模式识别的主要方法及其应用
什么是模式识别模式识别的方法与应用
什么是模式识别模式识别的方法与应用模式识别是通过计算机用数学技术方法来研究模式的自动处理和判读。
那么你对模式识别了解多少呢?以下是由店铺整理关于什么是模式识别的内容,希望大家喜欢!模式识别的简介模式识别(英语:Pattern Recognition),就是通过计算机用数学技术方法来研究模式的自动处理和判读。
我们把环境与客体统称为“模式”。
随着计算机技术的发展,人类有可能研究复杂的信息处理过程。
信息处理过程的一个重要形式是生命体对环境及客体的识别。
对人类来说,特别重要的是对光学信息(通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。
这是模式识别的两个重要方面。
市场上可见到的代表性产品有光学字符识别、语音识别系统。
人们在观察事物或现象的时候,常常要寻找它与其他事物或现象的不同之处,并根据一定的目的把各个相似的但又不完全相同的事物或现象组成一类。
字符识别就是一个典型的例子。
例如数字“4”可以有各种写法,但都属于同一类别。
更为重要的是,即使对于某种写法的“4”,以前虽未见过,也能把它分到“4”所属的这一类别。
人脑的这种思维能力就构成了“模式”的概念。
在上述例子中,模式和集合的概念是分未弄的,只要认识这个集合中的有限数量的事物或现象,就可以识别属于这个集合的任意多的事物或现象。
为了强调从一些个别的事物或现象推断出事物或现象的总体,我们把这样一些个别的事物或现象叫作各个模式。
也有的学者认为应该把整个的类别叫作模去,这样的“模式”是一种抽象化的概念,如“房屋”等都是“模式”,而把具体的对象,如人民大会堂,叫作“房屋”这类模式中的一个样本。
这种名词上的不同含义是容易从上下文中弄淸楚的。
模式识别是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。
随着20世纪40年代计算机的出现以及50年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。
(计算机)模式识别在20世纪60年代初迅速发展并成为一门新学科。
模式识别的基本理论与方法
模式识别的基本理论与方法模式识别是人工智能和计算机科学领域中的一个重要分支,也是现代科学技术中广泛应用的一种技术手段。
它涉及到从大量的数据中自动识别出某种模式的过程,其应用领域非常广泛,如人脸识别、指纹识别、语音识别等领域。
一、模式识别的基本理论模式是事物或现象中简单重复的部分或整体,模式识别是通过对数据进行分类、聚类等方式分析、发现事物或现象中的规律性,并将其应用于实际生产和科学研究中。
模式识别的基本理论主要包括数据分析、统计学、人工神经网络及算法模型等。
1. 数据分析数据分析是模式识别的一个重要组成部分,它是指通过对数据进行收集、分析、处理和应用,从中发现有用的信息以及可用于决策或预测的模型。
数据分析可以采用统计学、机器学习、人工神经网络等方法,无论采用何种方法,数据分析的目的都是找到数据表达的规律和模式。
2. 统计学统计学是模式识别所使用的数学工具之一,主要通过收集和分析数据来提供决策支持和预测结果。
统计学的主要应用领域包括控制过程、质量控制、风险评估和数据挖掘等。
3. 人工神经网络人工神经网络是一种基于人类大脑神经结构的人工智能技术,它通过对输入的数据进行处理、学习,将数据转换为信号输出,以此模拟人脑的神经网络功能。
人工神经网络可以应用于图像识别、音频识别等领域。
4. 算法模型算法模型是模式识别的基本理论之一,它是指在进行数据分析和处理的时候所采用的算法模型。
常用的算法模型包括决策树、支持向量机、神经网络等。
二、模式识别的方法模式识别的方法主要包括监督学习、无监督学习和半监督学习。
1. 监督学习监督学习是指在训练模型时,数据集中已知了对应的标签或类别信息。
监督学习的主要步骤是将已知数据输入到模型中进行训练,训练好的模型之后可以将未知的数据进行分类或预测处理。
监督学习包括分类和回归两种类型。
2. 无监督学习无监督学习是指在训练模型时,数据集中没有对应的标签或类别信息。
无监督学习的主要步骤是将数据输入到模型中进行训练,训练好的模型之后可以从数据中提取出特定的模式、结构或规律。
人工智能的模式识别和模式识别方法
人工智能的模式识别和模式识别方法人工智能(Artificial Intelligence,简称AI)是计算机科学的一个分支领域,致力于开发智能系统,使其能够模仿人类的思维和行为。
模式识别是AI的一个重要领域,通过识别和学习事物的模式,让计算机能够处理和理解复杂的信息。
模式识别是一个广义的概念,它包括从海量数据中识别出规律性的模式,从而用于分析和预测未来的趋势。
在人工智能领域中,模式识别主要涉及机器学习、深度学习和神经网络等技术的应用。
下面将详细介绍这些模式识别方法以及它们在人工智能中的应用。
机器学习是一种程序设计技术,通过让计算机根据已有的数据样本训练模型,从而使其能够自动学习和预测。
机器学习的过程主要分为训练和预测两个阶段。
在训练阶段,计算机通过输入一系列已知的数据样本,通过自我调整的方式建立数学模型,这个过程称为模型训练。
在预测阶段,计算机利用已训练好的模型,输入未知的数据样本,通过模型的推理或预测能力,输出相应的结果。
在机器学习中,常用的模式识别方法包括支持向量机(Support Vector Machine,SVM)、K近邻算法(K-Nearest Neighbor,KNN)、决策树(Decision Tree)等。
SVM是一种广泛应用于模式分类和回归分析的算法,其基本思想是通过一个超平面将样本划分成不同的类别。
KNN算法则是根据相似度进行分类,即根据未知样本与已知样本的距离选择最近的K个邻居,然后根据这些邻居的类别进行分类。
决策树则是一种树结构模型,通过对数据集进行划分,构建树结构来实现分类。
这些方法均适用于模式识别中的分类问题。
除了机器学习,深度学习也是一种重要的模式识别方法。
深度学习是一种神经网络模型,通过多层的神经元网络来模拟人类大脑中的神经元之间的相互连接和信息传递过程。
相比于传统的机器学习方法,深度学习能够处理更复杂、更庞大的数据集。
深度学习的核心是人工神经网络(Artificial Neural Networks,ANN),其中最为常见的模型包括卷积神经网络(Convolutional Neural Network,CNN)和循环神经网络(Recurrent Neural Network,RNN)。
利用Matlab进行模式识别的基本方法与实践
利用Matlab进行模式识别的基本方法与实践引言模式识别是一种重要的人工智能技术,它在许多领域都有广泛应用,如图像识别、声音分析、文本分类等。
利用Matlab进行模式识别研究具有许多优势,因为Matlab提供了丰富的工具和函数库,便于进行数据的处理和分析。
本文将介绍利用Matlab进行模式识别的基本方法与实践。
一、数据预处理数据预处理是进行模式识别前必要的步骤之一。
在真实的应用场景中,我们经常会面临一些棘手的问题,如噪声、缺失值等。
首先,我们需要对数据进行清洗,去除其中的异常值和噪声。
Matlab提供了许多函数,如`median`、`mean`等,可以用于计算中值和均值,帮助我们识别并去除异常值。
其次,对于存在缺失值的情况,我们可以使用插补方法进行填充。
Matlab提供了`interp1`函数,用于进行线性插值,可以帮助我们恢复缺失的数据。
如果缺失值较多,可以考虑使用更高级的插补方法,如多重插补(Multiple Imputation)等。
二、特征提取特征提取是进行模式识别的关键步骤之一。
在实际应用中,原始数据通常具有高维度和冗余性,这对模式识别的算法效率和准确性都会带来很大的负担。
因此,我们需要从原始数据中提取关键特征。
Matlab提供了大量的函数和工具箱,如`wavelet`、`pca`等,可以帮助我们进行特征提取。
例如,对于图像识别任务,我们可以使用小波变换进行特征提取。
Matlab的`wavelet`工具箱提供了丰富的小波函数,可以用于不同类型的特征提取。
另外,主成分分析(Principal Component Analysis, PCA)也是一种常用的特征提取方法。
Matlab提供了`pca`函数,可以用于计算数据的主成分。
三、模型训练模型训练是进行模式识别的核心步骤之一。
在进行模型训练前,我们需要将数据集分为训练集和测试集。
将数据集分为训练集和测试集的目的是为了避免模型的过拟合,并评估模型在未知数据上的泛化能力。
模式识别在图像识别中的应用
模式识别在图像识别中的应用模式识别是一种通过对数据进行分析和处理,识别数据中的规律和特征的技术。
在图像识别领域,模式识别发挥着至关重要的作用,帮助计算机系统理解和识别图像中的内容。
本文将探讨模式识别在图像识别中的应用,介绍其原理、方法和实际应用场景。
一、模式识别原理模式识别是一种基于数据分析的技术,其原理主要包括特征提取、特征匹配和分类识别三个步骤。
1. 特征提取特征提取是模式识别的第一步,通过对图像数据进行处理,提取出具有代表性的特征信息。
在图像识别中,特征可以是图像的边缘、纹理、颜色等。
特征提取的质量直接影响到后续的分类和识别效果。
2. 特征匹配特征匹配是将提取出的特征与已知的模式进行比对,找出它们之间的相似性和差异性。
通过特征匹配,可以确定图像中是否存在某种特定的模式或对象。
3. 分类识别分类识别是模式识别的最终目的,即将图像分到不同的类别中。
通过建立分类模型,将提取出的特征与已知类别的特征进行比对,从而实现对图像的自动分类和识别。
二、模式识别方法在图像识别中,常用的模式识别方法包括传统的机器学习方法和深度学习方法。
1. 机器学习方法机器学习方法是一种基于数据和统计学习的技术,通过对大量数据的学习和训练,建立模型来实现对图像的识别和分类。
常用的机器学习算法包括支持向量机(SVM)、K近邻算法(KNN)和决策树等。
2. 深度学习方法深度学习是一种基于人工神经网络的技术,通过多层次的神经网络结构,实现对图像数据的高级特征提取和学习。
深度学习在图像识别领域取得了巨大的成功,如卷积神经网络(CNN)和循环神经网络(RNN)等。
三、模式识别在图像识别中的应用模式识别在图像识别中有着广泛的应用,涵盖了各个领域和行业。
1. 人脸识别人脸识别是图像识别领域的一个重要应用方向,通过模式识别技术可以实现对人脸的自动检测、识别和验证。
人脸识别技术在安防、金融、医疗等领域有着广泛的应用。
2. 物体识别物体识别是指识别图像中的各种物体和实体,通过模式识别技术可以实现对不同物体的分类和识别。
模式识别的方法
模式识别的方法
以下是 7 条关于模式识别方法的内容:
1. 仔细观察呀!这就像侦探找线索一样,你得认真地去看每一个细节。
比如说观察一个人的表情,从他的眼神、嘴角的细微变化中去发现情绪的蛛丝马迹,这就是很有用的模式识别方法呢!
2. 多做对比呗!就好像挑东西,把不同的放在一起比一比,优缺点立马就出来了。
比如对比不同品牌手机的性能,你就能识别出哪种更符合你的需求呀!
3. 善于归类啊!把相似的东西归到一起,这多简单!比如把水果按照类别分放,香蕉一堆、苹果一堆,这不就找到规律,识别出模式了嘛!
4. 不断总结呀!这就如同在拼拼图,每完成一块就总结一下经验。
像学骑自行车,每次摔倒后总结为啥摔了,下次不就更容易掌握平衡的模式了嘛!
5. 多听他人经验,哎呀,这可太重要啦!就像听老师讲课一样,那些过来人的经验能让你少走好多弯路呢!比如听前辈讲职场规则,不就能更快识别出职场的模式了吗?
6. 保持好奇心哟!像小孩子探索世界一样,不停地问为什么。
比如对天上的星星好奇,研究它们的规律,不就识别出星座的模式了嘛!
7. 学会联想呀!把看似不相关的东西联系起来,哇,这会有奇妙的发现哦!就像从云的形状联想到各种动物,这就是在进行有趣的模式识别呢!
我觉得这些模式识别的方法都超有用的,能帮我们更好地理解和认识世界,大家赶紧用起来呀!。
模式识别在工业自动化中的应用
模式识别在工业自动化中的应用工业自动化是指通过自动化设备和技术手段实现对工业生产过程中各种物理、化学、生物过程的自动控制。
近年来,随着计算机技术和人工智能的迅速发展,模式识别在工业自动化领域中的应用日益广泛。
本文将探讨模式识别在工业自动化中的应用背景、主要方法和前景展望。
一、应用背景工业自动化生产过程中常涉及大量的数据,包括传感器采集的物理量、生产线上的图像和视频等等。
这些数据通常非常复杂,很难通过传统的手动分析方法进行有效处理。
而模式识别作为一种强大的数据处理工具,可以帮助工业自动化系统实现高效的数据分析和异常检测。
二、主要方法1. 统计模式识别:统计模式识别是一种基于概率统计原理的模式识别方法。
通过分析和建模数据的概率分布,可以对未知数据进行分类、聚类和异常检测等操作。
在工业自动化中,统计模式识别常用于故障检测和质量控制等领域。
2. 机器学习:机器学习是一种通过训练数据来学习和建立模型,并通过已学习的模型对新数据进行分类、预测和决策的方法。
在工业自动化中,机器学习被广泛应用于生产线上的监测和控制、生产计划优化等方面。
例如,利用机器学习算法可以构建预测模型,准确预测材料消耗和产品质量等指标,帮助企业进行生产计划的优化和资源的合理配置。
3. 深度学习:深度学习是机器学习的一种分支,通过构建深层神经网络模型,实现对复杂非线性问题的高效处理。
在工业自动化中,深度学习被广泛应用于图像和视频处理、声音识别等方面。
例如,利用深度学习算法可以实现图像识别技术,对生产过程中的缺陷进行自动检测和分类,大大提高了产品质量的稳定性和生产线的效率。
三、前景展望随着工业自动化技术的不断发展和深化,模式识别在工业自动化中的应用前景非常广阔。
首先,工业生产过程中的数据量和复杂度会不断增加,对高效的数据处理和分析提出更高要求,而模式识别技术正好可以满足这一需求。
其次,随着人工智能技术的进一步突破,模式识别算法和模型的性能将大幅提升,对更广泛的工业场景进行应用也将变得更加可行和有效。
模式识别在图像处理中的应用
模式识别在图像处理中的应用随着科技的发展和数字化的推进,图像处理已经成为了我们生活中不可或缺的一部分。
而模式识别作为图像处理领域中的一个重要分支,也以其强大的功能和广阔的应用场景在图像处理中迅速发展。
本文将探讨模式识别在图像处理中的应用,重点介绍它的原理、方法和实际应用。
一、模式识别的原理和方法模式识别是一种从数据中提取信息并将其分类或描述的技术,通过分析输入的数据,建立模型,进而从海量的数据中挖掘出有价值的信息。
在图像处理中,我们可以利用模式识别的策略和思想来对图像进行分类、识别和描述,以达到优化图像质量、提高处理效率等目的。
常用的模式识别方法包括神经网络、支持向量机、决策树和随机森林等,其中每种方法都针对不同的任务和数据类型,具有自己的特点和局限性。
从图像处理的角度来看,随机森林是一种效果较好的模式识别方法,它通过构建多个决策树进行投票,从而得到更准确的分类结果。
二、模式识别的应用1.图像分类图像分类是模式识别在图像处理中的一项主要应用,它可以在不加人工干预的情况下,将图像自动分类到指定的类别中。
在实际生产和科研中,图像分类可以用于物体识别、图像搜索、视频监控等领域。
2.目标检测目标检测是指在图像或视频中检测出特定目标的位置和数量。
模式识别可以用于目标检测中,通过对图像和视频的分析和特征提取,以及对检测结果的分类和评估,实现对目标检测精度的提升。
3.人脸识别人脸识别作为模式识别的一个经典应用场景,也广泛应用于图像处理中。
通过提取图像中面部的特征,识别出照片中的人脸,并可以进行相应的识别、分类和描述。
人脸识别可广泛应用于安全检测、人员统计、自动门禁等场景。
三、模式识别的发展趋势随着科技的不断发展和智能化水平的提升,模式识别也在不断地寻找新的应用场景和技术方向。
未来,模式识别的发展趋势可能会朝着以下方向演进:1.深度学习深度学习是人工智能的一个分支,是神经网络的一种。
它利用多层神经网络对数据进行学习和分析,可以极大地提高模式识别的准确度和鲁棒性,成为未来模式识别的主流方法之一。
模式识别在故障诊断中的应用
模式识别在故障诊断中的应用故障诊断是工程和科学领域中一个重要的任务,它涉及到对设备、系统或过程中的问题进行准确的分析和解决。
模式识别是一种通过分析数据并识别其内在模式的技术,已经被广泛应用于故障诊断领域。
本文将探讨模式识别在故障诊断中的应用,并介绍一些相关的方法和案例。
一、模式识别在故障诊断中的重要性故障诊断的目标是找出问题的根本原因,从而对其进行修复和预防。
传统的故障诊断方法通常基于经验和试错,这种方法费时费力,并且在复杂系统中往往效果不佳。
而模式识别技术可以通过分析历史数据和实时数据来自动地检测和诊断故障,具有以下几个重要的优势:1. 高效性:模式识别技术可以快速地对大量数据进行分析,从中识别出潜在的故障模式。
相比传统的人工方法,模式识别可以大大提高诊断效率。
2. 准确性:模式识别技术以数据为基础,不受主观因素的影响,因此能够提供更加客观和准确的诊断结果。
这对于一些复杂的系统或隐蔽的故障尤为重要。
3. 可扩展性:模式识别技术可以适应不同类型的系统和设备,并且可以通过不断学习和更新模型来提升诊断能力。
这使得它在应对新领域和新问题时具有较强的适应性。
二、模式识别在故障诊断中的方法模式识别技术在故障诊断中主要包括以下几种方法:1. 监督学习:监督学习是一种利用已知输入和输出样本来训练模型的方法。
在故障诊断中,可以通过监督学习来建立故障和正常工作状态之间的模型,并基于该模型对未知数据进行分类和诊断。
例如,在工业生产中,可以通过监测传感器数据来建立故障预警模型,及早发现潜在问题。
2. 无监督学习:无监督学习是一种只利用输入数据本身进行模型训练的方法。
在故障诊断中,无监督学习可以用于发现数据中的潜在模式或异常。
例如,可以使用聚类算法对传感器数据进行分析,从中发现和标识出异常模式,以便进一步进行故障诊断。
3. 深度学习:深度学习是一种利用人工神经网络进行模式识别的方法。
通过构建深层次的神经网络模型,可以对复杂的数据进行高级的特征提取和分类。
模式识别的使用方法
模式識別的使用方法模式识别是一种重要的数据处理技术,它可以在数据中发现和识别出重复出现的模式并加以利用。
在现代科学和工程领域,模式识别被广泛应用于各种任务,如语音识别、图像识别、自然语言处理等。
模式识别的使用方法可以分为以下几个步骤:1. 数据收集和准备:首先需要收集所需的数据样本,并对其进行预处理,以便更好地适应后续的模式识别算法。
预处理包括数据清洗、数据转换和特征提取等操作。
2. 特征选择和提取:在模式识别中,特征是用于描述和区别不同模式的属性或属性组合。
通过特征选择和提取,我们可以从原始数据中提取出最具有代表性的特征,以便后续的模式识别算法更好地处理。
3. 模型选择和训练:在模式识别中,我们需要选择适合任务的模型或算法,并对其进行训练。
模型选择通常基于任务的特点和性能需求,可以选择分类模型(如K近邻、决策树、支持向量机等)或聚类模型(如K-means、高斯混合模型等)等。
4. 模式识别和分类:经过模型训练后,我们可以将新的数据样本输入到模型中进行模式识别和分类。
模式识别的结果可以是对模式的标识、对模式的描述或对模式的概率估计等。
5. 模型评估和优化:模式识别的性能评估是一个重要的环节,它可以用于评估模型的准确性、鲁棒性和效率等。
根据评估结果,我们可以对模型进行优化和调整,以提高模式识别的性能。
除了以上基本步骤,模式识别还可以结合其他相关技术和方法,以更好地适应不同任务的需求。
例如,可以结合深度学习技术进行图像识别,或结合自然语言处理技术进行文本分类等。
模式识别的使用方法对于各行各业都具有重要意义。
在医学领域,它可以用于诊断疾病和预测病情;在金融领域,可以用于风险评估和交易预测;在自动驾驶领域,可以用于道路识别和障碍物检测等。
通过模式识别的使用,我们可以更好地理解和利用数据,并为决策和问题解决提供有力支持。
总结来说,模式识别是一种重要的数据处理技术,它帮助我们在数据中发现和利用重复出现的模式。
人工智能的模式识别和模式识别方法
人工智能的模式识别和模式识别方法人工智能作为一种新兴的科技领域,正在快速发展并应用于各个领域。
其中,模式识别作为人工智能领域中非常重要的一环,被广泛应用于人脸识别、语音识别、图像识别等方面。
模式识别的本质是通过对数据的学习和分析,识别出其中的规律性和特征,从而实现对不同数据的分类、识别和预测。
模式识别方法则是实现模式识别的工具和技术,包括了各种算法、模型和技术。
本文将探讨的相关内容,包括其应用领域、发展历程、基本原理及未来趋势。
模式识别作为人工智能领域的一项基础技术,具有广泛的应用前景。
在人脸识别领域,模式识别技术可以通过对图像数据的学习和分析,识别出图像中的人脸部分,并进行对比和匹配,实现自动识别和验证。
在语音识别领域,模式识别技术可以通过对语音数据的学习和建模,识别出语音中的文本信息,并实现语音识别和指令控制。
在图像识别领域,模式识别技术可以通过对图像数据的学习和分类,识别出图像中的物体和场景,并实现图像检索和分类。
这些应用领域的成功应用,大大提升了人工智能技术的实用性和普适性,对推动人工智能技术的发展起到了重要作用。
模式识别作为一项复杂的人工智能技术,经历了多年的发展和演进。
早期的模式识别方法主要是基于统计学习和概率模型的,如最小二乘法、贝叶斯推断等。
随着深度学习和神经网络技术的发展,模式识别方法逐渐演变为基于深度神经网络的模式识别方法,如卷积神经网络、循环神经网络等。
深度学习技术的应用,使得模式识别在复杂数据和高维度数据上的表现大大提高,具有更好的学习能力和泛化能力。
此外,随着大数据和云计算技术的发展,模式识别方法也可以在更大规模的数据集上实现模式识别和分类,为人工智能技术的应用提供更强大的支持。
模式识别的基本原理是通过对数据的学习和分析,识别出其中的规律性和特征,从而实现对数据的分类和预测。
模式识别方法主要包括数据预处理、特征提取、特征选择和模型训练等几个关键步骤。
首先,数据预处理是模式识别方法的第一步,其目的是对原始数据进行清洗和归一化,消除噪声和异常值,提高数据的质量和准确性。
人工智能的模式识别和模式分类方法
人工智能的模式识别和模式分类方法人工智能(Artificial Intelligence,AI)是研究、开发用于模拟、扩展和拓展人的智能的理论、方法、技术及应用系统的学科。
模式识别和模式分类是人工智能的重要领域之一,在计算机视觉、语音识别、自然语言处理等众多应用领域发挥着重要作用。
本文将探讨人工智能中模式识别和模式分类的方法及其应用。
一、模式识别与模式分类的定义模式识别(Pattern Recognition)是指通过对对象的观察、测量,选择关键特征并建模,最后根据模型的规则决策、分类对象的过程。
模式分类(Pattern Classification)是指将对象按照事先定义好的类别进行归类的过程。
模式识别是模式分类的前置步骤,而模式分类是模式识别的结果。
二、模式识别的方法1.特征提取特征提取是模式识别的重要一步,通过选取合适的特征来描述模式的内在属性。
特征提取常用的方法有:几何特征(如位置、形状、大小)提取、颜色直方图提取、纹理特征提取等。
特征提取的目的是使不同的模式在特征空间中有明显的区分度,便于进一步分类。
2.特征选择特征选择是在众多特征中选取最有用的特征进行分类,以减少计算量和提高分类精度。
常见的特征选择方法有:信息增益、方差选择、互信息等。
特征选择的关键是在保证模式信息丢失最小的情况下,尽可能地选取更少的特征。
3.分类器设计分类器设计是模式识别的核心部分,决定了模式识别的整体性能。
目前常见的分类器有:几何分类器(如K近邻分类器)、统计分类器(如朴素贝叶斯分类器)、神经网络分类器、支持向量机等。
不同的分类器适应不同的应用场景,需要根据具体情况选取。
三、模式分类的方法1.监督学习监督学习是指通过已标记的训练数据建立模型,然后使用这个模型对未知数据进行分类。
常用的监督学习方法有:决策树、朴素贝叶斯、支持向量机等。
监督学习方法需要较多的标记数据,但其分类效果较好。
2.无监督学习无监督学习是指通过未标记的训练数据发现模式,并将数据进行聚类。
了解并应用模式匹配和模式识别的概念和方法
了解并应用模式匹配和模式识别的概念和方法模式匹配和模式识别是信息处理和数据分析中常用的两种方法,可以用于识别、分类和分析数据中的模式和结构。
这两个概念和方法在人工智能、机器学习和模式识别领域具有重要的应用价值。
本文将从定义、应用领域、方法和案例等方面进行详细论述。
一、概念和定义1.模式匹配:模式匹配是一种通过比较输入数据和预定义的模式来发现匹配的过程。
在模式匹配中,输入数据和模式都可以是任何形式的数据,例如数字、字符串、图像、音频等。
模式匹配的目标是找到输入数据中与模式匹配的部分。
2.模式识别:模式识别是一种通过学习和预测来对输入数据进行分类或预测的过程。
在模式识别中,输入数据是事先未知的,模式是通过训练数据得到的。
模式识别的目标是根据输入数据的特征对其进行分类或预测。
二、应用领域模式匹配和模式识别广泛应用于各个领域,包括人脸识别、语音识别、图像处理、数据挖掘、生物信息学、金融分析等。
1.人脸识别:模式匹配和模式识别可以通过比较输入图像与预定义的人脸模式来进行人脸识别。
人脸识别技术在安防、身份认证等领域具有重要应用价值。
2.语音识别:模式匹配和模式识别可以通过比较输入音频与预定义的语音模式来进行语音识别。
语音识别技术被广泛应用于智能助理、语音识别软件等领域。
3.图像处理:模式匹配和模式识别可以用于图像处理中的目标识别、图像分割、图像增强等任务。
图像处理技术在计算机视觉、医学影像等领域具有广泛应用。
4.数据挖掘:模式匹配和模式识别可以用于数据挖掘中的特征提取、聚类分析、异常检测等任务。
数据挖掘技术在企业决策、市场分析等领域具有重要应用价值。
5.生物信息学:模式匹配和模式识别可以用于DNA序列、蛋白质序列等生物信息的分析和识别。
生物信息学技术在基因组学、药物研发等领域有重要应用。
6.金融分析:模式匹配和模式识别可以用于金融数据的模式分析、交易策略的识别等任务。
金融分析技术在股票交易、风险管理等领域具有重要应用价值。
模式识别的基本方法
模式识别的基本方法模式识别指的是对数据进行分类、识别、预测等操作的过程,它是人工智能中的一个重要分支。
在实际应用中,模式识别的基本方法主要包括以下几种。
一、特征提取特征提取指的是从原始数据中提取出有意义的特征用于分类或预测。
在模式识别中,特征提取是非常关键的一步。
因为原始数据可能存在噪声、冗余或不必要的信息,而特征提取可以通过减少数据维度、去除冗余信息等方式来提高分类或预测的准确性。
二、分类器设计分类器是模式识别中最为常用的工具,它是一种从已知数据中学习分类规则,然后将这些规则应用到新数据中进行分类的算法。
常用的分类器包括朴素贝叶斯、支持向量机、神经网络等。
分类器的设计需要考虑多种因素,包括分类精度、计算速度、内存占用等。
三、特征选择特征选择是指从原始数据中选择最具有代表性的特征,用于分类或预测。
与特征提取不同,特征选择是在原始数据的基础上进行的,它可以减少分类器的计算复杂度、提高分类精度等。
常用的特征选择方法包括卡方检验、信息增益、相关系数等。
四、聚类分析聚类分析是一种将数据按照相似度进行分组的方法,它可以帮助我们发现数据中的潜在模式和规律。
聚类分析的基本思想是将数据划分为若干个簇,每个簇内的样本相似度高,而不同簇之间的相似度较低。
常用的聚类算法包括k-means、层次聚类、密度聚类等。
五、降维算法降维算法是指通过减少数据的维度来简化数据,降低计算复杂度,同时保留数据的主要特征。
常用的降维算法包括主成分分析、因子分析、独立成分分析等。
降维算法可以帮助我们处理高维数据,减少数据冗余和噪声,提高分类或预测的准确性。
六、特征重要性评估特征重要性评估是指对特征进行排序,以确定哪些特征对分类或预测最为重要。
常用的特征重要性评估方法包括信息增益、基尼系数、决策树等。
通过特征重要性评估,我们可以选择最具有代表性的特征,提高分类或预测的准确性。
模式识别的基本方法是多种多样的,每种方法都有其适用的场景和优缺点。
模式识别的主要方法
模式识别是人工智能的一个重要应用领域,其方法主要包括以下几种:
统计模式识别:基于统计原理,利用计算机对样本进行分类。
主要方法有基于概率密度函数的方法和基于距离度量的方法。
结构模式识别:通过对基本单元(如字母、汉字笔画等)进行判断,是否符合某种规则来进行分类。
这种方法通常用于识别具有明显结构特征的文字、图像等。
模糊模式识别:利用模糊集合理论对图像进行分类。
这种方法能够处理图像中的模糊性和不确定性,提高分类的准确性。
人工神经网络:模拟人脑神经元的工作原理,通过训练和学习进行模式识别。
常见的神经网络模型有卷积神经网络(CNN)、循环神经网络(RNN)等。
支持向量机(SVM):通过找到能够将不同分类的样本点最大化分隔的决策边界来进行分类。
SVM在处理高维数据和解决非线性问题时具有较好的性能。
决策树:通过树形结构对特征进行选择和分类。
决策树可以直观地表示分类的决策过程,但易出现过拟合问题。
集成学习:通过构建多个弱分类器,并将其组合以获得更强的分类性能。
常见的集成学习方法有bagging、boosting等。
在实际应用中,根据具体任务的需求和数据特点,可以选择适合的模式识别方法。
同时,也可以结合多种方法进行综合分类,以提高分类的准确性和稳定性。
概述-模式识别的基本方法
三、模糊模式识别
模式描述方法: 模糊集合 A={(a,a), (b,b),... (n,n)}
模式判定: 是一种集合运算。用隶属度将模糊集合划分
为若干子集, m类就有m个子集,然后根据择近原 则模糊统计法、二元对比排序法、推理法、
模糊集运算规则、模糊矩阵 主要优点:
由于隶属度函数作为样本与模板间相似程度的度量, 故往往能反映整体的与主体的特征,从而允许样本有 相当程度的干扰与畸变。 主要缺点: 准确合理的隶属度函数往往难以建立,故限制了它的 应用。
10
四、人工神经网络法
模式描述方法: 以不同活跃度表示的输入节点集(神经元)
模式判定: 是一个非线性动态系统。通过对样本的学习
理论基础:概率论,数理统计
主要方法:线性、非线性分类、Bayes决策、聚类分析
主要优点:
1)比较成熟
2)能考虑干扰噪声等影响
3)识别模式基元能力强
主要缺点:
1)对结构复杂的模式抽取特征困难
2)不能反映模式的结构特征,难以描述模式的性质
3)难以从整体角度考虑识别问题
3
二、句法模式识别
模式描述方法: 符号串,树,图
概述-模式识别的基本方法
一、统计模式识别 二、句法模式识别 三、模糊模式识别 四、人工神经网络法 五、人工智能方法
1
一、统计模式识别
模式描述方法: 特征向量 x
( x1 ,
x2 ,,
xn
)
模式判定:
模式类用条件概率分布P(X/i)表示,m类就有 m个分布,然后判定未知模式属于哪一个分布。
2
一、统计模式识别
12
五、逻辑推理法(人工智能法)
模式描述方法: 字符串表示的事实
计算机 二级学科 模式识别
计算机二级学科模式识别摘要:一、模式识别的概述1.模式识别的概念2.模式识别的发展历程3.模式识别在计算机科学中的重要性二、模式识别的主要方法1.统计学习方法2.机器学习方法3.深度学习方法三、模式识别在各领域的应用1.图像识别2.语音识别3.自然语言处理4.生物信息学四、我国模式识别的研究现状与前景1.我国模式识别的研究历程2.我国模式识别的研究现状3.我国模式识别的发展前景与挑战正文:模式识别作为计算机科学的一个二级学科,研究的主要是如何让计算机自动地识别模式,包括图像、声音、文字等各种形式的数据。
模式识别的发展历程可以追溯到上世纪五六十年代,随着计算机技术的发展,模式识别逐渐成为计算机科学的一个重要领域。
模式识别的主要方法包括统计学习方法、机器学习方法和深度学习方法。
统计学习方法主要通过建立统计模型来进行模式识别,例如支持向量机、决策树等算法。
机器学习方法则是通过训练数据来提高模式的识别能力,例如k近邻、神经网络等算法。
而深度学习方法则是近年来模式识别领域的重要突破,通过多层神经网络模型,可以自动地学习复杂的特征,从而实现高效的模式识别。
模式识别技术在各领域都有广泛的应用。
在图像识别领域,模式识别可以实现对图像的自动分类和识别,例如人脸识别、车牌识别等。
在语音识别领域,模式识别可以实现对语音信号的自动转换为文字,例如苹果的Siri、谷歌的语音识别等。
在自然语言处理领域,模式识别可以实现对自然语言的自动理解和生成,例如机器翻译、情感分析等。
在生物信息学领域,模式识别可以用于对基因序列、蛋白质序列等进行分析和识别。
我国模式识别的研究起步于上世纪七十年代,经过几十年的发展,我国模式识别的研究已经取得了显著的成果。
我国模式识别的研究现状主要表现在,不仅在理论研究上取得了一定的突破,而且模式识别技术在各个领域都有广泛的应用。
然而,与发达国家相比,我国模式识别的研究还存在一定的差距,特别是在深度学习等前沿领域。
用户行为分析中的模式识别方法
用户行为分析中的模式识别方法随着互联网的发展和普及,大量的数据不断被积累,其中蕴含着用户行为的信息。
通过对用户行为的分析和挖掘,可以发现很多有价值的信息,比如用户爱好、购买意向、活跃度等等。
而模式识别方法是用户行为分析的重要手段之一,可以对海量的用户数据进行分类、聚类、预测等操作,从而揭示出数据背后的规律和模式。
下面将介绍一些常见的模式识别方法及其应用。
一、聚类分析聚类分析是将一组数据分成多个类别(cluster)的方法,每个类别内的数据具有相似的特征,而不同类别之间的数据则具有较大的差异。
聚类分析的目的是在不事先知道类别的情况下,发现潜在的类别结构。
聚类分析通常有两种方法:基于距离的聚类和基于密度的聚类。
基于距离的聚类可以将数据点根据他们之间的距离分成不同的类别,而基于密度的聚类是区分数据点所处的密度区域。
聚类分析在电商领域的应用非常广泛,可以根据用户的购买行为、搜索行为等对用户进行分类,提供个性化的推荐和服务,从而提升用户满意度和粘性。
二、分类分析分类分析是将一组数据分为多个已知的类别(class)的方法,分类分析通常由两个步骤构成:建立分类模型和用模型对数据进行分类。
分类模型可以使用多种算法,如决策树、神经网络、朴素贝叶斯等。
分类分析的应用场景也非常广泛,例如通过对用户行为数据进行分类,可以识别出哪些用户属于流失用户、哪些用户属于高价值用户,以便采取针对性的策略来提升用户留存和增加用户价值。
三、关联规则挖掘关联规则挖掘是发现数据中蕴含的关联性的过程,通过发现事物之间的关联,可以从数据中推断出潜在的规律和模式。
关联规则挖掘通常包括两个步骤:频繁项集生成和关联规则产生。
频繁项集生成是指在数据集中发现频繁出现的项集,而关联规则产生则是从这些频繁项集中找出规律性的关联规则。
在电商领域,关联规则挖掘可以用来发现哪些商品经常被一起购买,从而提供以套餐为基础的促销策略。
四、时间序列分析时间序列分析是一种基于时间序列数据的分析方法,它研究的是同一变量在不同时间点上的表现,并且假设它们之间存在一定的因果关系。
模式识别的概念及主要方法。
模式识别的概念及主要方法
模式识别是一个人工智能和机器学习的分支,主要研究如何让计算机从数据中“学习”出有用的信息,并能够进行分类和识别模式。
模式识别在许多领域都有应用,如语音识别、图像识别、自然语言处理等。
模式识别的基本方法包括:
1.监督学习:这种方法需要大量的标注数据,通过训练,让计算机学会如何将输入的数据映射到预定的类别中。
例如,在图像识别中,监督学习可以训练计算机识别出猫、狗等类别的图片。
2.无监督学习:与监督学习不同,无监督学习不需要标注数据,而是让计算机从数据中找出潜在的结构或模式。
例如,在聚类分析中,无监督学习可以将数据按照它们的相似性程度进行分组。
3.半监督学习:这种方法结合了监督学习和无监督学习的特点,通过利用部分标注的数据和大量的未标注数据来提高学习的效果。
4.深度学习:这是模式识别中一种新兴的方法,通过构建具有许多层的神经网络来学习数据的复杂特征。
深度学习已经在语音识别、图像识别、自然语言处理等领域取得了显著的成果。
5.表征学习:在这种方法中,计算机试图从原始数据中学习到有用的表征或特征,这些特征可以帮助计算机更好地进行分类或识别。
例如,在计算机视觉中,卷积神经网络可以从原始图像中提取出有用的特征,从而识别出不同的物体。
以上是模式识别的基本概念和主要方法,随着技术的不断发展,模式识别的应用领域也将不断扩大。
常见的模式识别方法
常见的模式识别方法一、引言在现代科技的推动下,模式识别技术已经广泛应用于各个领域,如图像识别、语音识别、文本分类等。
模式识别是指通过对已知模式的学习和分类,来识别新的、未知模式的技术。
在这篇文章中,我们将介绍一些常见的模式识别方法,并对其原理和应用进行简要概述。
二、特征提取特征提取是模式识别的关键步骤之一,其目的是从原始数据中提取出能够代表模式的特征。
常用的特征提取方法包括主成分分析(PCA)、线性判别分析(LDA)和局部二值模式(LBP)等。
PCA 通过线性变换将高维数据映射到低维空间,以保留原始数据中的主要信息。
LDA则是通过最大化类间散布矩阵和最小化类内散布矩阵的方式,进行特征投影,以达到最佳分类效果。
LBP是一种用于纹理分析的特征描述子,通过计算像素点与其周围像素点之间的灰度差异,来描述图像的纹理信息。
三、分类方法在特征提取之后,接下来需要将提取到的特征用于分类。
常见的分类方法有K最近邻算法(KNN)、支持向量机(SVM)和决策树等。
KNN算法是一种基于实例的学习方法,通过计算待分类样本与训练样本之间的距离,来确定其所属类别。
SVM是一种基于统计学习理论的分类方法,通过在特征空间中找到一个最优的超平面,来将不同类别的样本分开。
决策树是一种基于递归分割的分类方法,通过对特征空间进行划分,以达到最佳的分类效果。
四、聚类方法聚类是一种无监督学习方法,其目的是将数据集划分为若干个组,使得组内的样本相似度高,组间的样本相似度低。
常见的聚类方法有K均值聚类、层次聚类和密度聚类等。
K均值聚类将数据集划分为K个簇,通过计算样本与簇中心之间的距离,将样本分配到距离最近的簇中。
层次聚类是一种自底向上的聚类方法,通过计算样本之间的相似度,不断合并最相似的样本或簇,最终形成一个完整的聚类树。
密度聚类是一种基于密度的聚类方法,通过计算样本周围的密度,来确定样本所属的簇。
五、神经网络神经网络是一种模仿人脑神经元网络结构的计算模型,其应用于模式识别可以取得很好的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
语音识别技术就是让机器通过识别和理解过程把语音信号转变为 相应的文本或命令的高技术。语音识别技术所涉及的领域包括:信号 处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能 等等。近年来,在生物识别技术领域中,声纹识别技术以其独特的方 便性、经济性和准确性等优势受到世人瞩目,并日益成为人们日常生 活和工作中重要且普及的安全验证方式。而且利用基因算法训练连续 隐马尔柯夫模型的语音识别方法现已成为语音识别的主流技术。该方 法在语音识别时识别速度较快,也有较高的识别率。
人工神经网络的主要特点在于其具有信息处理的并行性、自组织 和自适应性、具有很强的学习能力和联想功能以及容错性能等,在解 决一些复杂的模式识别问题中显示出其独特的优势。
人工神经网络是一种复杂的非线性映射方法,其物理意义比较难 解释,在理论上还存在一系列亟待解决的问题。在算法复杂度方面, 神经网络计算复杂度大,在特征维数比较高时,样本训练时间比较 长;在算法稳定性方面,学习过程中容易陷入局部极小,并且存在欠 学习与过学习的现象范化能力不容易控制。这些也是制约人工神经网 络进一步发展的关键问题。
字符识别处理的信息可分为两大类:一类是文字信息,处理的主 要是用各国家、各民族的文字(如:汉字、英文等)书写或印刷的文本信 息,目前在印刷体和联机手写方面技术已趋向成熟,并推出了很多应 用系;另一类是数据信息,主要是由阿拉伯数字及少量特殊符号组成 的各种编号和统计数据,如:邮政编码、统计报表、财务报表、银行 票据等等,处理这类信息的核心技术是手写数字识别。
[关键词] 计算机网络 数据压缩,多媒体技术
中图分类号:TN919
文献标示码:A
Research of Multimedia Data Compression Technique
Yuan Wei
(Department of Telecommunications Engineering, Xi’an Institute Of Post and Telecommunications, Xi’an, 710061)
1. 引言
多媒体数据经过数字化处理后数据量非常大,如果不进行数据 压缩处理,计算机系统就无法对它进行存储和交换,因此,在多媒体 系统中如何有效地保存和传送这些海量数据就成了多媒体个人计算机
(MPC)所面临的一个最大的难题之一,而数据压缩正是解决问题的 重要途径。
数据压缩是指对原始数据进行重新编码,以除去原始数据中的冗 余,以较小的数据量表示原始数据的技术,是实现在计算机上处理图
Abstract: Pattern recognition technology has been widely used in various fields. In this paper, we elaborate upon its theoretical basis and applications firstly. Then we introduce the basic concepts of pattern recognition, the main methods and applications of pattern recognition and its development trend. Key words: Pattern recognition; Application; Trend of development
3.3 指纹识别
每个人(包括指纹在内)皮肤纹路在图案、断点和交叉点上各不相 同,也就是说,是唯一的,并且终生不变。依靠这种唯一性和稳定性, 我们就可以把一个人同他的指纹对应起来,通过比较他的指纹和预先保 存的指纹进行比较,就可以验证他的真实身份。这就是指纹识别技术。
指纹识别技术是通过计算机实现的身份识别手段,也是当今应用 最为广泛的生物特征识别技术。在过去主要应用于刑侦系统。近几年
Abstract: With the development of computer network and development of computer communication technique, data compression technique is becoming more and more important in multimedia technique, the paper researched deeply in data compression technique, classified data compression technique, also analysed and compared the Corresponding typical algorithms Key words: Computer Network, Data Compression, MultimediaTechnique
一般认为,模式是通过对具体的事物进行观测所得到的具有时间与 空间分布的信息,模式所属类别或同一类中的模式的总体称为模式类, 其中个别具体的模式往往称为样本。模式识别就是研究通过计算机自动 (或人为进行少量干预)将待识别的模式分配到各个模式类中的技术[3]
图一:模式识别的基本框架 模式识别的研究主要集中在两方面,一是研究生物体(包括人)是如 何感知对象的,二是在给定的任务下,如何用计算机实现模式识别的 理论和方法。后者通过数学家、信息学专家和计算机科学工作者近几 十年的努力,已经取得了系统的研究成果。 2.模式识别的主要方法 模式识别方法大致可以分为4类:统计决策法、结构模式识别方 法、模糊模式识别方法与基于人工智能方法。其中基于人工智能的方 法本文主要介绍人工神经网络模式识别方法。前两种方法发展得比较 早,理论相对也比较成熟,在早期的模式识别中应用较多。后两种方 法目前的应用较多,由于模糊方法更合乎逻辑、神经网络方法具有较 强的解决复杂模式识别能力,因此日益得到人们重视。 2.1 统计决策法 统计决策法以概率论和数理统计为基础,它包括参数方法和非参 数方法。 参数方法主要以Bayes决策准则为指导。其中最小错误率和最小风 险贝叶斯决策是最常用的两种决策方法。假定特征对于给定类的影响 独立于其他特征,在决策分类的类别N已知与各类别的先验概率及类条 件概率密度已知的情况下,对于一特征矢量X根据公式计算待检模式在 各类中发生的后验概率,后验概率最大的类别即为该模式所属类别。 在这样的条件下,模式识别问题转化为一个后验概率的计算问题。 在贝叶斯决策基础上,根据各种错误决策造成损失不同,人们提 出基于贝叶斯风险的决策,即计算给定特征矢量X在各种决策中的条件 风险大小,找出其中风险最小的决策。 参数估计方法的理论基础是样本数目趋近于无穷大时的渐进理 论。在样本数目很大时,参数估计结果才趋近于真实的模型。然而实
来已逐渐走向民用市场。同时,民用市场也对指纹识别技术提出了具 有小型化、廉价的指纹采集设备,高速计算平台,更高的识别准确率 的要求,以满足各种不同应用的需求。
3.4 细胞识别 细胞识别是指细胞对同种或异种细胞、同源或异源细胞、以及对自 己和异己分子的认识。细胞识别是最近在识别技术中比较热门的一个话 题。以前,对疾病的诊断仅仅通过表面现象,经验在诊断中起到了主导 作用,错判率始终占有一定的比例;而今,通过对显微细胞图像的研究 和分析来诊断疾病,不仅可以了解疾病的病因、研究医疗方案,还可以 观测医疗疗效。如果通过人工辨识显微细胞诊断疾病也得不偿失,费力 费时不说,还容易耽误治疗。基于图像区域特征,利用计算机技术对显 微细胞图像进行自动识别愈来愈受到大家的关注,并且现在也获得了不 错的效果。但实际中,细胞的组成是复杂的,应该选择更多的特征,建 立更为完善的判别函数,可能会进一步提高分类精度。
The main methods and applications of Pattern recognition
Yang He-chao, Song Hai-ge, Zhou Xue-mei
(College of Computer Science&Technology, Henan Polytechnic University, JiaoZuo 454000)
结构模式识别主要用于文字识别、遥感图形的识别与分析、纹 理图像的分析中。该方法的特点是识别方便,能够反映模式的结构特 征,能描述模式的性质,对图像畸变的抗干扰能力较强。
2.3 模糊模式识别
模糊模式识别方法是利用模糊数学中的概念、原理与方法解决分 类识别问题. 这里有很多与普通聚类算法“平行”的方法,它们之间存 在某种程度的借鉴和相似,但又有很大的不同,两者之间根本性的不同是 概念的不同:模糊模式识别是将待识别类、对象作为模糊集或其元素, 然后对这些模糊集或元素进行分类;普通聚类算法是根据事物间的不同 特征、亲疏程度和相似性等关系,直接对它们进行分类. 因此,设计人员 应根据实际问题进行特征提取或特征变换(将原来普通意义上的特征值 变为模糊特征) ,建立模糊集的隶属度函数,或建立元素之间的模糊相似 关系,并确定这个关系的隶属度函数(相关程度) ,然后运用相关的模糊数 学的原理方法进行分类识别。同一般的模式识别方法相比较,模糊模 式识别具有客体信息表达更加合理,信息利用充分,各种算法简单灵 巧,识别稳定性好,推理能力强的特点。
2.4 人工神经网络模式识别
早在20世纪50年代,研究人员就开始模拟动物神经系统的某些 功能,他们采用软件或硬件的办法,建立了许多以大量处理单元为结 点,处理单元间实现互联的拓扑网络,进行模拟,称之为人工神经网 络。这种方法可以看作是对原始特征空间进行非线性变换,产生一个 新的样本空间,使得变换后的特征线性可分。同传统统计方法相比, 其分类器是与概率分布无关的。
际样本数目总是有限的,很难满足这一要求。另外参数估计的另一个 前提条件是特征独立性,这一点有时和实际差别较大。
2.2 结构模式识别
结构模式识别是利用模式的结构描述与句法描述之间的相似性对模 式进行分类。每个模式由它的各个子部分(称为子模式或模式基元)的组合 来表示。对模式的识别常以句法分析的方式进行,即依据给定的一组句 法规则来剖析模式的结构。当模式中每一个基元被辨认后,识别过程就 可通过执行语法分析来实现。选择合适的基元是结构模式识别的关键。