九年级数学上册电子课本课件【全册】
![最新浙教版九年级数学上册电子课本课件【全册】](https://img.taocdn.com/s3/m/133a8d40a1c7aa00b52acbd0.png)
1.3二次函数的性质
最新浙教版九年级数学上册电子课 本课件【全册】
1.4二次函数的应用
最新浙教版九年级数学上册电子课 本课件【全册】
第2章 简单是件的概率
最新浙教版九年级数学上册电子 课本课件【全册】目录
0002页 0091页 0134页 0153页 0186页 0188页 0235页 0283页 0316页 0353页 0377页 0411页 0461页图像 1.4二次函数的应用 2.1事件的可能性 2.3用频率估计概率 第3章 圆的基本性质 3.2圆形的旋转 3.4圆心角 3.6圆内接四边形 3.8弧长及扇形的面积 4.1比例线段 4.3相似三角形 4.5相似三角形的性质及其应用 4.7图形的位似
最新浙教版九年级数学上册电子课 本课件【全册】
2.1事件的可能性
最新浙教版九年级数学上册电子课 本课件【全册】
2.2简单事件的概率
最新浙教版九年级数学上册电子课 本课件【全册】
2.3用频率估计概率
最新浙教版九年级数学上册电子课 本课件【全册】
第1章 二次函数
最新浙教版九年级数学上册电子课 本课件【全册】
1.1二次函数
最新浙教版九年级数学上册电子课 本课件【全册】
1.2二次函数的图像
浙教版九年级数学上册全册完整课件
![浙教版九年级数学上册全册完整课件](https://img.taocdn.com/s3/m/167b5b1ce55c3b3567ec102de2bd960590c6d93a.png)
浙教版九年级数学上册全册完整课件一、教学内容1. 第十三章:一元二次方程详细内容:一元二次方程的概念、解法、根与系数的关系、实际应用等。
2. 第十四章:不等式与不等式组详细内容:不等式的性质、解法、不等式组的概念、解法、实际应用等。
3. 第十五章:函数及其图像详细内容:函数的定义、函数图像的识别、一次函数、反比例函数、二次函数等。
4. 第十六章:圆详细内容:圆的基本性质、圆的方程、圆与直线的关系、圆与圆的关系等。
二、教学目标1. 理解并掌握一元二次方程、不等式与不等式组、函数及其图像、圆的基本概念和性质。
2. 学会解一元二次方程、不等式与不等式组,并能将其应用于解决实际问题。
3. 能够识别并分析函数图像,理解函数与方程、不等式之间的关系。
三、教学难点与重点1. 教学难点:一元二次方程的解法、函数图像的分析、圆与直线的关系。
2. 教学重点:一元二次方程、不等式与不等式组、函数及其图像、圆的基本性质和解法。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规等。
2. 学具:课本、练习本、圆规、直尺、计算器等。
五、教学过程1. 导入:通过实际情景引入,激发学生兴趣,为新课学习做好铺垫。
2. 新课内容讲解:详细讲解各章节的基本概念、性质、解法等。
3. 例题讲解:针对每个知识点,给出典型例题,引导学生分析、解答。
4. 随堂练习:设计适量练习题,巩固所学知识,及时发现问题,进行解答。
6. 课后作业布置:布置适量的作业,巩固所学知识。
六、板书设计1. 浙教版九年级数学上册课件2. 内容:各章节知识点、重难点、典型例题、随堂练习等。
七、作业设计1. 作业题目:(1)解一元二次方程:x^2 5x + 6 = 0(2)求解不等式组:2x 3 > 1,3x + 4 < 10(3)分析函数图像:y = 2x + 1,y = x^2 + 4(4)求圆的方程:已知圆心为(2,3),半径为5。
2. 答案:(1)x1 = 3,x2 = 2(2)x > 2,x < 2(3)一次函数图像为直线,反比例函数图像为双曲线,二次函数图像为开口向上的抛物线。
九年级数学上册 第一章第一节《反比例函数》优秀教学课件 浙教版
![九年级数学上册 第一章第一节《反比例函数》优秀教学课件 浙教版](https://img.taocdn.com/s3/m/c3365e0de97101f69e3143323968011ca300f72f.png)
y(km/h) 138.4 110.7 97.7 87.4 75.5
(2) Y与x成什么比例关系? 反比例关系 能用一个数学解析式表示吗?
x y =1661
y 1661 ` x
问题2:学校课外生物小组的同 学准备自己动手,用旧围栏建一个面 积为24平方米的矩形饲养场.
以撬动地球!
——阿基米德
背景知识
杠阻
杆 定
力
律
阻力臂
动 力
动力臂
【例1】如图,阻力为1000N,阻力臂长为5cm.设动力y
(N),动力臂为x(cm)(图中杠杆本身所受重力略
去不计。杠杆平衡时:动力动力臂=阻力阻力臂)
(1)求y关于x的函数解析式。这个函数是反比例函数吗? 如果是,请说出比例系数;
• 老师提示:
• 用图象法表示函数关系时,首先在自
变量的取值范围内取一些值,列表,
驶向胜利 的彼岸
描点,连线(按自变量从小到大的顺
序,用一条平滑的曲线连接起来).
写出下列各关系
1.长方形的长为6,宽y和面积x之间有什
么关系?
y x 6
2、长方形的面积为6,一边长x和另一边 长y之间要有什么关系?
x y =6
数学九年级上第一章第一 节《反比例函数》优秀教
学课件
义务教育课程标准实验教科
浙江版《数学》九年级上册
1.1 反比例函数
回顾与思考1
“函数”知多少
变量与常量
在某一变化过程中,不断变化的数量叫变量 (variable),保持不变的量叫常量.
变量之间的关系:
在某一变化过程中,如果一个变
量(y)随着另一个变量(x)的变化 而不断变化,那么x叫自变量 (independent variable),y叫因 变量(dependent variable).
浙教版数学九年级上册全一册优质教案
![浙教版数学九年级上册全一册优质教案](https://img.taocdn.com/s3/m/6bfa1dbc162ded630b1c59eef8c75fbfc77d94c4.png)
浙教版数学九年级上册全一册优质教案一、教学内容1. 第一章:二次函数1.1 二次函数的图像与性质1.2 二次函数的顶点式1.3 二次函数的应用2. 第二章:圆2.1 圆的基本概念2.2 圆的方程2.3 圆与直线、圆与圆的位置关系3. 第三章:概率与统计3.1 随机事件与概率3.2 统计量的计算3.3 统计图表的应用二、教学目标1. 理解二次函数、圆的基本概念,掌握其图像、性质及方程求解方法。
2. 能够运用二次函数、圆的方程解决实际问题,提高解决问题的能力。
3. 掌握概率与统计的基本概念,能够运用统计方法分析实际问题。
三、教学难点与重点1. 教学难点:二次函数图像与性质的深入理解圆的方程求解与应用概率与统计在实际问题中的应用2. 教学重点:二次函数、圆的基本概念与性质方程求解方法概率与统计在实际问题中的应用四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、几何画板等。
2. 学具:教材、练习本、圆规、直尺、计算器等。
五、教学过程1. 实践情景引入通过生活中常见的抛物线、圆形物体等,引出二次函数和圆的学习。
2. 例题讲解二次函数:以实际例题讲解二次函数图像、性质,求解顶点式。
圆:以实际例题讲解圆的方程、圆与直线、圆与圆的位置关系。
概率与统计:通过实例讲解随机事件、概率计算、统计量的计算及图表应用。
3. 随堂练习根据例题,设计相应的随堂练习,巩固所学知识。
4. 知识拓展引导学生探索二次函数、圆的其他性质和应用,提高学生的创新能力。
六、板书设计1. 二次函数图像与性质顶点式求解应用实例2. 圆基本概念方程求解位置关系3. 概率与统计随机事件与概率统计量计算统计图表应用七、作业设计1. 作业题目:二次函数:求解实际问题的二次函数方程,分析图像和性质。
圆:求解实际问题的圆方程,分析圆与直线、圆与圆的位置关系。
概率与统计:分析实际问题的概率计算、统计量计算和图表应用。
2. 答案:八、课后反思及拓展延伸1. 反思:2. 拓展延伸:引导学生通过互联网、课外阅读等途径,了解更多二次函数、圆的性质和应用,提高学生的学习兴趣和自主学习能力。
浙教版九年级《数学》上册
![浙教版九年级《数学》上册](https://img.taocdn.com/s3/m/df9c59467dd184254b35eefdc8d376eeaeaa1782.png)
角角边相等
证明三角形全等的条件 之一,即两个角和一边 分别相等,则两三角形
全等。
角边角相等
证明三角形全等的条件 之一,即两个角和一边 的对角分别相等,则两
三角形全等。
边角边相等
证明三角形全等的条件 之一,即两边和一边的 对角分别相等,则两三
角形全等。
四边形中的证明
对角线性质
四边形的对角线互相平分,这 是四边形的一个重要性质。
一元二次方程的应用
总结词:实际应用
详细描述:一元二次方程在日常生活和生产实践中有着广泛的应用。例如,在物理学中,一元二次方 程可以用来描述物体的运动轨迹;在经济学中,一元二次方程可以用来解决最优化问题,如最大利润 、最小成本等;在工程学中,一元二次方程可以用来进行结构设计、稳定性分析等。
配方法
总结词:具体操作
02 第二章:一元二次方程
一元二次方程的概念
总结词:基础定义
详细描述:一元二次方程是只含有一个未知数,且未知数的最高次数为2的方程。一 般形式为ax^2 + bx + c = 0,其中a、b、c为常数,且a≠0。
一元二次方程的解法
总结词:求解方法
详细描述:一元二次方程的解法有多种,包括直接开平方法、配方法、公式法和因式分解法等。其中,配方法是常用的方法 之一,通过配方将方程转化为完全平方形式,从而简化求解过程。
概率的基本性质
概率具有可加性和有限可加性,即 对于两个互斥事件的并,其概率等 于各事件概率的和。
概率的应用
决策分析
概率可以用于决策分析,帮助人 们评估不同方案的风险和不确定
性。
预测和统计推断
在统计学中,概率用于预测和统 计推断,例如通过大数定律和中
浙教版九年级数学上册经典PPT课件
![浙教版九年级数学上册经典PPT课件](https://img.taocdn.com/s3/m/43b054ae524de518964b7db3.png)
3.1圆
浙教版九年级数学上册经典PPT课 件
3.2圆形的旋转
浙教版九年级数学上册经典PPT课 件
3.3垂径定理
浙教版九年级数学上册经典PPT课 件
1.4二次函数的应用
浙教版九年级数学上册经典PPT课 件
第2章 简单是件的概率
浙教版九年级数学上册经典PPT课 件
2.1事件的可能性
浙教版九年级数学上册经典PPT课 件
2.2简单事件的概率
浙教版九年级数学上册经典PPT 课件目录
0002页 0046页 0089页 0114页 0139页 0181页 0248页 0307页 0336页 0383页 0413页 0453页 0481页 0509页
第1章 二次函数 1.2二次函数的图像 1.4二次函数的应用 2.1事件的可能性 2.3用频率估计概率 第3章 圆的基本性质 3.2圆形的旋转 3.4圆心角 3.6圆内接四边形 3.8弧长及扇形的面积 4.1比例线段 4.3相似三角形 4.5相似三角形的性质及其应用 4.7图形的位似
浙教版九年级数学上册经典PPT课 件
4.6相似多边形
浙教版九年级数学上册经典PPT课 件
4.7图形的位似
浙教版九年级数学上册经典PPT课 件
第1章 二次函数
浙教版九年级数学上册经典PPT课 件
1.1二次函数
浙教版九年级数学上册经典PPT课 件
1.2二次函数的图像
浙教版九年级数学上册经典PPT课 件
1.3二次函数的性质
浙教版九年级数学上册经典PPT课 件
浙教版九年级数学上册经典PPT课 件
3.8弧长及扇形的面积
浙教版九年级数学上册经典PPT课 件
第4章 相似三角形
浙教版九年级数学上册经典PPT课 件
浙教版九年级上册数学教案
![浙教版九年级上册数学教案](https://img.taocdn.com/s3/m/b1bacea3f605cc1755270722192e453610665b96.png)
浙教版九年级上册数学教案——《勾股定理》一、教学目标1.让学生掌握勾股定理的内容,并能运用勾股定理解决实际问题。
2.培养学生的观察能力、推理能力和解决问题的能力。
3.增强学生对数学学习的兴趣,提高学生的数学素养。
二、教学重点与难点重点:掌握勾股定理的内容及其应用。
难点:运用勾股定理解决实际问题。
三、教学过程1.导入新课师:同学们,我们之前学过直角三角形,知道直角三角形有一个特殊的性质,那就是直角边的平方和等于斜边的平方。
这节课,我们就来学习这个性质,它有一个非常有趣的名字,叫勾股定理。
2.学习勾股定理(1)引导学生观察直角三角形,发现直角边的平方和与斜边的平方之间的关系。
师:请大家拿出一张纸,画出一个直角三角形,然后计算直角边的平方和与斜边的平方,看看它们之间有什么关系。
师:同学们,你们发现直角三角形的直角边的平方和等于斜边的平方,这个性质就是我们今天要学习的勾股定理。
(3)板书勾股定理:在一个直角三角形中,直角边的平方和等于斜边的平方。
3.应用勾股定理解决问题(1)例题讲解师:现在我们来学习如何运用勾股定理解决实际问题。
请大家看这个例题:一个直角三角形的两条直角边分别是3厘米和4厘米,求斜边的长度。
师:根据勾股定理,我们可以列出方程:3²+4²=x²。
解这个方程,我们可以得到斜边的长度x=5厘米。
(2)学生练习师:现在请大家来做一道练习题:一个直角三角形的直角边长分别为6厘米和8厘米,求斜边的长度。
学生独立完成,教师检查答案。
师:通过刚才的学习,我们知道了勾股定理不仅可以用来计算直角三角形的斜边长度,还可以解决一些实际问题。
比如,测量建筑物的高度、计算物体运动的距离等。
5.课堂小结师:这节课,我们学习了勾股定理,知道了直角三角形的直角边的平方和等于斜边的平方。
我们还学会了如何运用勾股定理解决实际问题。
希望大家在今后的学习中,能够灵活运用勾股定理,解决更多的问题。
6.课后作业(1)教材第56页习题1、2。
最新浙教版九年级数学上册课件【全册】
![最新浙教版九年级数学上册课件【全册】](https://img.taocdn.com/s3/m/d618945e0a1c59eef8c75fbfc77da26925c59622.png)
0002页 0060页 0087页 0114页 0128页 0177页 0226页 0279页 0309页 0357页 0390页 0431页 0463页
第1章 二次函数 1.2二次函数的图像 1.4二次函数的应用 2.1事件的可能性 2.3用频率估计概率 3.1圆 3.3垂径定理 3.5圆周角 3.7正多边形 第4章 相似三角形 4.2由平行线截得的比例线段 4.4两个三角形相似的判定 4.6相似多边形
最新浙教版九年级数学上册课件【 全册】
1.4二次函数的应用
最新浙教版九年级数学上册课件【 全册】
第2章 简单是件的概率
最新浙教版九年级数学上册课件【 全册】
2.1事件的可能性
最新浙教版九年级数学上册课件【 全册】பைடு நூலகம்
第1章 二次函数
最新浙教版九年级数学上册课件【 全册】
1.1二次函数
最新浙教版九年级数学上册课件【 全册】
1.2二次函数的图像
最新浙教版九年级数学上册课件【 全册】
1.3二次函数的性质
浙教版数学九年级上册全一册教案
![浙教版数学九年级上册全一册教案](https://img.taocdn.com/s3/m/e7bcc374492fb4daa58da0116c175f0e7dd1196c.png)
浙教版数学九年级上册全一册教案一、教学内容本教案基于浙教版数学九年级上册全一册,具体章节及内容如下:1. 第十三章:一元二次方程详细内容:一元二次方程的解法、根与系数的关系、实际应用问题。
2. 第十四章:不等式与不等式组详细内容:不等式的性质、一元一次不等式组的解法、实际应用问题。
3. 第十五章:函数及其图像详细内容:函数的概念、一次函数、二次函数的图像及性质、函数的实际应用。
二、教学目标1. 理解并掌握一元二次方程、不等式与不等式组、函数及其图像的基本概念和解法。
2. 能够运用所学知识解决实际生活中的问题,提高数学应用能力。
3. 培养学生的逻辑思维能力和空间想象能力。
三、教学难点与重点1. 教学难点:一元二次方程的解法、不等式组的解法、函数图像的性质。
2. 教学重点:一元二次方程、不等式与不等式组、函数及其图像的基本概念和解法。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、教学挂图。
2. 学具:学生用书、练习本、文具。
五、教学过程1. 实践情景引入通过生活中的实际问题,引出一元二次方程、不等式与不等式组、函数及其图像的概念。
2. 例题讲解讲解一元二次方程、不等式与不等式组、函数及其图像的典型例题,分析解题思路和方法。
3. 随堂练习设计与例题类似的题目,让学生独立完成,巩固所学知识。
5. 课堂小结对本节课所学内容进行回顾,检查学生掌握情况。
六、板书设计1. 一元二次方程的解法2. 不等式与不等式组的解法3. 函数及其图像的性质4. 典型例题及解题方法七、作业设计1. 作业题目(1)解一元二次方程:x^2 5x + 6 = 0(2)解不等式组:2x 3 > 1,3x + 2 < 5(3)绘制一次函数和二次函数的图像,分析其性质2. 答案(1)x1 = 3,x2 = 2(2)x ∈ (1, 1.5)(3)一次函数图像为直线,斜率为正;二次函数图像为抛物线,开口向上。
八、课后反思及拓展延伸1. 反思:通过课后作业的完成情况,了解学生对知识点的掌握程度,及时调整教学方法。
2024年浙教版九年级数学上册全册完整课件
![2024年浙教版九年级数学上册全册完整课件](https://img.taocdn.com/s3/m/9b65c25e591b6bd97f192279168884868762b8b6.png)
2024年浙教版九年级数学上册全册完整课件一、教学内容1. 第一章:二次函数1.1 二次函数的图像与性质1.2 二次函数的解析式1.3 二次函数的顶点式1.4 二次函数的图像变换2. 第二章:圆2.1 圆的基本概念2.2 点与圆的位置关系2.3 直线与圆的位置关系2.4 圆与圆的位置关系3. 第三章:概率与统计3.1 随机事件与概率3.2 统计图表3.3 频率与概率二、教学目标1. 理解并掌握二次函数的图像、性质、解析式和图像变换。
2. 掌握圆的基本概念,了解点、直线与圆的位置关系。
3. 了解概率与统计的基本概念,能运用概率知识解决实际问题。
三、教学难点与重点1. 教学难点:二次函数图像变换圆与圆的位置关系概率与统计在实际问题中的应用2. 教学重点:二次函数的图像与性质圆的基本概念与位置关系概率与统计的基本概念四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、圆规、直尺、三角板等。
2. 学具:练习本、铅笔、圆规、直尺、三角板等。
五、教学过程1. 实践情景引入:通过展示实际生活中与二次函数、圆、概率与统计相关的现象,激发学生兴趣。
2. 例题讲解:讲解二次函数的图像与性质、圆的基本概念、概率与统计的典型例题。
3. 随堂练习:布置与例题相似的练习题,让学生独立完成,巩固所学知识。
4. 知识拓展:对二次函数的图像变换、圆与圆的位置关系、概率与统计在实际问题中的应用进行拓展。
六、板书设计1. 二次函数:图像、性质、解析式、图像变换2. 圆:基本概念、位置关系3. 概率与统计:随机事件、统计图表、频率与概率七、作业设计1. 作业题目:二次函数图像的绘制与性质分析圆的方程与位置关系判断概率与统计问题解答2. 答案:略八、课后反思及拓展延伸1. 反思:学生在本节课中掌握了二次函数、圆、概率与统计的基本概念,但图像变换、位置关系、实际问题应用等方面的掌握仍有待提高。
2. 拓展延伸:针对图像变换、位置关系等难点,布置相关拓展练习,提高学生解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说明方法
• 列数据:运用列数据的方法,能使得事 实确凿,更具说服力。
• 举例子:举例说明的方法可以增强文 章的厚重感和说服力。 • 打比方:能使被说明的事物形象更加 生动。 • 引用:既增强了文章的文学色彩,又丰 富了文章的内容。
生字词
褐(hè )色 绛(jià ng) 妃(fēi) 囊(ná ng) 啖(dà n) 红缯(zēng) 醴(lǐ)酪(là o) 贮(zhù )藏 宠(chǒng)幸 瓤(rá ng) 粤(yuè ) 襄(xiāng) 阙(què ) 蘖(niè ) 龟(jūn)裂
用“现在知道的” 加 以限定,使说明 更加客观、准确
用“大多数”限定范围, 不排除特殊情况,使说 明更客观、准确。
• 成熟的荔枝,大多数 是深红色或紫色。
高等教育出版社 高等教育电子音像出版社
语言的准确性
1.语言的准确一是 表现在限定性词语的运 用ห้องสมุดไป่ตู้。 2.语言的准确还表 现在确数、约数词的运 用上。
品味语言
• 荔枝呈心脏形、 卵圆形或圆形,通 常蒂部大,顶端稍 小。 蒂部周围微微突 起,称为果肩;有 的一边高,一边低 。顶端叫果顶,浑 圆或尖圆。
“通常”一词界定 了 范围;“稍”准确 表 明了“小”的程度。
“微微”说明了突起的 程 度;“浑圆”和“尖圆” 说 明了两种圆的情况。
•
品味语言
• 古代讲荔枝的书,包 括蔡襄的在内,现在 知道的共有13种。
荔 主 态 枝 特果 征实 的三 次 相、 关荔 知枝 识
个 别
4、荔枝的产销
说明方法及其作用:
通常直径三四厘米, 重十多克到二十多克。 温度保持在1℃到5℃, 可贮藏三十天左右。 龟裂片 合线缝 假种皮 古籍、史料、谚 语,白居易、徐 渤、杜牧、苏轼 等人的诗文。 荔枝壳表面……好像龟甲 ……突起部分,有的尖锐如刺 “壳如红缯……甘酸如醴酪” “飞焰”“红云”“荷瓣”“桃花”
解
题
南 州—— 荔枝的产地,泛指我国 南部地区; 六 月—— 荔枝的成熟期。这里的六 月是指阴历的六月; 荔枝丹—— 荔枝成熟后的颜色。 ——突出了荔枝生态的主要特点产地、 成熟期、颜色。充满诗情画意,而 且引古诗为题,也与全篇广泛引证 的风格统一起来。
这篇文章主要运用了引用的说明方法,下 列古诗和文献资料具体说明的对象是什么? 从作用看大致可分几类?
“壳如红缯,膜如紫绡, 瓤肉莹白如冰雪,浆液甘 酸如醴酪 。”
——白居易《荔枝图序》
贾祖璋是我国著名的老科普作家,生于 1901年,浙江省海宁县人。他著有 《中国植物图鉴》等专著,他的《鸟类概 论》,是我国最早的一部现代鸟类学著作, 1931年出版。解放前,他还出版过《鸟与文 学》、《动物珍话》、《生活素描》 等,解放后出版的有生物科学小品集 《生物学碎锦》,其中的《南州六月 荔枝丹》写于1979年5月,选自《生物 学碎锦》 。
列 准确、客观 数 具体 字 下 定 准确、科学 义
确凿可信 引 文笔活泼 用 有韵味
打 形象生动, 比 易于理解 方 有文学情趣
科 学 性 与 文 学 性 科 结 学 合 小
品 文
——
陈辉(明)
南州六月荔枝丹, 万颗累累蔟更团。 绛雪艳浮红锦烂, 玉壶光莹水晶寒。 高名已许传新曲, 芳味曾经荐大官。 乌府日长霖暑静, 几株斜覆石阑干。
文体知识
科学小品: 多用文艺性笔调介绍科学知识 和阐述科学道理,使人获得科学 知识的同时还能得到某种思想感 情的陶冶和艺术上的享受的一种 文体 。 特点:知识性、趣味性、通俗性。
说明文
种类:事物说明文 事理说明文 特点:抓住事物的特征进行说明 方法: 下定义 作诠释 打比方 举例子 列数字 作比较 分类别 画图表 作引用 摹状貌 顺序:时间 空间 逻辑 语言:平实性 生动性 (准确)
课文小结
• 质疑《荔枝图序》 外壳 颜色 果形 大小 膜 肉 不耐贮藏 核 花 产地 品种(图谱) 移植 发展前景
作 业
• 1. 用文艺性笔调写一篇短文,介绍你家乡 出产的一种水果或其他特产。 要求:抓住事物的特征,准确地介绍; 妥善安排文章的结构层次,注意写作顺序;运 用多种方法说明事物,有意识地打比方、作引 用,使文章通俗生动。 • 2.积累并尝试背诵下列古诗文:苏轼《惠 州一绝》、杜牧《过华清宫绝句》、白居易《 荔枝图序》、陈辉《荔枝》、宋徽宗《宣和殿 荔枝》、文徵明《新荔篇》。
(唐玄宗时以飞马运荔枝供宫中享用的情形) (荔枝不耐贮藏)
(人们对荔枝的喜爱 )
○ 《四川果树良种图谱》说它重19克左右。
(说明荔枝的大小重量)
引 用
• ①引用诗文,增强文学性。
如“飞焰欲横天”、“红云几万重 ”等。
• ②引用古籍、史料,增强科学 性,使说明有根据,更准确。
如引《四川果树良种图谱》的数字。 ——引用众多的资料,不仅为了充实 内容、增添文采,也是为了纠正历来 有关荔枝的记载中不实的或误传的成 分,是出于科学性的考虑,是说明的 需要,也是体现了本文科学小品的体 裁特点。
写作特点
•
条理分明,层次清楚,结构 严密,准确抓住事物的特征进 行说明; 引用诗文,生动形象,富于 文采; 事实确凿,数字具体,科学 性强。
• •
拓展阅读
荔枝图序
白居易 荔枝生巴峡间,树形团团如帷盖,叶如 桂,冬青;华如桔,春荣;实如丹,夏熟; 朵如葡萄,核如枇杷,壳如红缯,膜如紫绡 ,瓤肉莹白如冰雪,浆液甘酸如醴酪,大略 如彼,其实过之。若离本枝,一日而色变, 二日而香变,三日而味变,四五日外,色香 味尽去矣。元和十五年夏,南宾守乐天,命 工吏图而书之,盖为不识者与识而不及一二 三日者云。
说明顺序
• 时间顺序——即按事物发展的时间先后次序来说 明。 • 空间顺序——即按事物空间结构的顺序来说明。 如: 整体——局部 上——下 外——内 远——近 • 事理顺序——即依据事物之间或某一事物各部分 之间的逻辑关系来说明。如: 一般——个别 主要——次要 原因——结果 现象——本质 总述——分说 简单——复杂 特征——功用
○ 飞焰欲横天 ○ “盈盈荷瓣风前落,片片桃花雨后娇”
(荔枝成熟时的颜色)
○ 红云几万重
(荔枝壳膜的形状和颜色)
○ 密移造化出闽山,禁御新栽荔枝丹。
(果实成熟时荔枝林的颜色和形态)
(古代历史上移栽荔枝的情形)
○ 一日而色变,二日而香变, ○ 长安回望绣成堆,山顶千门次第开。 三日而味变,四五日外,色香味 一骑红尘妃子笑,无人知是荔枝来。 尽去矣。 ○ 卢浮山下四时春,卢橘杨梅次第新。 日啖荔枝三百颗,不辞长作岭南人。
整体感知 用一个词或一个词组概括出 每段的段落大意
课文分析
1.将前面概括出的内容合理归 并,列出全文的结构提纲。
2.文章采用了怎样的说明顺序?
全文结构图 &说明顺序
外壳 一、引用白居易的《荔枝图序》介绍荔枝 颜色 二 (1)外部形态 形状 的、 表 形 大小 里 (2)内部构造 (3)荔枝的花 1.荔枝的产地分布 2.古代的荔枝书谱 3.荔枝的移植 薄膜 果肉 贮藏⑻ 果核⑼ 一 般