【精选】全等三角形单元复习练习(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、八年级数学全等三角形解答题压轴题(难)

1.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明.

(1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程;

(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明).

【答案】(1)过程见解析;(2)MN= NC﹣BM.

【解析】

【分析】

(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN

=60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到

MN=BM+NC.

(2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论.

【详解】

解:(1)如图示,延长AC至E,使得CE=BM,并连接DE.

∵△BDC为等腰三角形,△ABC为等边三角形,∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,又BD=DC,且∠BDC=120°,

∴∠DBC=∠DCB=30°

∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,∴∠MBD=∠ECD=90°,

在△MBD与△ECD中,

∵BD CD

MBD ECD BM CE

∴△MBD≌△ECD(SAS),

∴MD=DE,∠BDM=∠CDE

∵∠MDN =60°,∠BDC=120°,

∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°,即:∠MDN =∠NDE=60°,

在△DMN与△DEN中,

∵MD DE

MDN EDN DN DN

∴△DMN≌△DEN(SAS),

∴MN=NE=CE+NC=BM+NC.

(2)如图②中,结论:MN=NC﹣BM.

理由:在CA上截取CE=BM.∵△ABC是正三角形,

∴∠ACB=∠ABC=60°,

又∵BD=CD,∠BDC=120°,∴∠BCD=∠CBD=30°,

∴∠MBD=∠DCE=90°,

在△BMD和△CED中

∵BM CE

MBD ECD BD CD

∴△BMD≌△CED(SAS),

∴DM= DE,∠BDM=∠CDE

∵∠MDN =60°,∠BDC=120°,

∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°,

即:∠MDN =∠NDE=60°,

在△MDN和△EDN中

∵ND ND

EDN MDN ND ND

∴△MDN≌△EDN(SAS),

∴MN =NE=NC﹣CE=NC﹣BM.

【点睛】

此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.

2.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.

(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;

(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理

由.

【答案】(1)CF=CG;(2)CF=CG,见解析

【解析】

【分析】

(1)结论CF=CG,由角平分线性质定理即可判断.

(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.

【详解】

解:(1)结论:CF=CG;

证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,

∴CF=CG(角平分线上的点到角两边的距离相等);

(2)CF=CG.理由如下:如图,

过点C作CM⊥OA,CN⊥OB,

∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,

∴CM=CN(角平分线上的点到角两边的距离相等),

∴∠AOC=∠BOC=60º(角平分线的性质),

∵∠DCE=∠AOC,

∴∠AOC=∠BOC=∠DCE=60º,

∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º,

∴∠MCN=30º+30º=60º,

∴∠MCN=∠DCE,

∵∠MCF=∠MCN-∠DCN,∠NCG=∠DCE-∠DCN,

∴∠MCF=∠NCG,

在△MCF和△NCG中,

CMF CNG

CM CN

MCF NCG

∠=∠

=

⎪∠=∠

∴△MCF≌△NCG(ASA),

∴CF=CG(全等三角形对应边相等);

【点睛】

本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等.

3.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.

(1)求证:△ABC≌△ADE;

(2)求∠FAE的度数;

(3)求证:CD=2BF+DE.

【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.

【解析】

【分析】

(1)根据已知条件易证∠BAC=∠DAE,再由AB=AD,AE=AC,根据SAS即可证得

△ABC≌△ADE;

(2)已知∠CAE=90°,AC=AE,根据等腰三角形的性质及三角形的内角和定理可得

∠E=45°,由(1)知△BAC≌△DAE,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE即可得∠FAE的度数;

(3)延长BF到G,使得FG=FB,易证△AFB≌△AFG,根据全等三角形的性质可得

AB=AG,∠ABF=∠G,再由△BAC≌△DAE,可得AB=AD,∠CBA=∠EDA,CB=ED,所以AG=AD,∠ABF=∠CDA,即可得∠G=∠CDA,利用AAS证得△CGA≌△CDA,由全等三角形的性质可得CG=CD,所以CG=CB+BF+FG=CB+2BF=DE+2BF.

【详解】

(1)∵∠BAD=∠CAE=90°,

∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,

∴∠BAC=∠DAE,

在△BAC和△DAE中,

相关文档
最新文档