非线性动力学中分叉图的特性
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固定点
xt 0
R > 1:
不稳定
0 < R < 1: 稳定 R=0: 稳定 R=1: 稳定
2012-10-28 21
-1 < R < 0
R < -1
R=-1 不稳定
2012-10-28 22
非线性系统:
固定点 x t f ( x t )
m df dx t x
m 1:
xt
The period-doubling route to chaos
2012-10-28 30
混沌状况: 在周期2、在周期3 、在周期4的图中, 固定点斜率的绝对值均大于1 考虑一个极端的例子:
x t1 4 ( 1 x t ) x t
因此,进入混沌状态。
2012-10-28 31
五、混沌(chaos) • 混沌的定义: Be aperiodic bounded dynamics in a deterministic system with sensitive dependence on initial conditions. • 混沌系统的性质 Aperiodic Bounded Deterministic Sensitive dependence on initial condition
几种情况:
x t 1 1 . 5 x t (1 x t ) x t 1 2 . 9 x t (1 x t ) x t 1 3 . 3 x t (1 x t ) x t 1 3 . 52 x t (1 x t ) x t 1 4 x t (1 x t )
2012-10-28 32
• Feigenhaum’s number: 4.6692 定义:n the range of R values that give a period-n cycle.
n
lim
n 2n
4 . 6692
2012-10-28
33
• 分叉图 ( bifurcation diagram )
2012-10-28 15
小结: • 系统表现出的不同行为 稳定状态、周期、混沌 • 系统参数(R)的不同给系统带来的影响 • 初始状态( x0)的不同对系统的影响
2012-10-28
16
• 分叉图 ( bifurcation diagram )
2012-10-28
17
三、稳定状态(steady state)和稳定性(stability)
2012-10-28
34
六、准周期性(Quasi-periodicity) x t+1=f ( xt )= xt +b (mod 1)
其中,b为无理数 • 非周期性:
x t+n xt
• 有界:在 xt 周围的固定范围内
The route to chaos: Quasi-periodicity
2012-10-28
2012-10-28
26
吸引域(basin of attraction) The set of initial conditions that eventually leads to a fixed point is called basin of attraction 多稳定性(multi-stability) If multiple fixed points are locally stable we say there is multi-stability.
2012-10-28 28
Conclusion:(考虑周期n)
If there is stable cycle of period n, there must be at least n fixed points associated with the stable cycle, where the slope at each of the fixed points is equal and the absolute value of the slope a each of the fixed points is less than 1.
2012-10-28 19
1、固定点 (fixed point):
xt f ( xt )
x t 1 Rx t ( 1 x t ) x t1 x t x t 0 1 x 1 t R
2012-10-28 20
2、固定点的局部稳定性 线性系统:
第一章 有限差分方程
一、线性有限差分方程: N t 1 RN t
几个概念: •方程(线性) •系统参数:R •初始条件:N0
2012-10-28
N 1 RN N 2 RN
0
1
R N0
2
Nt R N0
t
1பைடு நூலகம்
N0=100 , R>0 衰减(decay) R=0.9
递增(growth) R=1.08
2012-10-28
27
四、周期的稳定性
xtn xt
以逻辑方程,R=3.3为例
x t 1 3 .3 ( 1 x t ) x t
2个固定点: 0, 0.697
x t 2 3 . 3 (1 x t 1 ) x t 1 f ( f ( x t ))
4个固定点: 0, 0.479, 0.697, 0.823
R=4
2012-10-28
12
2012-10-28
13
对初始条件敏感
x t 1 4 x t (1 x t )
dot: x0=0.523423, circle: x0= 0.523424
2012-10-28
14
•
R>4 轨线最终逃逸(escape)到无穷。
问题2: 1. How many iterations dose it take for the trajectories to get with 0.001of the final value x=0.3333 for R=1.5? 2. What happens for R>4?
稳态(steady-state) R=1
2012-10-28 2
N0=100 , R<0 衰减(decay) R=-0.9
递增(growth) R=-1.08
稳态(steady-state) R=-1
2012-10-28 3
吸引子(attractor): 随着时间的演化,系统的一种状态趋势 0<R<1: Nt 0 R>1: Nt
9
• 3<R<3.449 周期2 (period-2)
xt2 xt
R=3.3
2012-10-28
10
• 3.449 <R<3.5699 周期4 周期8 周期16……
R=3.52
周期倍增(period-doubling)
2012-10-28
11
•
3.5699 < R 4
R= 3.5699达到无穷周期 对大多数R产生混沌(chaos)
2012-10-28
37
2012-10-28
固定点
周期2
周期4
混沌
24
两个概念 渐近(asymptotic dynamics ): The term asymptotic dynamics refers to the dynamics as time goes to infinity. 暂态(transient): Behavior before the asymptotic dynamics is called transient
stable 单 调逼 近 固定 点 交 替逼 近 固定 点 unstable 单 调远 离 固定 点
0 m 1: 1 m 0: m 1: m 1: xt
m 1 : 交 替远 离 固定 点
2012-10-28 23
以逻辑方程为例分析: x t 1 Rx t ( 1 x t )
xt f ( xt ) x 0 1 x 1 R
2012-10-28 5
系统参数:R, 初始条件: x0 ,
取0< x0 <1, x0 =0.1(有生态学意义)
• 0<R1
xt 0
(attractor)
2012-10-28
6
• 1<R<3
R=1.5
2012-10-28 29
• • • • •
For 3.0000<R<3.4495, there is stable cycle of period 2 For 3.4495<R<3.5441, there is stable cycle of period 4 For 3.5441<R<3.5644, there is stable cycle of period 8 For 3.5644<R<3.5688, there is stable cycle of period 16 As R is increased closer to 3.570, there are stable cycles of period 2n, where the period of the cycles increases as 3.570 is approached • For values of R> 3.570, there are narrow ranges of periodic solutions as well as aperiodic behavior
研究三个问题: 1、系统是否存在固定点(fixed point)? 2、系统是否在固定点处存在局部稳定性? 局部稳定性(locally stable) 3、系统是否在固定点处存在全局稳定性? 全局稳定性(globally stable)
2012-10-28
18
• 局部稳定性 locally stable: If the initial condition happens to be near a fixed point, sequent iterates approach the fixed point, we say the fixed point is locally stable. ( locally asymptotic stability) • 全局稳定性 globally stable: If the fixed point is approached by all initial conditions, we say the fixed point is globally stable.
单调逼近固定点 x*=0.333 R=2.9 交替逼近固定点 x*=0.655 xt 1 1/R
2012-10-28
7
2012-10-28
8
问题1: 1、 x0取不同值时,上述几种情况如何? 2、x0=0.5, R分别为1.25, 2, 2.75, 画出轨线 t- xt
2012-10-28
2012-10-28
25
3、固定点的全局稳定性 线性系统 A locally stable fixed point is also globally stable. 非线性系统 When multiple fixed point are present, none of the fixed points can be globally.
35
一个例子:
• 非周期性:
x tn x t n
x t1 x t
1
(mod 1)
(mod 1)
• 有界性:
xt 0 , x t1 0 ,
2012-10-28
x t1
1
1/
1-1/
1
xt 1
36
作业: 用计算机实现分叉图 ( bifurcation diagram ) (p31) • 计算Feigenhaum’s number • 进一步找到周期3的R值 • 研究自相似性
分叉点(bifurcation point): 以某个参数值为分界,系统进入不同的状 态 R=1
2012-10-28 4
二、非线性的有限差分方程 1、Logistic Equation: x t 1 Rx t ( 1 x t ) 系统参数:R 初始条件: x0 固 定 点: (fixed point)
xt 0
R > 1:
不稳定
0 < R < 1: 稳定 R=0: 稳定 R=1: 稳定
2012-10-28 21
-1 < R < 0
R < -1
R=-1 不稳定
2012-10-28 22
非线性系统:
固定点 x t f ( x t )
m df dx t x
m 1:
xt
The period-doubling route to chaos
2012-10-28 30
混沌状况: 在周期2、在周期3 、在周期4的图中, 固定点斜率的绝对值均大于1 考虑一个极端的例子:
x t1 4 ( 1 x t ) x t
因此,进入混沌状态。
2012-10-28 31
五、混沌(chaos) • 混沌的定义: Be aperiodic bounded dynamics in a deterministic system with sensitive dependence on initial conditions. • 混沌系统的性质 Aperiodic Bounded Deterministic Sensitive dependence on initial condition
几种情况:
x t 1 1 . 5 x t (1 x t ) x t 1 2 . 9 x t (1 x t ) x t 1 3 . 3 x t (1 x t ) x t 1 3 . 52 x t (1 x t ) x t 1 4 x t (1 x t )
2012-10-28 32
• Feigenhaum’s number: 4.6692 定义:n the range of R values that give a period-n cycle.
n
lim
n 2n
4 . 6692
2012-10-28
33
• 分叉图 ( bifurcation diagram )
2012-10-28 15
小结: • 系统表现出的不同行为 稳定状态、周期、混沌 • 系统参数(R)的不同给系统带来的影响 • 初始状态( x0)的不同对系统的影响
2012-10-28
16
• 分叉图 ( bifurcation diagram )
2012-10-28
17
三、稳定状态(steady state)和稳定性(stability)
2012-10-28
34
六、准周期性(Quasi-periodicity) x t+1=f ( xt )= xt +b (mod 1)
其中,b为无理数 • 非周期性:
x t+n xt
• 有界:在 xt 周围的固定范围内
The route to chaos: Quasi-periodicity
2012-10-28
2012-10-28
26
吸引域(basin of attraction) The set of initial conditions that eventually leads to a fixed point is called basin of attraction 多稳定性(multi-stability) If multiple fixed points are locally stable we say there is multi-stability.
2012-10-28 28
Conclusion:(考虑周期n)
If there is stable cycle of period n, there must be at least n fixed points associated with the stable cycle, where the slope at each of the fixed points is equal and the absolute value of the slope a each of the fixed points is less than 1.
2012-10-28 19
1、固定点 (fixed point):
xt f ( xt )
x t 1 Rx t ( 1 x t ) x t1 x t x t 0 1 x 1 t R
2012-10-28 20
2、固定点的局部稳定性 线性系统:
第一章 有限差分方程
一、线性有限差分方程: N t 1 RN t
几个概念: •方程(线性) •系统参数:R •初始条件:N0
2012-10-28
N 1 RN N 2 RN
0
1
R N0
2
Nt R N0
t
1பைடு நூலகம்
N0=100 , R>0 衰减(decay) R=0.9
递增(growth) R=1.08
2012-10-28
27
四、周期的稳定性
xtn xt
以逻辑方程,R=3.3为例
x t 1 3 .3 ( 1 x t ) x t
2个固定点: 0, 0.697
x t 2 3 . 3 (1 x t 1 ) x t 1 f ( f ( x t ))
4个固定点: 0, 0.479, 0.697, 0.823
R=4
2012-10-28
12
2012-10-28
13
对初始条件敏感
x t 1 4 x t (1 x t )
dot: x0=0.523423, circle: x0= 0.523424
2012-10-28
14
•
R>4 轨线最终逃逸(escape)到无穷。
问题2: 1. How many iterations dose it take for the trajectories to get with 0.001of the final value x=0.3333 for R=1.5? 2. What happens for R>4?
稳态(steady-state) R=1
2012-10-28 2
N0=100 , R<0 衰减(decay) R=-0.9
递增(growth) R=-1.08
稳态(steady-state) R=-1
2012-10-28 3
吸引子(attractor): 随着时间的演化,系统的一种状态趋势 0<R<1: Nt 0 R>1: Nt
9
• 3<R<3.449 周期2 (period-2)
xt2 xt
R=3.3
2012-10-28
10
• 3.449 <R<3.5699 周期4 周期8 周期16……
R=3.52
周期倍增(period-doubling)
2012-10-28
11
•
3.5699 < R 4
R= 3.5699达到无穷周期 对大多数R产生混沌(chaos)
2012-10-28
37
2012-10-28
固定点
周期2
周期4
混沌
24
两个概念 渐近(asymptotic dynamics ): The term asymptotic dynamics refers to the dynamics as time goes to infinity. 暂态(transient): Behavior before the asymptotic dynamics is called transient
stable 单 调逼 近 固定 点 交 替逼 近 固定 点 unstable 单 调远 离 固定 点
0 m 1: 1 m 0: m 1: m 1: xt
m 1 : 交 替远 离 固定 点
2012-10-28 23
以逻辑方程为例分析: x t 1 Rx t ( 1 x t )
xt f ( xt ) x 0 1 x 1 R
2012-10-28 5
系统参数:R, 初始条件: x0 ,
取0< x0 <1, x0 =0.1(有生态学意义)
• 0<R1
xt 0
(attractor)
2012-10-28
6
• 1<R<3
R=1.5
2012-10-28 29
• • • • •
For 3.0000<R<3.4495, there is stable cycle of period 2 For 3.4495<R<3.5441, there is stable cycle of period 4 For 3.5441<R<3.5644, there is stable cycle of period 8 For 3.5644<R<3.5688, there is stable cycle of period 16 As R is increased closer to 3.570, there are stable cycles of period 2n, where the period of the cycles increases as 3.570 is approached • For values of R> 3.570, there are narrow ranges of periodic solutions as well as aperiodic behavior
研究三个问题: 1、系统是否存在固定点(fixed point)? 2、系统是否在固定点处存在局部稳定性? 局部稳定性(locally stable) 3、系统是否在固定点处存在全局稳定性? 全局稳定性(globally stable)
2012-10-28
18
• 局部稳定性 locally stable: If the initial condition happens to be near a fixed point, sequent iterates approach the fixed point, we say the fixed point is locally stable. ( locally asymptotic stability) • 全局稳定性 globally stable: If the fixed point is approached by all initial conditions, we say the fixed point is globally stable.
单调逼近固定点 x*=0.333 R=2.9 交替逼近固定点 x*=0.655 xt 1 1/R
2012-10-28
7
2012-10-28
8
问题1: 1、 x0取不同值时,上述几种情况如何? 2、x0=0.5, R分别为1.25, 2, 2.75, 画出轨线 t- xt
2012-10-28
2012-10-28
25
3、固定点的全局稳定性 线性系统 A locally stable fixed point is also globally stable. 非线性系统 When multiple fixed point are present, none of the fixed points can be globally.
35
一个例子:
• 非周期性:
x tn x t n
x t1 x t
1
(mod 1)
(mod 1)
• 有界性:
xt 0 , x t1 0 ,
2012-10-28
x t1
1
1/
1-1/
1
xt 1
36
作业: 用计算机实现分叉图 ( bifurcation diagram ) (p31) • 计算Feigenhaum’s number • 进一步找到周期3的R值 • 研究自相似性
分叉点(bifurcation point): 以某个参数值为分界,系统进入不同的状 态 R=1
2012-10-28 4
二、非线性的有限差分方程 1、Logistic Equation: x t 1 Rx t ( 1 x t ) 系统参数:R 初始条件: x0 固 定 点: (fixed point)