钢铁金相组织名称、定义及其特征讲解

合集下载

钢铁金相组织名称、定义及其特征

钢铁金相组织名称、定义及其特征

钢铁金相组织名称、定义及其特征碳与合金元素溶解在γ-Fe晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体针间的空隙处。

中的固溶体,仍保持γ-Fe的面心立方晶格。

碳与合金元素溶解在a-Fe亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体中的固溶体。

沿晶粒边界析出。

碳与铁形成的一种化合物。

在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。

过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。

铁碳合金冷却到Ar以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上1或晶界处呈不连续薄片状。

铁碳合金中共析反应所形珠光体的片间距离取决于奥氏体分解时的过冷度。

过冷度越大,所形成的珠光体片间成的铁素体与渗碳体的机距离越小。

械混合物。

在A~650?形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行1的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。

在650~600?形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。

在600~550?形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。

过饱和针状铁素体和渗碳过冷奥氏体在中温(约350~550?)的相变产物,其典型形态是一束大致平行位向差o体的混合物,渗碳体在铁素为6~8铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;体针间。

典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。

若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。

转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。

讲义:金相组织

讲义:金相组织

我就介绍一下几种常见的金相组织下面第一种铁素体1、铁素体 F 形态:白亮色多边形或块状月牙状网络状铁素体的强度和硬度低,塑性和韧性好。

一般硬度在100HB左右2、珠光体P :铁素体和渗碳体得机械混合物按碳化物的分布形态分:片状珠光体和球状珠光体1、片状珠光体是由片层相间的铁素体和渗碳体片组成。

按照珠光体片层间距的大小分为:珠光体、索氏体、托氏体珠光体形成温度A1---650,片层间距:450---150nm索氏体体形成温度650---600片层间距:150--80nm托氏体形成温度 600--550片层间距:80--30nm珠光体的片层越细,珠光体中的铁素体和渗碳体得相界面越多,其塑性变形抗力就越大,因而其强度和硬度就越高10002、球状珠光体:铁素体基体上分布着粒状渗碳体的组织。

根据渗碳体球粒大小可分为:粗球状珠光体球状珠光体细球状珠光体点状珠光体轴承钢球化退火 500x3、马氏体:板条马氏体大致相同的细马氏体条定向平行排列,组成马氏体束,在马氏体束与束之间存在一定的位向,一个原始的奥氏体晶粒内可以形成几个不同取向的马氏体束。

针状马氏体在一个奥氏体晶粒内形成的第一片马氏体针较粗大,往往贯穿整个奥氏体,将奥氏体晶粒加以分割,使以后形成的马氏体针大小受到限制,从而形成了大小不一、位向不同的马氏体针。

板条马氏体单元立体形状为板条状又称:低碳马氏体具有良好的强度及较好的塑性针状马氏体段面形状为针状,又称高碳马氏体马氏体针大小不一,分布有一定规律,按近似60度角分布。

腐蚀后较明亮,硬度高而脆性大。

回火马氏、体回火索氏体、回火托氏体三者的区别这里插一个问题:索氏体和回火索氏体的区别那索氏体经回火后就能成为回火索氏体吗?不会。

4 、残余奥氏体Ar当钢中碳的含量大于0.60%是时,由于Mf降到零度以下,当过冷奥氏体快冷到室温时,势必有较多的奥氏体不发生转变而残留在钢中,我们把过冷到以下温度未发生马氏体转变的奥氏体称为残余奥氏体。

钢铁中常见的金相组织区别简析

钢铁中常见的金相组织区别简析

钢铁中常见的金相组织区别简析钢铁中常见的金相组织区别简析钢铁中常见的金相组织1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe 的面心立方晶格。

晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处2.铁素体-碳与合金元素溶解在a-fe中的固溶体。

亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。

3.渗碳体-碳与铁形成的一种化合物。

在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。

过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。

铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。

4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。

珠光体的片间距离取决于奥氏体分解时的过冷度。

过冷度越大,所形成的珠光体片间距离越小。

在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。

在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。

在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。

5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。

过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。

若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。

各类金相组织

各类金相组织

贝氏体30年代初美国人E.C.Bain等发现低合金钢在中温等温下可获得一种高温转变及低温转变相异的组织后被人们称为贝氏体。

该组织具有较高的强韧性配合。

在硬度相同的情况下贝氏体组织的耐磨性明显优于马氏体,因此在钢铁材料中基体组织获得贝氏体是人们追求的目标。

贝氏体等温淬火:是将钢件奥氏体化,使之快冷到贝氏体转变温度区间(260~400℃)等温保持,使奥氏体转变为贝氏体的淬火工艺,有时也叫等温淬火。

一般保温时间为30~60min。

贝氏体;贝茵体;bainite又称贝茵体。

钢中相形态之一。

钢过冷奥氏体的中温(350~550℃)转变产物,α-Fe 和Fe3C 的复相组织。

贝氏体转变温度介于珠光体转变与马氏体转变之间。

在贝氏体转变温度偏高区域转变产物叫上贝氏体(up bai-nite),其外观形貌似羽毛状,也称羽毛状贝氏体。

冲击韧性较差,生产上应力求避免。

在贝氏体转变温度下端偏低温度区域转变产物叫下贝氏体。

其冲击韧性较好。

为提高韧性,生产上应通过热处理控制获得下贝氏体。

奥氏体奥氏体英文名称:austenite晶体结构:面心立方(fcc)字母代号:A、γ定义:碳在γ-Fe中形成的间隙固溶体性能特点:奥氏体是一种塑性很好,强度较低的固溶体,具有一定韧性。

不具有铁磁性。

因此,分辨奥氏体不锈钢刀具(常见的18-8型不锈钢)的方法之一就是用磁铁来看刀具是否具有磁性。

珠光体pearlite珠光体是奥氏体(奥氏体是碳溶解在γ-Fe中的间隙固溶体)发生共析转变所形成的铁素体与渗碳体的共析体。

其形态为铁素体薄层和渗碳体薄层交替重叠的层状复相物,也称片状珠光体。

用符号P表示,含碳量为ωc=0.77%。

在珠光体中铁素体占88%,渗碳体占12%,由于铁素体的数量大大多于渗碳体,所以铁素体层片要比渗碳体厚得多.在球化退火条件下,珠光体中的渗碳休也可呈粒状,这样的珠光体称为粒状珠光体.珠光体珠光体的性能介于铁素体和渗碳体之间,强韧性较好.其抗拉强度为750~900MPa,180 ~280HBS,伸长率为20 ~25%,冲击功为24 ~32J.力学性能介于铁素体与渗碳体之间,强度较高,硬度适中,塑性和韧性较好σb=770MPa,180HBS,δ=20%~35%,AKU=24~32J).珠光体经2-4%硝酸酒精溶液浸蚀后,在不同放大倍数的显微镜下可以观察到不同特征的珠光体组织.当放大倍数较高时可以清晰地看到珠光体中平行排列分布的宽条铁素体和窄条渗碳体;当放大倍数较低时,珠光体中的渗碳体只能看到一条黑线;而当放大倍数继续降低或珠光体变细时,珠光体的层片状结构就不能分辨了,此时珠光体呈黑色的一团.图为光学显微镜200倍下薄壁铸件基体.经3%硝酸酒精溶液浸蚀.可见磷共晶体,片状石墨,珠光体及少量铁素体索氏体索氏体索氏体的定义及组织特征。

钢材金相组织标准

钢材金相组织标准

钢材金相组织标准一、钢材的化学成分钢材的化学成分对其金相组织具有重要影响。

通常,碳是钢材中最重要的元素之一,其含量会影响钢材的强度、硬度、韧性和耐腐蚀性。

此外,钢材中还含有其他元素,如硅、锰、磷、硫等,它们对钢材的金相组织和性能也有一定的影响。

二、钢材的显微组织钢材的显微组织是指其微观结构,包括铁素体、珠光体、贝氏体、马氏体等。

这些组织的形态、分布和相对数量对钢材的性能产生重要影响。

例如,铁素体具有较好的塑性和韧性,而珠光体具有较高的强度和硬度。

不同的显微组织在钢材中往往同时存在,并受到钢材的化学成分、热处理和加工工艺等因素的影响。

三、钢材的晶粒度钢材的晶粒度是指其晶体结构的粗细程度。

较细的晶粒度可以提高钢材的强度和韧性,而较粗的晶粒度则会降低这些性能。

因此,控制钢材的晶粒度是提高其性能的重要手段之一。

通常,通过控制冶炼、浇注和轧制等工艺参数来控制钢材的晶粒度。

四、钢材的碳化物钢材中的碳化物是指碳元素与另一种元素形成的化合物。

这些碳化物通常以颗粒状分布在钢材中,对钢材的性能产生重要影响。

例如,碳化物可以阻碍位错运动,从而提高钢材的强度和硬度。

然而,过量的碳化物也会降低钢材的韧性,因此需要控制其含量。

钢材在加热或轧制过程中,表层的碳元素会与氧或水蒸气反应形成一层氧化物薄膜,称为脱碳层。

脱碳层会降低钢材的表面硬度和耐磨性,因此需要控制其深度。

通常,通过控制加热温度和气氛来控制钢材的脱碳层深度。

六、钢材的珠光体珠光体是钢材中的一种重要显微组织,由铁素体和碳化物组成。

它具有较高的强度和硬度,但韧性较差。

珠光体的形态和分布对钢材的性能产生重要影响,可以通过热处理和加工工艺进行控制。

七、钢材的贝氏体贝氏体是钢材中的另一种重要显微组织,由铁素体和碳化物组成。

与珠光体相比,贝氏体的强度和硬度略低,但韧性较好。

贝氏体的形态和分布对钢材的性能产生重要影响,可以通过热处理和加工工艺进行控制。

八、钢材的马氏体马氏体是钢材中的一种相变组织,由铁素体和碳化物组成。

钢铁材料人必须知道的15种金相组织

钢铁材料人必须知道的15种金相组织

钢铁材料人必须知道的15种金相组织先回忆一下铁碳合金相图↓↓奥氏体定义:碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格特征:奥氏体是一般钢在高温下的组织,其存在有一定的温度和成分范围。

有些淬火钢能使部分奥氏体保留到室温,这种奥氏体称残留奥氏体。

奥氏体一般由等轴状的多边形晶粒组成,晶粒内有孪晶。

在加热转变刚刚结束时的奥氏体晶粒比较细小,晶粒边界呈不规则的弧形。

经过一段时间加热或保温,晶粒将长大,晶粒边界可趋向平直化。

铁碳相图中奥氏体是高温相,存在于临界点A1温度以上,是珠光体逆共析转变而成。

当钢中加入足够多的扩大奥氏体相区的化学元素时,Ni,Mn等,则可使奥氏体稳定在室温,如奥氏体钢。

铁素体定义:碳与合金元素溶解在a-Fe中的固溶体特征:亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。

渗碳体定义:碳与铁形成的一种化合物特征:渗碳体不易受硝酸酒精溶液的腐蚀,在显微镜下呈白亮色,但受碱性苦味酸钠的腐蚀,在显微镜下呈黑色。

渗碳体的显微组织形态很多,在钢和铸铁中与其他相共存时呈片状、粒状、网状或板状。

•在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状•过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状•铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状珠光体定义:铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物特征:珠光体的片间距离取决于奥氏体分解时的过冷度。

过冷度越大,所形成的珠光体片间距离越小。

•在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。

•在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。

钢中典型金相组织

钢中典型金相组织

钢中典型金相组织钢是一种重要的金属材料,具有优异的机械性能和耐腐蚀性能。

钢的组织和性能之间密切相关,钢中的金相组织是其性能形成的重要因素之一。

下面将详细介绍钢中典型的金相组织。

1. 贝氏体组织贝氏体组织是钢中典型的金相组织之一。

该组织由相似于鹿角的条状组织构成,因其形状类似于法国冶金学家贝尔纳德的鹿角而得名。

贝氏体组织的形成与钢的淬火工艺密切相关,通过快速冷却钢材可以使奥氏体转变为贝氏体。

贝氏体组织具有高强度、高硬度和较好的耐磨性,因此在制造强度要求高、耐磨性要求高的零件时常采用贝氏体钢。

马氏体组织是钢中另一个典型的金相组织。

与贝氏体不同,马氏体组织属于无定形组织,其结构不规则、复杂。

同时,马氏体组织具有较高的强度和硬度,且具有较好的抗拉强度和耐磨性,因此广泛应用于地质勘探、采矿、石油化工等领域。

在淬火工艺中,将钢材加热至温度较高后迅速冷却可制得马氏体组织。

珠光体组织是钢中一种较为典型的变形组织,属于半钢中生组织。

该组织由类似“珠子”形状的球体团进行构成,因其形态类似于珠子而得名。

珠光体组织是一种中等强度的钢结构,具有优秀的成形性和可加工性,在制造材料强度、变形性好的零件时常采用珠光体钢。

4. 混合组织混合组织是一种钢中常见的金相组织,其由两种或多种不同的金相组织混合而成。

例如,当沿晶腐蚀与导致钢中存在晶界和粗晶的杂质混合存在时,就会形成混合组织。

混合组织具有钢中两种或多种组织的优点,可以在不同的应用场合中具有更为广泛的适用性。

总之,钢中的金相组织是其性能形成的重要因素。

贝氏体组织、马氏体组织、珠光体组织和混合组织等是钢中典型的金相组织,采用不同的工艺可以得到不同种类的金相组织,从而满足不同的应用需求。

钢的金相组织和性质

钢的金相组织和性质
646-760
正常淬火760-1100
AC1淬火
400-760
回火马ห้องสมุดไป่ตู้体
渗碳体和碳化物在α-铁中的过饱和固溶体中析出
马氏体在100-200℃回火形成,马氏体针中析出的碳化物质点极分散,光学显微镜不能分辨,电子显微镜也极难分辨。颜色由浅棕到子蓝黑色。一般那一硬度和外形与其他组织区别。
500-700
回火屈氏体
250-350
球化体
以铁素体为基体其中分布着球状碳化物
马氏体经过长时间的高温回火;过共析钢经过不完全退火形成。
颜色发珠光。
160-190
魏氏体
铁素体或渗碳体在珠光体组织中的片状组织
在显微镜下呈针状或片状,针由晶界向晶内延伸,不穿晶,由于方位不同,也可见晶内不连接晶界的针。魏氏体出现在钢过热,奥氏体晶粒粗大所致。
330-400
在同一钢中比屈氏体稍硬,比下贝氏体稍软。
下贝氏体(下B)
同上。但渗碳体在铁素体针内。
过冷奥氏体在中温区400℃以下马氏体点以上形成。在晶内呈针状,多两端带尖,针叶基本不交叉,但可以交接。与回火马氏体不易区分,不同之处是:马氏体有层次之分,下B则颜色一致,没有层次分别,下B的碳化物质点比回火马氏体粗,易受浸蚀变黑,回火马氏体颜色较浅,不易受浸蚀。高碳合金者的碳化物分散度比低合金者大,针叶也比较细,颜色蓝黑,低碳合金者为灰色。
晶界比较圆滑,很少见双晶或滑移线。
颜色浅绿色,加深浸蚀稍变暗。
60-100
125-135
多为200-270
片状珠光体(P)
渗碳体和铁素体的片状交替组合组织
呈片状,片层一般稍弯曲。
500倍以下能分辨片者称片状珠光体,颜色由浅灰色--珠光。

各种钢号的金相组织

各种钢号的金相组织
39
铸铝
变质处理
初晶α固溶体+共晶体
白色树枝状或颗粒状为初晶α固溶体,其余为白色α固溶体和灰色针状硅的共晶组织
40
H68黄铜
退火
单相黄铜组织
为α相,部分晶粒内有退火孪晶
41
H62黄铜
铸态
双相黄铜组织
白色为α相,黑色为β相(CUZN基固溶体)
42
锡青铜
铸态
α相+δ相
黑色枝晶轴为富铜固溶体(α相),白色为富锡固溶体(δ相)
43
铝基轴承合金
铸态
初晶β固溶体+共晶体(α+β)+铜锡化合物
白色方块为初晶β固溶体,黑色基体为共晶体(α+β),白色针状和颗粒状为铜锡化合物(Cu 2 Sb)
44
锡基轴承合金
铸造
α相+β相+ε相
黑色基体为α固溶体,白色针状及颗粒状为ε相(Cu 6 Sn 5 ),白色块为β相(SnSb)
45
锌基合金
列出各种显微组织,供大家查询:
编号
材料
状态
组织
说明
(一)铁—碳平衡组织9种
1
工业纯铁
退火
铁素体
白色等轴多边形晶粒为铁素体,深色线为晶界,晶界上分布少量三次渗碳体。
2
20钢
退火
低碳钢平衡组织
白色晶粒为铁素体,深色块状为珠光体,高倍可见珠光体中的层状结构。
3
45钢
退火
中碳钢平衡组织
同上,但珠光体增多。
4
35
球墨铸铁
退火
球状石墨+铁素体
白色晶粒为铁素体,黑色球状为石墨
36
球墨铸铁
低温正火

金相组织及特点

金相组织及特点

金相组织及特点金相组织就是指材料的显微组织有关金相组织与特性:铁索体(F)1.组织:碳在a 铁中的固溶体2.特性:呈体心立方晶格。

溶碳能力最小,最大为0.02%;硬度和强度很低,HB=80~120、sb=250N/mm2;而塑性和韧性很好,d=50%、?=70~80%。

因此,含铁素体多的钢材(软钢)中用来做可压、挤、冲板与耐冲击震动的机件。

这类钢有超低碳钢,如:0Cr13、1Cr13、硅钢片等。

奥氏体1.组织:碳在? 铁中的固溶体2.特性:呈面心立方晶格。

最高溶碳量为2.06%,在一般情况下,具有高的塑性,但强度和硬度低(HB=170~220),奥氏体组织除了在高温转变时产生以外,在常温时亦存在于不锈钢、高铬钢和高锰钢中,如奥氏体不锈钢等渗碳体(C)1.组织:铁和碳的化合物(Fe3C)2.特性:呈复杂的八面体晶格。

含碳量为6.67%、硬度很高、HRC70~75、耐磨,但脆性很大。

因此,渗碳体不能单独应用,而总是与铁素体混合在一起。

碳在铁中溶解度很小,所以在常温下,钢铁组织内大部分的碳都是以渗碳体或其他碳化物形式出现。

珠光体(P)1.组织:铁素体片和渗碳体片交替排列的层状显微组织,是铁素体与渗碳体机械混合物(共析体)。

2.特性:是过冷奥氏体进行共析反应的直接产物。

其片层组织的粗细随奥氏体过冷程度不同,过冷程度越大,片层组织越细性质也不同。

奥氏体在约600℃分解成的组织称为细珠光体(有的叫一次索氏体),在500~600℃分解转变成用光学显微镜不能分辨其片层状的组织称为极细珠光体(有的一次屈氏体),它们的硬度较铁素体和奥氏体高,而较渗碳体低,其塑性较铁素体和奥氏体低而较渗碳体高。

正火后的珠光体比退火后的珠光体组织细密,弥散度大,故其力学性能较好,但其片状渗碳体在钢材承受负荷时会引起应力集中,故不如索氏体。

莱氏体(L)1.组织:奥氏体与渗碳体的共晶混合物2.特性:铁合金溶液含碳量在2.06%以上时,缓慢冷到1130℃便凝固出莱氏体。

钢铁金相组织的名称和特性

钢铁金相组织的名称和特性

钢铁金相组织的名称和特性名称特性铁素体是碳在a铁中的固溶体。

它的含碳量不超过0.02%,质地很软(HB80-100)、很韧、抗拉强度很低(250Mpa),磁性较强。

含铁素体较多的钢,淬火后硬度不高,适于冲、挤压加工和制造电磁元件奥氏体是碳在r铁中的固溶体。

它的质地软韧,富于延展性,硬度为HB170-220,无磁性。

在一般钢中,它是高温转变的产物,但在不锈钢、高铬钢、高锰钢中,常温时亦存在渗碳体是碳与铁的化合物(Fe3C)。

硬度极高(HB>700)质地很脆珠光体是铁素体和渗碳体的共析混合物。

据渗碳体形状之异,它分为片状和球状。

硬度(片状HB190-230,球状HB160-190)和强度880Mpa比铁素体高,韧性稍低,但不脆。

为了容易切削加工,要求要正火和退火时得到珠光体组织莱氏体是奥氏体分解产物和渗碳体的共晶混合物。

组织较粗,硬度(HB>700)很高,但只在铸铁中出现马氏体是钢淬火后碳在a铁中的过饱和固溶体组织。

它的硬度(HB600-700)和抗拉强度(1670-2210Mpa)很高,但内应力很大,组织不稳定,韧性很低索氏体钢淬火成马氏体后,经450-600℃回火或加热到奥氏体后,以适当速度冷却得到的组织通称为索氏体。

它有良好的综合力学性能,强度较高,硬度HB250-350延升率和冲击韧性很高屈氏体钢淬火成马氏体后,经300-450℃回火或加热到奥氏体后,以一定速度冷却得到的组织通称为屈氏体。

它的HB330-400,强度比马氏体低,但韧性比马氏体好贝氏体是钢在等温淬火时产生的组织。

具有较高的硬度、强度、耐磨性和冲击韧性。

钢铁材料常见金相组织相图

钢铁材料常见金相组织相图

钢铁材料常见金相组织简介在Fe-Fe3C系中,可配制多种成分不同的铁碳合金,他们在不同温度下的平衡组织各不相同,但由几个基本相(铁素体F、奥氏体A和渗碳体Fe3C)组成。

这些基本相以机械混合物的形式结合,形成了钢铁中丰富多彩的金相组织结构。

常见的金相组织有下列八种:一、铁素体铁素体(ferrite,缩写FN,用F表示),纯铁在912℃以下为具有体心立方晶格。

碳溶于α-Fe中的间隙固溶体称为铁素体,以符号F表示。

这部分铁素体称为先共析铁素体或组织上自由的铁素体。

随形成条件不同,先共析铁素体具有不同形态,如等轴形、沿晶形、纺锤形、锯齿形和针状等。

铁素体还是珠光体组织的基体。

在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;铁素体的成分和组织对钢的工艺性能有重要影响,在某些场合下对钢的使用性能也有影响。

碳溶入δ-Fe中形成间隙固溶体,呈体心立方晶格结构,因存在的温度较高,故称高温铁素体或δ固溶体,用δ表示,在1394℃以上存在,在1495℃时溶碳量最大。

碳的质量分数为0.09%。

图1:铁素体二、奥氏体碳溶于γ-Fe晶格间隙中形成的间隙固溶体称为奥氏体,具有面心立方结构,为高温相,用符号A表示。

奥氏体在1148℃有最大溶解度2.11%C,727℃时可固溶0.77%C;强度和硬度比铁素体高,塑性和韧性良好,并且无磁性,具体力学性能与含碳量和晶粒大小有关,一般为170~220 HBS、=40~50%。

TRIP钢(变塑钢)即是基于奥氏体塑性、柔韧性良好的基础开发的钢材,利用残余奥氏体的应变诱发相变及相变诱发塑性提高了钢板的塑性,并改善了钢板的成形性能。

碳素或合金结构钢中的奥氏体在冷却过程中转变为其他相,只有在高碳钢和渗碳钢渗碳高温淬火后,奥氏体才能残留在马氏体的间隙中存在,其金相组织由于不易受侵蚀而呈白色。

三、渗碳体渗碳体(cementite),指铁碳合金按亚稳定平衡系统凝固和冷却转变时析出的Fe3C型碳化物。

钢铁材料常见金相组织相图

钢铁材料常见金相组织相图

钢铁材料常见金相组织简介在Fe-Fe3C系中,可配制多种成分不同的铁碳合金,他们在不同温度下的平衡组织各不相同,但由几个基本相(铁素体F、奥氏体A和渗碳体Fe3C)组成。

这些基本相以机械混合物的形式结合,形成了钢铁中丰富多彩的金相组织结构。

常见的金相组织有下列八种:一、铁素体铁素体(ferrite,缩写FN,用F表示),纯铁在912℃以下为具有体心立方晶格。

碳溶于α-Fe中的间隙固溶体称为铁素体,以符号F表示。

这部分铁素体称为先共析铁素体或组织上自由的铁素体。

随形成条件不同,先共析铁素体具有不同形态,如等轴形、沿晶形、纺锤形、锯齿形和针状等。

铁素体还是珠光体组织的基体。

在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;铁素体的成分和组织对钢的工艺性能有重要影响,在某些场合下对钢的使用性能也有影响。

碳溶入δ-Fe中形成间隙固溶体,呈体心立方晶格结构,因存在的温度较高,故称高温铁素体或δ固溶体,用δ表示,在1394℃以上存在,在1495℃时溶碳量最大。

碳的质量分数为0.09%。

图1:铁素体二、奥氏体碳溶于γ-Fe晶格间隙中形成的间隙固溶体称为奥氏体,具有面心立方结构,为高温相,用符号A表示。

奥氏体在1148℃有最大溶解度2.11%C,727℃时可固溶0.77%C;强度和硬度比铁素体高,塑性和韧性良好,并且无磁性,具体力学性能与含碳量和晶粒大小有关,一般为170~220 HBS、=40~50%。

TRIP钢(变塑钢)即是基于奥氏体塑性、柔韧性良好的基础开发的钢材,利用残余奥氏体的应变诱发相变及相变诱发塑性提高了钢板的塑性,并改善了钢板的成形性能。

碳素或合金结构钢中的奥氏体在冷却过程中转变为其他相,只有在高碳钢和渗碳钢渗碳高温淬火后,奥氏体才能残留在马氏体的间隙中存在,其金相组织由于不易受侵蚀而呈白色。

三、渗碳体渗碳体(cementite),指铁碳合金按亚稳定平衡系统凝固和冷却转变时析出的Fe3C型碳化物。

金相组织名词知识(基础)

金相组织名词知识(基础)

金相组织名词知识铁素体(F)1.组织: 碳在α铁中的固溶体2.特性:呈体心立方晶格.溶碳能力最小,最大为0.02%;硬度和强度很低,HB=80-120,σb=250N/mm^2;而塑性和韧性很好,δ=50%,ψ=70-80%.因此,含铁素体多的钢材(软钢)中用来做可压、挤、冲板与耐冲击震动的机件.这类钢有超低碳钢,如 0Cr13,1Cr13、硅钢片等奥氏体1.组织: 碳在γ铁中的固溶体2.特性:呈面心立方晶格.最高溶碳量为2.06%,在一般情况下,具有高的塑性,但强度和硬度低,HB=170-220,奥氏体组织除了在高温转变时产生以外,在常温时亦存在于不锈钢、高铬钢和高锰钢中,如奥氏体不锈钢等渗碳体(C)1.组织: 铁和碳的化合物(Fe3C)2.特性:呈复杂的八面体晶格.含碳量为6.67%,硬度很高,HRC70-75,耐磨,但脆性很大,因此,渗碳体不能单独应用,而总是与铁素体混合在一起.碳在铁中溶解度很小,所以在常温下,钢铁组织内大部分的碳都是以渗碳体或其他碳化物形式出现珠光体(P)1.组织; 铁素体片和渗碳体片交替排列的层状显微组织,是铁素体与渗碳体祷旌衔?共析体)2.特性:是过冷奥氏体进行共析反应的直接产物.其片层组织的粗细随奥氏体过冷程度不同,过冷程度越大,片层组织越细性质也不同.奥氏体在约600℃分解成的组织称为细珠光体(有的叫一次索氏体),在500-600℃分解转变成用光学显微镜不能分辨其片层状的组织称为极细珠光体(有的一次屈氏体),它们的硬度较铁素体和奥氏体高,而较渗碳体低,其塑性较铁素体和奥氏体低而较渗碳体高.正火后的珠光体比退火后的珠光体组织细密,弥散度大,故其力学性能较好,但其片状渗碳体在钢材承受负荷时会引起应力集中,故不如索氏体莱氏体(L)1.组织: 奥氏体与渗碳体的共晶混合物2.特性:铁合金溶液含碳量在2.06%以上时,缓慢冷到1130℃便凝固出莱氏体.当温度到达共析温度莱氏体中的奥氏转变为珠光体.因此,在723℃以下莱氏体是珠光体与渗碳体机械混合物(共晶混合).莱氏体硬而脆(>HB700),是一种较粗的组织,不能进行压力加工,如白口铁. 在铸态含有莱氏体组织的钢有高速工具钢和Cr12型高合金工具钢等.这类钢一般有较大有耐磨性和较好的切削性淬火与马氏体1.组织: 碳在α-Fe中的过饱和固溶体,显微组织呈针叶状2.特性:淬火后获得的不稳定组织.具有很高的硬度,而且随含碳量增加而提高,但含碳量超过0.6%后的硬度值基本不变,如含C0.8%的马氏体,硬度约为HRC65,冲击韧性很低,脆性很大,延伸率和断面收缩率几乎等于零.奥氏体晶粒愈大,马氏体针叶愈粗大,则冲击韧性愈低;淬火温度愈低,奥氏体晶粒愈细,得到的马氏体针叶非常细小,即无针状马氏组织,其韧性最高回火马氏体(S)1.组织: 与淬火马氏体硬度相近,而脆性略低的黑色针叶状组织2.特性:淬火钢重新加热到150-250℃回火获得的组织.硬度一般只比淬火马氏体低HRC1-3格,但内应力比淬火马氏体小索氏体(S)1.组织: 铁索体和较细的粒状渗碳体组成的组织2.特性:淬火钢重新加热到500-680℃回火后获得的组织.与细珠光体相比,在强度相同情冲下塑性及韧性都高,随回火温度提高,硬度和强度降低,冲击韧性提高.硬度约为HRC23-35.综合机械性能比较好. 索氏体有的叫二次索氏体或回火索氏体屈氏体屈氏体(T)组织或特性1.组织: 铁索体和更细的粒状渗碳体组成的组织2.特性:淬火钢重新加热到350-450℃回火后获得的组织.它的硬度和强度虽然比马氏体低,但因其组织很致密,仍具有较高的强度和硬度,并有比马氏体好的韧性和塑性,硬度约为HRC35-45.屈氏体有的叫二次屈氏体或回火屈氏体下贝氏体(B)1.组织:显微组织呈黑色针状形态,其中的铁素体呈现针状,而碳化物呈现极小的质点以弥散状分布在针状铁素体内2.特性:过冷奥氏体在400-240℃等温度转变后的产物.具有较高的硬度,约为HRC40-55,良好的塑性和很高的冲击韧性,其综合机械性能比索氏体更好;因此,在要求较大的、韧性和高强度相配合时,常以含有适当合金元素的中碳结构钢等温淬火,获得贝氏体以改善钢的机械性能,并减小内应力和变形低碳马氏体具有高强度与良好的塑性、韧性相结合的特点(σb=1200-1600N/mm^2,σ0.2=1000-1300N/mm^2,δ5≥10%,ψ≥40%αk≥60J/cm^2); 同时还有低的冷脆转化温度(≤-60℃);在静载荷、疲劳及多次冲击载荷下,其缺口敏感度和过载敏感性都较低.低碳马氏体状态的20SiMn2MoVA综合力学性能,比中碳合金钢等温淬火获得的下贝氏体更好.保持了低碳钢的工艺性能,但切削加工较难.铁-碳合金平衡图中特性点与线(搂冷却叙述,加热为可逆的)符号说明A 纯铁的凝固点E 碳在γ-Fe中的最大溶解度G γ-Fe→α-Fe转变点C 共晶点S 共折点ABCD 液相线.液体开始结晶AHJECF 固相线,液体终止结晶ES Acm线,渗碳体开始从奥氏体中析出ECF 共晶线,开始从液体结晶出奥氏体和渗碳体的共晶混合物GS As线,自奥氏体开始析出铁素体,即γ-Fe→α-Fe的开始线PSK 共析线或称A1线,自奥氏体开始析出铁素体和渗碳体的共析混合物注:1.As线在加热时称为Ac3线,冷却时称Ar3线;2.A1线在加热时称为Ac1线,冷却时称Ar1线室温下铁-碳合金的平衡组织名称含碳量,% 平衡组织亚共析钢 0.02-0.8 铁素体+珠光体共析钢 0.8 珠光体过共析钢 0.8-2.06 珠光体+二次渗碳体亚共晶的口铁 2.06-4.3 树状珠光体+二次渗透体+共晶体共晶白口铁 4.3 共晶体(珠光体+渗碳体)过共晶白口铁>4.3-6.67 板状一次渗碳体+共晶体。

铁的金相组织

铁的金相组织

铁的金相组织包括多种形态,主要取决于其制造过程中的冷却速度和合金成分。

以下是一些常见的铁金相组织:
铁素体:铁素体是碳溶于α-Fe晶格间隙中形成的间隙固溶体,呈等轴多边形晶粒分布。

铁素体的性能与纯铁相似,具有良好的塑性和韧性,但强度和硬度较低。

奥氏体:碳溶于γ-Fe晶格间隙中形成的间隙固溶体称为奥氏体,具有面心立方结构,为高温相。

奥氏体的强度和硬度比铁素体高,塑性和韧性良好,并且无磁性。

渗碳体:渗碳体是由铁和碳的化合物组成的机械混合物,具有复杂的晶体结构。

渗碳体的硬度很高,但塑性和韧性较差。

这些金相组织在工业应用中具有重要意义,因为它们决定了铁的各种物理和机械性能。

如需了解更多信息,建议查阅金属学相关书籍或咨询专业人士。

钢铁典型金相及低温钢有关知识

钢铁典型金相及低温钢有关知识

❖ 奥氏体钢焊缝金相随着Cr—Ni当量比 值不同,有纯奥氏体钢和奥氏体—铁 素体双相钢。右图中合金1,从结晶 开始至室温 始终为奥氏体组织,晶 粒粗大,枝晶方向性明显,易产生焊 接热裂纹,会出现“多边化”亚晶界 导致“多边化”裂纹。2 随着铁素体 形成元素的增加,初生相为奥氏体 在结晶后期产生共晶的δ铁素体,分 布在枝晶间。3 初生相为δ铁素体, 结晶后期 包晶反应,出现奥氏体并 相铁素体中生长,冷却后残留一部分 在枝晶轴,称残余δ铁素体。 铁素体 含量较多时成网状。 4 焊缝在结晶 过程析出相 始终为δ铁素体,奥氏体 相仅在固相中成核长大,室温残留δ 铁素体较多。
体,马氏体等。 α-Fe,γ-Fe,δ-Fe都是纯铁,只是晶格类型不同,即同素异构。
通俗的讲0Cr18Ni9不锈钢就是304不锈钢板。
❖右图为Fe—C相图 不同 金相组织的在相图中的 位置不同
铁素体属体心立方结构,呈等轴 多边形晶粒分布,软而韧 在碳钢中它是 碳在α-Fe中的固 溶体; 在合金钢中,则是 碳和合金元素 在α-Fe中的固溶体
钢铁典型金相及低 温钢有关知识
Contents
1.钢铁典型金相 2.奥氏体钢基础知识 3.S30408钢基本知识
1.钢铁典型金相组织
❖ 金相组织指金属组织中 化学成分、晶体结构和 对强度和韧性的要求较高时,必须使用奥氏体显微组织低温钢。
在碳钢(或合金钢)中,奥氏体 是碳(和合金元素)固溶于γ-Fe的固溶体,具有面心立方结构,它是高温相。 S30408钢基本知识
用于食品用设备,一般化工设备,原子能用工业设备。
具体形态,如铁素体, α-Fe:温度在912℃以下的纯铁,晶格类型是体心立方;
2 随着铁素体形成元素的增加,初生相为奥氏体 在结晶后期产生共晶的δ铁素体,分布在枝晶间。

教你看金相组织(有定义有特征)

教你看金相组织(有定义有特征)

教你看金相组织(有定义有特征)奥氏体: 碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格特征: 一般是存在于高温下的组织,200-300℃奥氏体开始分解;随加热温度升高晶粒将逐渐长大。

一定温度下,保温时间越长,奥氏体晶粒越粗大。

晶界比较直,呈规则多边形;无磁性,塑性很好,强度较低,具有一定韧性;淬火钢中残余奥氏体分布在马氏体针间的空隙处;过冷奥氏体:在A1温度以下存在且不稳定的、将要发生转变的奥氏体铁素体:碳与合金元素溶解在a-Fe中的固溶体,具有体心立方晶格,溶碳能力极差;特征: 具有良好的韧性和塑性;呈明亮的多边形晶粒组织;存在于较高温度1400℃以上,故称高温铁素体或δ固溶体,用δ表示;亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分(0.77%的含碳量)时,铁素体沿晶粒边界析出。

(共析:两种或以上的新相,从母相中一起析出,而发生的相变)马氏体:碳溶于α-Fe的过饱和的固溶体,体心正方结构;常见的马氏体形态:板条、片状;马氏体形态主要取决于马氏体的形成温度,而形成温度又取决于奥氏体中碳和合金元素的含量;对于碳钢来讲,含碳量增加,板条马氏体数量相对减少,片状马氏体数量相对增加;特征: 具有高强度、高硬度;由奥氏体急速冷却(淬火)形成,它不是一种平衡组织,在加热到80~200℃情况下很容易分解;板条马氏体:在低、中碳钢及不锈钢中形成,由许多成群的、相互平行排列的板条所组成的板条束。

空间形状是扁条状的,一个奥氏体晶粒可转变成几个板条束(通常3到5个);片状马氏体(针状马氏体):常见于高、中碳钢及高Ni的Fe-Ni 合金中;当最大尺寸的马氏体片小到光学显微镜无法分辨时,便称为隐晶马氏体。

在生产中正常淬火得到的马氏体,一般都是隐晶马氏体回火马氏体:低温(150~250oC)回火产生的,过饱和程度较低的马氏体和极细的碳化物共同组成的组织。

80~200℃马氏体分解,当钢加热到约80℃时,其内部原子活动能力有所增加,马氏体中的过饱和碳开始逐步以碳化物的形式析出,马氏体中碳的过饱和程度不断降低,从而形成过饱和程度较低的马氏体和极细碳化物的混合组织;渗碳体:碳与铁形成的一种化合物Fe3C;特征: 含碳量为6.67%,具有复杂的斜方晶体结构;硬度很高,脆性极大,韧性、塑性几乎为零;珠光体:铁碳合金中共析反应所形成的铁素体与渗碳体组成的片层相间的机械混合物;特征: 呈现珍珠般的光泽;力学性能介于铁素体与渗碳体之间,强度较高,硬度适中,塑性和韧性较好;片状珠光体:铁素体和渗碳体以薄层形式,交替重叠形成的混合物;根据珠光体片间距的大小不同可以分为:珠光体(片间距450~150nm,形成温度范围A1~650℃,在光学显微镜下能明显分辨出来)索氏体(片间距150~80nm,形成温度范围650~600℃,只有高倍光学显微镜下才分辨出来)屈氏体(片间距80~30nm,形成温度范围600~550℃,只能用电子显微镜才能分辨出来)粒状珠光体:渗碳体以颗粒状形式,存在于铁素体基体上的混合物;粒状珠光体一般是通过球化退火得到的;(球化退火:为了使钢中碳化物球化而进行的退火)上贝氏体:在温度下降到550~350℃范围时,由过饱和针状铁素体和渗碳体形成的混合物,渗碳体在铁素体针间;特征:呈羽毛状,脆性,硬度较高;500倍光学显微镜下基本能够识别清楚。

金相组织介绍

金相组织介绍

金相组织介绍1、索氏体(martensite)索氏体,是在光学金相显微镜下放大600倍以上才能分辨片层的细珠光体(GB/T 7232标准)。

其实质是一种珠光体,是钢的高温转变产物,是片层的铁素体与渗碳体的双相混合组织,其层片间距较小(30~80nm),碳在铁素体中已无过饱和度,是一种平衡组织。

回火索氏体(tempered martensite)是马氏体于回火时形成的,在在光学金相显微镜下放大500~600倍以上才能分辨出来,其为铁素体基体内分布着碳化物(包括渗碳体)球粒的复合组织。

回火索氏体是马氏体的一种回火组织,是铁素体与粒状碳化物的混合物。

此时的铁素体已基本无碳的过饱和度,碳化物也为稳定型碳化物。

常温下是一种平衡组织。

2、珠光体珠光体是奥氏体(奥氏体是碳溶解在γ-Fe中的间隙固溶体)发生共析转变所形成的铁素体与渗碳体的共析体。

其形态为铁素体薄层和渗碳体薄层交替重叠的层状复相物,也称片状珠光体。

用符号P表示,含碳量为ωc=0.77%。

在珠光体中铁素体占88%,渗碳体占12%,由于铁素体的数量大大多于渗碳体,所以铁素体层片要比渗碳体厚得多。

在球化退火条件下,珠光体中的渗碳休也可呈粒状,这样的珠光体称为粒状珠光体。

珠光体的性能介于铁素体和渗碳体之间,强韧性较好。

其抗拉强度为750 ~900MPa,180 ~280HBS,伸长率为20 ~25%,冲击功为24 ~32J.力学性能介于铁素体与渗碳体之间,强度较高,硬度适中,塑性和韧性较好σb=770MPa,180HBS,δ=20%~35%,AKU=24~32J)。

经2-4%硝酸酒精溶液浸蚀后,在不同放大倍数的显微镜下可以观察到不同特征的珠光体组织.当放大倍数较高时可以清晰地看到珠光体中平行排列分布的宽条铁素体和窄条渗碳体;当放大倍数较低时,珠光体中的渗碳体只能看到一条黑线;而当放大倍数继续降低或珠光体变细时,珠光体的层片状结构就不能分辨了,此时珠光体呈黑色的一团.3、铁素体(ferrite,缩写:FN)铁素体,即α-Fe和以它为基础的固溶体,具有体心立方点阵。

钢铁金相组织介绍

钢铁金相组织介绍
晶体结构变化
铁素体转变为奥氏体后,晶体结构 发生变化,奥氏体呈面心立方结构 。
马氏体的形成与转变
温度骤降
当钢铁材料在奥氏体状态下经历 温度骤降时,奥氏体会转变为马
氏体。
碳原子不均匀分布
在马氏体转变过程中,碳原子在 马氏体中的分布是不均匀的,形
成碳的过饱和固溶体。
晶体结构变化
马氏体是一种具有复杂晶体结构 的金属间化合物,其晶体结构与
抗氧化性
抗氧化性是指材料在高温下抵抗氧化的能力,与材料的化学成分和 组织结构有关。
抗酸碱性
抗酸碱性是指材料在酸碱介质中抵抗腐蚀的能力,与材料的化学成分 和组织结构有关。
影响因素分析
化学成分
钢铁材料的化学成分是影响其性能的主要因素之一,不同 元素对材料的力学、物理和化学性能产生不同的影响。
热处理
热处理是改变钢铁材料组织和性能的重要手段,通过加热 、保温和冷却等工艺,可以改变材料的内部结构,从而改 变其性能。
扫描电子显微镜的应用
观察金属材料的表面形貌、组织结构、相组成等。
扫描电子显微镜的优点
具有较高的分辨率和景深,适用于表面形貌和微观组织的观察。
06
钢铁金相组织的应用与发展趋 势
钢铁金相组织在材料科学领域的应用
材料组织结构研究
钢铁金相组织是研究材料微观结构的重要手段,通过对钢铁 材料的金相组织观察,可以了解材料的相组成、晶粒大小、 形态和分布等,为材料性能研究和优化提供基础数据。
X射线衍射分析法
1 2
X射线衍射的基本原理
利用X射线在晶体中的衍射现象,测定晶体结构 。
X射线衍射分析法的应用
测定金属材料的晶体结构、晶格常数、晶粒大小 等参数。
3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢铁金相组织名称、定义及其特征名称定义特征
奥氏体碳与合金元素溶解
在γ-Fe 中的固溶
体,仍保持γ-Fe 的
面心立方晶格
晶界比较直, 呈规则多边形; 淬火钢中残余奥氏体分布在马氏体针间的空隙处
铁素体碳与合金元素溶解在 a -Fe 中的固溶体亚共析钢中的慢冷铁素体呈块状, 晶界比较圆滑, 当碳含量接近共析成分时,铁素体沿晶粒边界析出
渗碳体碳与铁形成的一种
化合物
在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体为块状,角不尖锐,共晶渗碳体呈骨骼状
过共析钢冷却时沿 Acm 线析出的碳化物(二次渗碳体呈网结状,共析渗碳体呈片状
铁碳合金冷却到 Ar 1以下时,由铁素体中析出渗碳体(三次渗碳体 , 在二次渗碳体上或晶界处呈不连续薄片状
珠光体铁碳合金中共析反
应所形成的铁素体
与渗碳体的机械混
合物
珠光体的片间距离取决于奥氏体分解时的过冷度。

过冷度越大, 所形成的珠光体片间距离越小
在 A 1~650℃形成的珠光体片层较厚,在金相显微镜下放大 400倍以上可分辨
出平行的宽条铁素体和细条渗碳体, 称为粗珠光体、片状珠光体, 简称珠光体
在 650~600℃形成的珠光体用金相显微镜放大 500倍,从珠光体的渗碳体上仅
看到一条黑线,只有放大 1000倍才能分辨的片层,称为索氏体在 600~550℃形成的珠光体用金相显微镜放大 500倍,不能分辨珠光体片层, 仅看到黑色的球团状组织, 只有用电子显微镜放大 10000倍才能分辨的片层称为屈氏体
上贝氏体过饱和针状铁素体
和渗碳体的混合
物,渗碳体在铁素
体针间
过冷奥氏体在中温(约 350~550℃的相变产物,其典型形态是一束大致平行位向差为 6~8od 铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴, 由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。

若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。

转变时先在晶界处形成上贝
氏体,往晶内长大,不穿晶
下贝氏体同上,但渗碳体在
铁素体针内
过冷奥氏体在 350℃ ~Ms的转变产物。

其典型形态是双凸透镜状含过饱和碳的铁素体, 并在其内分布着单方向排列的碳化物小薄片; 在晶内呈针状, 针叶不交叉, 但可交接。

与回火马氏体不同, 马氏体有层次之分, 下贝氏体则颜色一致, 下贝氏体
的碳化物质点比回火马氏体粗, 易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。

高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细
粒状贝氏体大块状或条状的铁
素体内分布着众多
小岛的复相组织
过冷奥氏体在贝氏体转变温度区的最上部的转变产物。

刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成, 富碳奥氏体在随后的冷却过程中, 可能全部保留成为残余奥氏体; 也可能部分或全部分解为铁素体和渗碳体的混合物(珠光体或贝氏体 ;最可能部分转变为马氏体,部分保留下来而形成两相混合物,称为 M-A 组织
无碳化物贝氏体板条状铁素体单相
组成的组织,也称
为铁素体贝氏体
形成温度在贝氏体转变温度区的最上部。

板条铁素体之间为富碳奥氏体, 富碳奥氏体在随后的冷却过程中也有类似上面的转变。

无碳化物贝氏体一般出现在低碳钢中,在硅、铝含量高的钢中也容易形成
马氏体碳在 a -Fe 中的过饱
和固溶体
板条马氏体:在低、中碳钢及不锈钢中形成,由许多相互平行的板条组成一个板条束,一个奥氏体晶粒可转变成几个板条束(通常 3到 5个片状马氏体 (针状马氏体 :常见于高、中碳钢及高 Ni 的 Fe-Ni 合金中, 针叶中有一条缝线将马氏体分为两半,
由于方位不同可呈针状或块状, 针与针呈 120o 角排列,高碳马氏体的针叶晶界清楚,细针状马氏体呈布纹状,称为隐晶马氏体
莱氏体奥氏体与渗碳体的
共晶混合物
呈树枝状的奥氏体分布在渗碳体的基体上
回火马氏体马氏体分解得到极
细的过渡型碳化物
与过饱和(含碳较
低的 a -相混合组

它由马氏体在 150~250℃时回火形成。

这种组织极易受腐蚀,光学显微镜下呈暗黑色针状组织(保持淬火马氏体位向 ,与下贝氏体很相似, 只有在高倍电子显微镜下才能看到极细小的碳化物质点
回火屈氏体碳化物和 a -相的混
合物
它由马氏体在 350~500℃时中温回火形成。

其组织特征是铁素体基体内分布着极细小的粒状碳化物,针状形态已逐渐消失,但仍隐约可见,碳化物在光学显微镜下不能分辨, 仅观察到暗黑的组织, 在电镜下才能清晰分辨两相,可看出碳化物颗粒已明显长大
回火索氏体以铁素体为基体,
基体上分布着均匀
碳化物颗粒
它由马氏体在 500~650℃时高温回火形成。

其组织特征是由等轴状铁素体和细粒状碳化物构成的复相组织, 马氏体片的痕迹已消失, 渗碳体的外形已较清晰, 但在光镜下也难分辨, 在电镜下可看到的渗碳体颗粒较大
粒状珠光体由铁素体和粒状碳化物组成它由过共析钢经球化退火或马氏体在650℃ ~A1温度范围内回火形成。

其特征是碳化物成颗粒状分布在铁素体上
魏氏组织如果奥氏体晶粒比
较粗大,冷却速度
又比较适宜,先共
析相有可能呈针状
(片状形态与片
状珠光体混合存
在,称为魏氏组织
亚共析钢中魏氏组织的铁素体的形态有片状、羽毛状或三角形, 粗大铁素体呈平行或三角形分布。

它出现在奥氏体晶界,同时向晶内生长过共析钢中魏氏组织渗碳体的形态有针状或杆状, 它出现在奥氏体晶粒的内部。

相关文档
最新文档