摩擦力做功和变力做功

合集下载

求变力做功的几种方法

求变力做功的几种方法

求变力做功的几种方法变力做功是物理学中的一个重要概念。

力可以改变物体的状态,让物体移动、加速或减速。

做功就是施加力使物体移动的过程中能量的转移。

以下将介绍几种常见的变力做功的方法。

1.推力做功:将物体推向前方时,施加的力与物体的位移方向一致,即力和位移向量的夹角为0度。

例如,我们推车子或推行李箱时,就是通过推力来做功。

2.拉力做功:这种方式与推力做功相反,即施加的力与物体的位移方向相反,力和位移向量的夹角为180度。

例如,我们拉拽一根绳子或拉弓发射箭矢时,施加的力与物体的运动方向相反。

3.重力做功:重力是地球吸引物体向地心运动的力。

当一个物体从高处下落时,重力对物体做功。

在这种情况下,重力与物体的位移方向相同,力和位移向量的夹角为0度。

4.弹力做功:当有弹簧或橡皮带等弹性物体被拉伸或压缩时,会产生弹力。

弹力做功是将弹性势能转化为动能的过程。

例如,我们拉伸弓弦时,弓的张力对箭矢做功,让它飞行。

5.摩擦力做功:当物体在表面上移动时,与表面接触的粒子之间会产生摩擦力。

摩擦力做功是将机械能转化为热能的过程。

例如,我们用力推动一个滑动在地面上的物体时,摩擦力会做功,使物体停下来。

6.磁力做功:磁力是磁体之间的相互作用力。

当磁场改变时,施加在物体上的磁力会做功。

例如,我们用电磁铁吸起一个金属球时,磁力会做功,将物体从地面抬起。

7.电力做功:电力是在电子之间产生的相互作用力。

当电流通过电阻产生的电阻力与电子的移动方向相对立时,电力会做功。

例如,电流通过电灯丝时,电力会转化为热能和光能,使灯泡发亮。

总结起来,变力做功的方法主要包括推力做功、拉力做功、重力做功、弹力做功、摩擦力做功、磁力做功和电力做功。

通过施加不同的力,我们可以改变物体的状态和能量的转移,从而实现各种实际应用。

各种力的做功特点

各种力的做功特点

(C) F1Scos + F2Ssin
(D) F1Ssin + F2Scos
注意: W F S cos 为合外力与位移的夹角
合外力是矢量,本题的合外力 F 与位移的夹
角难用以总确功定等,于并各不力等做第于2功6页(/的共2若代9页v数A=和0时求才之等于 )
5.合力的功——有两种方法:
若缓慢转过一个小角度α的过程中,物体与板保持
相对静止,则这个过程中(
)D
A. 摩擦力对P做功为 μmgLcosα(1-cosα)
B. 摩擦力对P做功为mgLsinα(1-cosα)
C. 弹力对P做功为mgLcosαsinα
D. 板对P做功为mgLsinα
P
L
α
P
B 第19页/共29页A
一质量为m的小球,用长为L的轻绳悬挂 在O点,小球在水平拉力F的作用下,从平衡位置P点
第27页/共29页
例7、质量为m的物块放在光滑的水平面上,绳的一端固定, 在绳的另一端经动滑轮用与水平方向成α角、大小为F的力 拉物块,如图示,将物块由A点拉至B点,前进S,求外力 对物体所做的总功有多大?
解一:注意W=FS cosα中的S应是力的作用点的位移,当 物体向右移动s 时,力F的作用点既有水平位移S,又有 沿绳向的位移S,合位移为S合,
反作用力做负功, 一对相互作用力也可以作用力做正功,
反作用力不做功, 一对相互作用力也可以作用力做负功,
反作用力不做功,
第17页/共29页
变力做功 1、微元法:例3、一辆马车在力F=100N的作用下绕 半径为50m的圆形轨道做匀速圆周运动,当车运动一 解周:回到阻原力位的置方时向,时车刻子在克变服,阻是力变所力做做的功功的为问多题少,?不

高中物理必修二 第四章 专题强化11 摩擦力做功问题 变力做功的计算

高中物理必修二 第四章 专题强化11 摩擦力做功问题 变力做功的计算

根据速度的合成与分解,可得 A 位置船速大小为 vA=cosv30°=233 m/s,故 A 错误; 同理可得 B 位置船速大小为 vB=cosv60°=2 m/s,故 B 正确; 船从 A 运动到 B 的过程中,人的拉力做的功 W=F(2 AB sin 60°- AB ) =10×(2×4× 23-4) J=40( 3-1) J,故 C 错误,D 正确.
小球受到的拉力F在整个过程中大小不变,方向时刻 变化,是变力.但是,如果把圆周分成无数微小的弧 段,每一小段可近似看成直线,拉力F在每一小段上 方向不变,每一小段上可用恒力做功的公式计算,然后将各段做功累 加起来.设每一小段的长度分别为l1、l2、…、ln,拉力在每一段上做的 功W1=Fl1、W2=Fl2、…、Wn=Fln,拉力在整个过程中所做的功W= W1+W2+…+Wn=F(l1+l2+…+ln)=F(π·R2+πR)=32πFR.故选 C.
知识深化
3.一对相互作用的滑动摩擦力等大反向但物体之间相对滑动,即两 个物体的对地位移不相同,由W=Fscos α可判断两个相互作用的滑 动摩擦力做功的总和不为零.
[深度思考] 一对相互作用的滑动摩擦力做功的总和是正值还是负值? 答案 相互作用的一对滑动摩擦力中至少有一个做负功,且两力做功的 总和一定为负值.
√D.从 A 到 C 过程,摩擦力做功为-πRf
1 2 3 4 5 6 7 8 9 10 11
滑块从A到B过程,重力做功不为零,选项A错误; 弹力始终与位移方向垂直,弹力做功为零,选项 B正确; 滑块从 A 到 B 过程,摩擦力方向始终与速度方向相反,摩擦力做功 为 W1=-fsAB=-f(14×2πR)=-12πRf,选项 C 错误; 同理,滑块从 A 到 C 过程,摩擦力做功 W2=-f(12×2πR)=-πRf, 选项 D 正确.

思想方法:变力做功的计算方法

思想方法:变力做功的计算方法

思想方法7.变力做功的计算方法方法一平均力法如果力的方向不变,力的大小随位移按线性规律变化时,可用力的算术平均值(恒力)代替变力,即F=F1+F22再利用功的定义式W=F l cos α来求功.【典例1】用锤子击打钉子,设木板对钉子的阻力跟钉子进入木板的深度成正比,每次击打钉子时锤子对钉子做的功相同.已知第一次击打钉子时,钉子进入的深度为1 cm,则第二次击打时,钉子进入的深度是多少?即学即练1质量是2 g的子弹,以300 m/s的速度射入厚度是5 cm的木板(如图5-1-8所示),射穿后的速度是100 m/s.子弹射穿木板的过程中受到的平均阻力是多大?你对题目中所说的“平均”一词有什么认识?方法二用微元法求变力做功将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数多个无穷小的位移上的恒力所做元功的代数和.此法在中学阶段,常应用于求解力的大小不变、方向改变的变力做功问题.【典例2】如图5-1-9所示,一个人推磨,其推磨杆的力的大小始终为F,与磨杆始终垂直,作用点到轴心的距离为r,磨盘绕轴缓慢转动.则在转动一周的过程中推力F做的功为().A.0B.2πrF C.2Fr D.-2πrF即学即练2如图5-1-10所示,半径为R,孔径均匀的圆形弯管水平放置,小球在管内以足够大的初速度在水平面内做圆周运动,设开始运动的一周内,小球与管壁间的摩擦力大小恒为F f,求小球在运动的这一周内,克服摩擦力所做的功.方法三用图象法求变力做功在F-x图象中,图线与两坐标轴所围的“面积”的代数和表示力F做的功,“面积”有正负,在x轴上方的“面积”为正,在x轴下方的“面积”为负.【典例3】一物体所受的力F随位移x变化的图象如图5-1-11所示,求在这一过程中,力F对物体做的功为多少?即学即练3如图5-1-12甲所示,静止于光滑水平面上坐标原点处的小物块,在水平拉力F作用下,沿x轴方向运动,拉力F随物块所在位置坐标x的变化关系如图乙所示,图线为半圆.则小物块运动到x0处时F做的总功为().A.0B.12F m x2C.π4F m x0D.π4x2方法四利用W=Pt求变力做功这是一种等效代换的观点,用W=Pt计算功时,必须满足变力的功率是一定的这一条件.【典例4】如图5-1-13所示,用跨过光滑定滑轮的缆绳将海面上一艘失去动力的小船沿直线拖向岸边.已知拖动缆绳的电动机功率恒为P,小船的质量为m,小船受到的阻力大小恒为F f,经过A点时的速度大小为v0,小船从A点沿直线加速运动到B点经历时间为t1,A、B两点间距离为d,缆绳质量忽略不计.求:(1)小船从A点运动到B点的全过程克服阻力做的功WF f;(2)小船经过B点时的速度大小v1.即学即练4汽车的质量为m,输出功率恒为P,沿平直公路前进距离s的过程中,其速度由v1增至最大速度v2.假定汽车在运动过程中所受阻力恒定,求汽车通过距离s所用的时间.方法五 利用动能定理求变力的功动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力功也适用于求变力功.因使用动能定理可由动能的变化来求功,所以动能定理是求变力功的首选.【典例5】 如图5-1-14所示,AB 为四分之一圆周轨道,半径R =0.8 m ,BC 为水平轨道,长为L =3 m .现有一质量m =1 kg 的物体,从A 点由静止滑下,到C 点刚好停止.已知物体与BC 段轨道间的动摩擦因数为μ=115,求物体在AB 段轨道受到的阻力对物体所做的功.(g 取10 m/s 2)即学即练5 如图5-1-15甲所示,一质量为m =1 kg 的物块静止在粗糙水平面上的A 点,从t =0时刻开始物块受到如图乙所示规律变化的水平力F 的作用并向右运动,第3 s 末物块运动到B 点时速度刚好为0,第5 s 末物块刚好回到A 点,已知物块与粗糙水平面间的动摩擦因数μ=0.2,(g =10 m/s 2)求:(1)A 与B 间的距离;(2)水平力F 在前5 s 内对物块做的功. 附:对应高考题组(PPT 课件文本,见教师用书)1.(2012·上海卷,18)如图所示,位于水平面上的物体在水平恒力F 1作用下,做速度为v 1的匀速运动;若作用力变为斜向上的恒力F 2,物体做速度为v 2的匀速运动,且F 1与F 2功率相同.则可能有( ).A .F 2=F 1 v 1>v 2B .F 2=F 1 v 1<v 2C .F 2>F 1 v 1>v 2D .F 2<F 1 v 1<v 22.(2012·四川卷,21)如图所示,劲度系数为k 的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m 的物体接触(未连接),弹簧水平且无形变.用水平力F 缓慢推动物体,在弹性限度内弹簧长度被压缩了x 0,此时物体静止.撤去F 后,物体开始向左运动,运动的最大距离为4x 0.物体与水平面间的动摩擦因数为μ,重力加速度为g .则( ).A .撤去F 后,物体先做匀加速运动,再做匀减速运动B .撤去F 后,物体刚运动时的加速度大小为kx 0m-μgC .物体做匀减速运动的时间为2x 0μgD .物体开始向左运动到速度最大的过程中克服摩擦力做的功为μmg ()x 0-μmgk3.(2012·江苏卷,3)如图所示,细线的一端固定于O 点,另一端系一小球.在水平拉力作用下,小球以恒定速率在竖直平面内由A 点运动到B 点.在此过程中拉力的瞬时功率变化情况是( ).A .逐渐增大B .逐渐减小C .先增大,后减小D .先减小,后增大4.(2011·海南卷,9)一质量为1 kg 的质点静止于光滑水平面上,从t =0时起,第1秒内受到2 N 的水平外力作用,第2秒内受到同方向的1 N 的外力作用.下列判断正确的是( ).A .0~2 s 内外力的平均功率是94WB .第2秒内外力所做的功是54JC .第2秒末外力的瞬时功率最大D .第1秒内与第2秒内质点动能增加量的比值是455.(2011·上海卷,15)如图,一长为L 的轻杆一端固定在光滑铰链上,另一端固定一质量为m 的小球.一水平向右的拉力作用于杆的中点,使杆以角速度ω匀速转动,当杆与水平方向成60°时,拉力的功率为( ).A .mgLωB .32mgLω C.12mgLω D .36mgLω【典例1】解析 设木板对钉子的阻力为F f =kx ,x 为钉子进入木板的深度,第一次击打后钉子进入木板的深度为x 1,第二次击打钉子时,钉子进入木板的总深度为x 2,则有W 1=F f 1x 1=0+kx 12·x 1=12kx 21W 2=F f 2(x 2-x 1)=kx 1+kx 22·(x 2-x 1)=12k (x 22-x 21) 由于W 1=W 2,代入数据解得x 2=2x 1=1.41 cm 所以钉子第二次进入的深度为 Δx =x 2-x 1=0.41 cm. 答案 0.41 cm即学即练1解析 设子弹所受的平均阻力为F f ,根据动能定理W 合=12m v 22-12m v 21得 F f l cos 180°=12m v 22-12m v 21所以F f =-m (v 22-v 21)2l =-2×10-3×(1002-3002)2×5×10-2N =1.6×103N 子弹在木板中运动5 cm 的过程中,所受木板的阻力各处不同,题中所说的平均阻力是相对子弹运动这5 cm 的过程来说的.答案 1.6×103 N 见解析 【典例2】解析 磨盘转动一周,力的作用点的位移为0,但不能直接套用W =Fs cos α求解,因为在转动过程中推力F 为变力.我们可以用微元的方法来分析这一过程.由于F 的方向在每时刻都保持与作用点的速度方向一致,因此可把圆周划分成很多小段来研究,如图所示,当各小段的弧长Δs i 足够小(Δs i →0)时,F 的方向与该小段的位移方向一致,所以有:W F =F Δs 1+F Δs 2+F Δs 3+…+F Δs i =F 2πr =2πrF (这等效于把曲线拉直).答案 B即学即练2解析 将小球运动的轨迹分割成无数个小段,设每一小段的长度为Δx ,它们可以近似看成直线,且与摩擦力方向共线反向,如图所示,元功W ′=F f Δx ,而在小球运动的一周内小球克服摩擦力所做的功等于各个元功的和,即W =ΣW ′=F f ΣΔx =2πRF f .答案 2πRF f【典例3】解析 力F 对物体做的功等于x 轴上方梯形“面积”所表示的正功与x 轴下方三角形“面积”所表示的负功的代数和.S 梯形=12×(3+4)×2=7S 三角形=-12×(5-4)×2=-1所以力F 对物体做的功为W =7 J -1 J =6 J. 答案 6 J 即学即练3解析 F 为变力,但F -x 图象包围的面积在数值上表示拉力做的总功.由于图线为半圆,又因在数值上F m =12x 0,故W =12πF 2m=12π·F m ·12x 0=π4F m x 0. 答案 C利用W =Pt 求变力做功这是一种等效代换的观点,用W =Pt 计算功时,必须满足变力的功率是一定的这一条件. 【典例4】解析 (1)小船从A 点运动到B 点克服阻力做功 WF f =F f d ①(2)小船从A 点运动到B 点,电动机牵引缆绳对小船做功 W =Pt 1②由动能定理有W -WF f =12m v 21-12m v 20③ 由①②③式解得v 1=v 20+2m (Pt 1-F f d )④ 答案 (1)F f d (2)v 20+2m (Pt 1-F f d )即学即练4解析 当F =F f 时,汽车的速度达到最大速度v 2,由P =F v 可得F f =Pv 2对汽车,根据动能定理,有Pt -F f s =12m v 22-12m v 21联立以上两式解得t =m (v 22-v 21)2P +s v 2.答案 m (v 22-v 21)2P +s v 2.【典例5】解析 物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,且W G =mgR ,W f BC =-μmgL ,由于物体在AB 段受到的阻力是变力,做的功不能直接求解.设物体在AB 段轨道受到的阻力对物体所做的功为W fAB ,从A 到C ,根据动能定理有mgR +W fAB -μmgL =0,代入数据解得W fAB =-6 J.答案 -6 J 即学即练5 .解析 (1)A 、B 间的距离与物块在后2 s 内的位移大小相等,在后2 s 内物块在水平恒力作用下由B 点匀加速运动到A 点,由牛顿第二定律知F -μmg =ma ,代入数值得a =2 m/s 2,所以A 与B 间的距离为s =12at 2=4 m.(2)前3 s 内物块所受力F 是变力,设整个过程中力F 做的功为W ,物体回到A 点时速度为v ,则v 2=2as ,由动能定理知W -2μmgs =12m v 2,所以W =2μmgs +mas =24 J.答案 (1)4 m (2)24 J附:对应高考题组(PPT 课件文本,见教师用书)1.解析 水平恒力F 1的作用时有P 1=F 1v 1,斜向上恒力F 2作用时有P 2=F 2v 2cos θ,其中θ为F 2与水平方向的夹角,又F 2cos θ=μ(mg -F 2sin θ),F 1=μmg ,故F 2cos θ<F 1,由于P 1=P 2,所以v 1<v 2,F 1与F 2的关系不确定,故选项B 、D 正确,A 、C 错误.答案 BD2.解析 撤去F 后,物体向左先做加速运动,其加速度大小a 1=kx -μmg m =kxm-μg ,随着物体向左运动,x 逐渐减小,所以加速度a 1逐渐减小,当加速度减小到零时,物体的速度最大,然后物体做减速运动,其加速度大小a 2=μmg -kxm=μg -kx m ,a 2随着x 的减小而增大.当物体离开弹簧后做匀减速运动,加速度大小a 3=μmg m =μg ,所以选项A 错误.根据牛顿第二定律,刚撤去F 时,物体的加速度a =kx 0-μmg m =kx 0m-μg ,选项B 正确.物体做匀减速运动的位移为3x 0,则3x 0=12a 3t 2,得物体做匀减速运动的时间t =6x 0a 3=6x 0μg,选项C 错误.当物体的速度最大时,加速度a ′=0,即kx =μmg ,得x =μmgk,所以物体克服摩擦力做的功W =μmg (x 0-x )=μmg ()x 0-μmg k ,选项D 正确. 答案 BD3.解析 小球速率恒定,由动能定理知:拉力做的功与克服重力做的功始终相等,将小球的速度分解,可发现小球在竖直方向分速度逐渐增大,重力的瞬时功率也逐渐增大,则拉力的瞬时功率也逐渐增大,A 项正确.答案 A4.解析 根据牛顿第二定律得,物体在第1 s 内的加速度a 1=F 1m =2 m/s 2,在第2 s 内的加速度a 2=F 2m =11 m/s 2=1 m/s 2;第1 s 末的速度v 1=a 1t =2 m/s ,第2 s 末的速度v 2=v 1+a 2t =3 m/s ;0~2 s 内外力做的功W =12m v 22=92 J ,平均功率P =W t =94 W ,故A 正确.第2 s 内外力所做的功W 2=12m v 22-12m v 21=()12×1×32-12×1×22J =52 J ,故B 错误.第1 s 末的瞬时功率P 1=F 1v 1=4 W .第2 s 末的瞬时功率P 2=F 2v 2=3 W ,故C 错误.第1 s 内动能的增加量ΔE k1=12m v 21=2 J ,第2 s 内动能的增加量ΔE k2=W 2=52J ,所以ΔE k1ΔE k2=45,故D 正确.答案 AD5.解析 由能的转化及守恒可知:拉力的功率等于克服重力的功率.P G =mg v y =mg v cos 60°=12mgωL ,故选C.答案 C。

科学思维系列(一)——求解变力做功的几种方法及摩擦力做功的情况

科学思维系列(一)——求解变力做功的几种方法及摩擦力做功的情况

F 做的功.“面积”有正负,在x 轴上方的“面积”为正,在x 轴下方的“面积”为负.如图甲、乙所示,这与运动学中由v - t 图象求位移的原理相同.【典例2】 用质量为5 kg 的均匀铁索,从10 m 深的井中吊起一质量为20 kg 的物体,此过程中人的拉力随物体上升的高度变化如图所示,在这个过程中人至少要做多少功?(g 取10 m/s 2)【解析】 方法一 提升物体过程中拉力对位移的平均值:F -=250+2002N =225 N 故该过程中拉力做功:W =F -h =2 250 J.方法二 由F - h 图线与位移轴所围面积的物理意义,得拉力做功:W =250+2002×10 J =2 250 J. 【答案】 2 250 J法3.用微元法求变力做功圆周运动中,若质点所受力F 的方向始终与速度的方向相同,要求F 做的功,可将圆周分成许多极短的小圆弧,每段小圆弧都可以看成一段极短的直线,力F 对质点做的功等于它在每一小段上做功的代数和,这样变力(方向时刻变化)做功的问题就转化为多段上的恒力做功的问题了.【典例3】如图所示,质量为m的质点在力F的作用下,沿水平面上半径为R的光滑圆槽运动一周.若F的大小不变,方向始终与圆槽相切(与速度的方向相同),求力F对质点做的功.【解析】质点在运动的过程中,F的方向始终与速度的方向相同,若将圆周分成许多极短的小圆弧Δl1、Δl2、Δl3、…、Δln,则每段小圆弧都可以看成一段极短的直线,所以质点运动一周,力F对质点做的功等于它在每一小段上做功的代数和,即W =W1+W2+…+W n=F(Δl1+Δl2+…+Δl n)=2πRF.【答案】2πRF.变式训练1如图所示,放在水平地面上的木块与一劲度系数k=200 N/m的轻质弹簧相连,现用手水平拉弹簧,拉力的作用点移动x1=0.2 m,木块开始运动,继续拉弹簧,木块缓慢移动了x2=0.4 m,求上述过程中拉力所做的功.解析:木块刚要滑动时,拉力的大小F=kx1=200×0.2 N=40 N,从开始到木块刚要滑动的过程,拉力做的功W1=0+F 2x1=402×0.2 J=4 J;木块缓慢移动的过程,拉力做的功W2=Fx2=40×0.4 J=16 J.故拉力所做的总功W=W1+W2=20 J.答案:20 J变式训练2如图所示,一质量为m=2.0 kg的物体从半径为R=5.0 m 的圆弧的A端,在拉力作用下沿圆弧缓慢运动到B端(圆弧AB如图所示,水平传送带正以v =2 m/s 的速度运行,两端水平距离l =8 m ,把一质量m =2 kg 的物块轻轻放到传送带的A 端,物块在传送带的带动下向右运动.若物块与传送带间的动摩擦因数μ=0.1,不计物块的大小,g 取10 m/s 2,则把这个物块从A 端传送到B 端的过程中.求:(1)摩擦力对物块做的功.(2)摩擦力对传送带做的功.【解析】 (1)物块刚放到传送带上时,由于与传送带有相对运动,物块受向右的滑动摩擦力,物块做加速运动,摩擦力对物块做功.物块受向右的摩擦力为F f =μmg =0.1×2×10 N =2 N加速度为a =F f m =μg =0.1×10 m/s 2=1 m/s 2当物块与传送带相对静止时的位移为x =v 22a =222×1m =2 m 摩擦力对物块做功为W =F f x =2×2 J =4 J.(2)把这个物块从A 端传送到B 端的过程中,摩擦力对传送带做功为:W ′=-μmgx ′=-μmg ·v ·v a =-8 J.【答案】 (1)4 J (2)-8 J变式训练3 以初速度v 0竖直向上抛出质量为m 的小球,上升的最大高度是h ,如果空气阻力f 的大小恒定,从抛出到落回出发点的整个过程中,空气阻力对小球做的功为( )A .0B .-fhC .-2mghD .-2fh解析:阻力做功跟物体的运动轨迹有关,所以阻力做功为W f =-2fh .答案:D。

求变力做功的几种方法

求变力做功的几种方法

求变力做功的几种方法变力做功是物理学中的一个重要概念,指的是通过施加力使物体移动,并且力的方向与物体的位移方向相同,从而产生功。

在物理学中,变力做功的几种常见的方式包括:1.恒力做功:恒力做功是指当施加于物体上的力保持恒定,并且力的方向与物体的位移方向相同时所产生的功。

例如,当将物体按直线方向推动时,施加力的大小和方向始终保持不变,这时产生的功就是恒力做的功。

2.弹力做功:弹力做功是指当施加于弹性物体上的力使其发生形变,并且力的方向与变形的方向相同时所产生的功。

例如,当将弹簧压缩或拉伸时,弹簧将会产生弹力,并且完成对外做功的过程。

3.重力做功:重力做功是指当物体受到重力的作用时所产生的功。

例如,将物体从高处抬升到低处,重力将会对物体做功,使物体下降。

此时,重力与物体的下降方向相同,从而产生重力做的功。

4.摩擦力做功:摩擦力做功是指当物体在摩擦力的作用下移动时所产生的功。

例如,当将物体沿水平面上的表面推动时,摩擦力将与物体的运动方向相反,并且产生摩擦力做的功,将物体减速或停止。

5.推力做功:推力做功是指当物体受到推力的作用时所产生的功。

例如,当用力将物体沿斜面推动时,推力将与物体的位移方向一致,并且产生推力做的功,使物体上升或下降。

除了上述几种方式之外,还有其他一些特殊情况下的功。

例如,当物体围绕固定点旋转时,所受到的转动力矩将使物体围绕轴旋转,并且产生转动功。

而当应力作用下的材料发生变形时,所施加的应力将会对材料做功,称为弹性势能的转化。

总之,变力做功具有多种方式,这些方式在物理学中都有着重要的应用。

通过研究和理解这些不同的方式,可以更好地理解和应用物理学的知识,并且在实际生活中解释和分析各种物理现象。

摩擦力做功几种求法

摩擦力做功几种求法

θOB CD A⑤1o 2o 3o 0v 1l 2l 3l摩擦力做功几种求法白城一中物理组 / 闫炜平摩擦力做功计算是同学做题时容易疑惑的问题,概括的说分为三种情况,下面举例说明:一、在摩擦力大小、方向都不变的情况下,应该用θcos ⋅⋅=s f W f 可求。

二、在摩擦力大小不变,方向改变时,由微元法,可将变力功等效成恒力功求和。

例1:质量为m 的物体,放在粗糙水平面上。

现 使物体沿任意曲线缓慢地运动,路程为s ,物体与水平面间的动摩擦因数为μ。

则拉力F 做的功为多少? 解:由微元法可知:F 做的功应等于摩擦力做功总和。

例2:如图所示,竖直固定放置的斜面AB 的下端与光滑的圆弧轨道BCD 的B 端相切,圆弧面半径为R ,圆心O 与A 、D 在同一水平面上,∠COB=θ。

现有一个质量为m 的小物体从斜面上的A 点无初速滑下,已知小物体与AB 斜面间的动摩擦因数为μ。

求(1)小物体在斜面体上能够通过的路程;(2)小物体通过C 点时,对C 点的最大压力和最小压力。

[解析](1)小物体在运动过程中,只有重力及摩擦力做功,小物体最后取达B 点时速度为零。

设小物体在斜面上通过的总路程为s ,由动能定理得:① 又 由①②式得: (2)小物体第一次到达C 点时速度大,对C 点压力最大。

由动能定理 ④解③④⑤式得 小物体最后在BCD 圆弧轨道上运动,小物体通过C 点时对轨道压力最小。

得:⑥ 解⑥⑦式得由牛顿第三定律知,小物体对C 点压力最大值为最小值 [注意,摩擦力做功的公式s f W ⋅-=中,s 一般是物体运动的路程]三、摩擦力大小、方向都在时刻改变时,速度V 越大时,压力N F 也越大,则由N F f μ=可知N F 越大,f 也越大,摩擦力做功越多。

例1:连接A 、B 两点的弧形轨道ACB 与ADB 是用相同材料制成的,它们的曲率半径相同。

如图所示,一个小物体由A 点以一定初速度v 开始沿ACB 滑到B 点时,到达B 点速率为1v 若小物体由A 点以相同初速度沿ADB 滑到B 点时,速率为2v 与的关系:( )A 1v >2vB 1v =2vC 1v <2vD 无法判断 [解析]A 物体沿ACB 运动过程中受竖直向下的重力。

摩擦力做功问题及求变力做功的几种方法(学生版)-高考物理热点模型

摩擦力做功问题及求变力做功的几种方法(学生版)-高考物理热点模型

摩擦力做功问题及求变力做功的几种方法学校:_________班级:___________姓名:_____________模型概述1.摩擦力做功问题1)无论是静摩擦力还是滑动摩擦力都可以对物体可以做正功,也可以做负功,还可以不做功。

2)静摩擦力做功的能量问题①静摩擦做功只有机械能从一个物体转移到另一个物体,而没有机械能转化为其他形式的能。

②一对静摩擦力所做功的代数和总等于零,而总的机械能保持不变。

3)滑动摩擦力做功的能量问题①滑动摩擦力做功时,一部分机械能从一个物体转移到另一个物体,另一部分机械能转化为内容,因此滑动摩擦力做功有机械能损失。

②一对滑动摩擦力做功的代数和总是负值,总功W =-F f ⋅x 相对,即发生相对滑动时产生的热量。

2.求变力做功的几种方法1.用W =Pt 求功当牵引力为变力,且发动机的功率一定时,由功率的定义式P =W t,可得W =Pt .1)“微元法”求变力做功:情形一:当力的大小不变,而方向始终与运动方向相同或相反时,力F 做的功与路程有关,W =Fs 或W =-Fs ,其中s 为物体通过的路程.情形二:当力的大小不变,运动为曲线时,将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数多个无穷小的位移上的恒力所做功的代数和,此法适用于求解大小不变、方向改变的变力做功.【举例】质量为m 的木块在水平面内做圆周运动,运动一周克服摩擦力做功W f =F f ⋅Δx 1+F f ⋅Δx 2+F f ⋅Δx 3+...=F f ⋅(Δx 1+Δx 2+Δx 3+...)=F f ⋅2πR2)“图像法”求变力做功:在F -x 图像中,图线与x 轴所围“面积”的代数和就表示力F 在这段位移内所做的功,且位于x 轴上方的“面积”为正功,位于x 轴下方的“面积”为负功,但此方法只适用于便于求图线与x 轴所围面积的情况(如三角形、矩形、圆等规则的几何图形).【举例】一水平拉力拉着一物体在水平面上运动的位移为x 0,图线与横轴所围面积表示拉力所做的功,W =F 0+F 12x3)“平均力”求变力做功:当力的方向不变而大小随位移线性变化时,可先求出力对位移的平均值F =F 0+F 12,再由W =F l cos θ计算,如弹簧弹力做功.【举例】弹力做功,弹力大小随位移线性变化,取初状态弹力为0,则W =F x =0+F k 2x =0+kx 2x =12kx 24.应用动能定理求解变力做功:在一个有变力做功的过程中,当变力做功无法直接通过功的公式求解时,可用动能定理W 变+W 恒=12mv 22-12mv 21,物体初、末速度已知,恒力做功W 恒可根据功的公式求出,这样就可以得到W 变=12mv 22-12mv 21-W 恒,就可以求出变力做的功了.【举例】用力F 把小球从A 处缓慢拉到B 处,F 做功为W F ,则有:W F +W G =0⇒W F -mgl (1-cos θ)=0⇒W F =mgl (1-cos θ)5)等效转换法求解变力做功:将变力转化为另一个恒力所做的功。

(完整版)摩擦力做功和变力做功

(完整版)摩擦力做功和变力做功

功习题课:变力做功和摩擦力做功一、摩擦力做功1、如图2所示,在光滑水平地面上有一辆平板小车,车上放着一个滑块,滑块和平板小车间有摩擦,滑块在水平恒力F作用下从车的一端拉到另一端.第一次拉滑块时将小车固定,第二次拉时小车没有固定.在这先后两次拉动木块的过程中,下列说法中正确的是( )A.滑块所受的摩擦力一样大B.拉力F做的功一样大C.滑块获得的动能一样大图2D.系统增加的内能一样大2、质量为M的长木板放在光滑的水平地面上,如图1-1-10所示,一个质量为m的滑块以某一速度沿木板表面从A端滑到B点,在木板上前进了L,而木板前进s,若滑块与木板间的动摩擦因数为μ.求:(1)摩擦力对滑块所做功的大小;(2)摩擦力对木板所做功的大小.(3)摩擦力对滑块和木板做功的代数和。

图1-1-10①相互摩擦的系统内,一对静摩擦力所做的总功等于零。

②相互摩擦的系统内,一对滑动摩擦力所做的功总是负值,其绝对值等于滑动摩擦力与相对位移的乘积,即恰等于系统损失的机械能。

二、变力做功功的计算公式W=FScosa只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,对变力做功问题归纳如下:1、微元法:当力的大小不变,而力的方向始终与运动方向相同或相反时,这类变力的功等于力和路程的乘积,如:滑动摩擦力、空气阻力做功等等。

始终垂直呢?(1)马用水平力拉着碌子在场院上轧谷脱粒,若马的拉力为800牛顿,碌子在场院上转圈的半径是10米,求转一圈马对碌子做的功。

(2)用细绳系一小球,在水平面内运动一周,求绳的拉力做的功(3)如图,设物体的质量为m,放在木板上,木板一端抬高的过程中,物体始终相对木板静止,设物体升高了h,在这一过程中,判断摩擦力、支持力重力对物体做功情况。

2、图像法如果参与做功的变力,方向与位移方向始终一致而大小随时变化,我们可作出该力随位移变化的图像。

那么F-S 图线下方所围成的面积,即为变力做的功。

W=F S已知某弹簧的劲度系数为k ,当弹簧伸长x 米时,求弹簧的弹力对小球做的功?3、等值法等值法即若某一变力的功和某一恒力的功相等,则可以通过计算该恒力的功,求出该变力的功。

变力做功的几种方法

变力做功的几种方法

巧用物理知识求变力做功祁东育贤中学周东云关键词:做功变力做功功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FScosa只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,本文对变力做功问题进行归纳总结如下:一、平均作用力法如果力的方向不变,力的大小对位移按线性规律变化时,可用力的算术平均值(恒力)代替变力,利用功的定义式求功。

例1、一辆汽车质量为105千克,从静止开始运动,其阻力为车重的0.05倍。

其牵引力的大小与车前进的距离变化关系为F=103x+f0,f0是车所受的阻力。

当车前进100米时,牵引力做的功是多少?分析:由于车的牵引力和位移的关系为F=103x+f0,是线性关系,故前进100米过程中的牵引力做的功可看作是平均牵引力所做的功。

由题意可知f0=0.05×105×10N=5×104N,所以前进100米过程中的平均牵引力=N=1×105N,∴W=S=1×105×100J=1×107J。

二、微元法当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。

例2 、如图1所示,某力F=10牛作用于半径R=1米的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为:A0焦耳B20π焦耳C 10焦耳D20焦耳分析:把圆周分成无限个小元段,每个小元段可认为与力在同一直线上,故ΔW=FΔS,则转一周中各个小元段做功的代数和为W=F×2πR=10×2πJ=20πJ,故B正确。

三、等值法等值法即若某一变力的功和某一恒力的功相等,则可以同过计算该恒力的功,求出该变力的功。

而恒力做功又可以用W=FScosa计算,从而使问题变得简单。

求变力做功的十种方法

求变力做功的十种方法

变力做功的十种方法河南省信阳高级中学 陈庆威功是高中物理的重要概念,对力做功的求解也是高考物理的重要考点,恒力的功可以用公式θcos FS W =直接求解,但变力做功就不能直接用公式了,这里总结了一些求变力做功的方法,希望能对读者有帮助。

一. 动能定理法例1. 如图所示,质量为m 的物体从A 点沿半径为R 的粗糙半球内表面以的速度开始下滑,到达B 点时的速度变为,求物体从A 运动到B 的过程中,摩擦力所做的功是多少?【解析】物体由A 滑到B 的过程中,受重力G 、弹力和摩擦力三个力的作用,因而有,即,式中为动摩擦因数,v 为物体在某点的速度,为物块与球心的连线与竖直方向的夹角。

分析上式可知,物体由A 运动到B 的过程中,摩擦力是变力,是变力做功问题,根据动能定理有,在物体由A 运动到B 的过程中,弹力不做功;重力在物体由A 运动到C 的过程中对物体所做的正功与物体从C 运动到B 的过程中对物体所做的负功相等,其代数和为零。

因此,物体所受的三个力中摩擦力在物体由A 运动到B 的过程中对物体所做的功,就等于物体动能的变化量,则有:即 可见,如果所研究的物体同时受几个力的作用,而这几个力中只有一个力是变力,其余均为恒力,且这些恒力所做的功和物体动能的变化量容易计算时,此类方法解决问题是行之有效的。

【点评】利用动能定理可以求变力做功,但不能用功的定义式直接求变力功,并且用动能定理只要求始末状态,不要求中间过程。

这也是动能定理比牛顿运动定律优越的一个方面。

二. 微元法对于变力做功,不能直接用θcos FS W =进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F 是恒力,用θcos FS W =求出每一小段内力F 所做的功,然后累加起来就得到整个过程中变力所做的功。

这种处理问题的方法称为微元法,具有普遍的适用性。

例2. 用水平拉力,拉着滑块沿半径为R 的水平圆轨道运动一周,如图所示,已知物块的质量为m ,物块与轨道间的动摩擦因数为μ。

求解变力做功的十种方法

求解变力做功的十种方法

求解变力做功的十种方法变力做功是指力的大小和方向在作功过程中发生变化的情况。

下面将介绍十种常见的变力做功的方法。

1.拉力做功:当一个物体被施加拉力时,拉力在作功过程中的大小和方向都是持续变化的。

通常情况下,拉力的大小会逐渐增加,直到物体被拉到目标位置。

这个过程中拉力所做的功等于力的大小乘以物体的位移。

2.推力做功:推力做功与拉力做功类似,只不过是力的方向相反。

当一个物体被施加推力时,推力也会在作功过程中发生变化,直到物体被推到目标位置。

推力所做的功也等于力的大小乘以物体的位移。

3.弹力做功:当一个物体被施加弹性势能时,弹力会在作功过程中发生变化。

例如,当拉伸弹簧时,弹簧的劲度系数会导致拉力的大小随着弹簧的伸长而增加。

弹力所做的功等于力的大小乘以物体的位移。

4.阻力做功:当一个物体受到空气阻力或其他形式的阻力时,阻力会在作功过程中发生变化。

通常情况下,阻力的大小与物体的速度成正比。

因此,在物体运动时,阻力所做的功等于力的大小乘以物体的速度与位移之积。

5.重力做功:当一个物体被抬高或下落时,重力会在作功过程中发生变化。

抬高物体时,重力的大小会减小,而下落时则会增大。

重力所做的功等于力的大小乘以物体的高度。

6.磨擦力做功:当一个物体受到摩擦力时,摩擦力会在作功过程中发生变化。

通常情况下,摩擦力的大小与物体的接触面积和物体间的粗糙程度有关。

磨擦力所做的功等于力的大小乘以物体的位移。

7.引力做功:当一个物体受到另一个物体的引力作用时,引力会在作功过程中发生变化。

例如,当地球绕太阳运动时,引力的大小会随着地球到太阳的距离的变化而变化。

引力所做的功等于力的大小乘以物体的位移。

8.中心力做功:中心力是指作用在物体上的力总是指向物体的中心。

例如,当一个物体沿着圆形轨道运动时,中心力会在作功过程中发生变化,因为物体距离中心的距离在变化。

中心力所做的功等于力的大小乘以物体的位移。

9.引力做功:引力做功是指一个物体由于受到其他物体的引力而发生位移时,引力所做的功。

求解变力做功问题的五种方法

求解变力做功问题的五种方法

求解变力做功问题的五种方法在高中阶段,应用做功公式W=FScosα来解题时,公式中F只能是恒力。

如果F是变力,就不能直接应用公式W=FScosα来求变力做功问题。

但是题目中又经常出现变力做功问题,下面介绍五种求解变力做功问题的方法。

一:将变力做功转化为恒力做功来求解我们知道变力做功不可以直接用公式W=FScosα来计算,但有些情况下,将变力转化成恒力做功,就可以用公式直接求解。

例题1:如图1所示,人用大小不变的力F拉着放在光滑平面上的物体,开始时与物体相连的绳子和水平面间的夹角是α,当拉力F作用一段时间后,绳子与水平面的夹角是β,图中的高度是h,求绳子拉力T对物体所做的功,(绳的质量,滑轮的质量和绳与滑轮之间的摩擦均不计)。

分析与解答:在物体向右运动过程中,绳子拉力T是一个变力,是变力做功问题。

但是拉力T大小等于力F的大小,且力F是恒力。

因此,求绳子拉力T对物体所做的功就等于力F所做的功。

由图可知,力F的作用点移动的位移大小为:ΔS=S1-S2。

则:W T=W F=FΔS=F(S1-S2)=Fh(1/sinα-1/sinβ).二:用动能定理来求解我们知道,动能定理的内容:外力对物体所做的功等于物体动能的增量。

如果我们研究物体所受的外力中只有一个是变力,其他力都是恒力,而且这些力做功比较容易求,就可以用动能定理来求变力做功。

例题2:如图2所示,质量为2kg的物体从A点沿半径为R的粗糙半球内表面以10m/s 的速度开始下滑,到达B点时的速度变为2m/s,求物体从A点运动到B点的过程中,摩擦力所做的功是多少?分析及解答:物体从A点运动到B点的过程中,受到重力G、弹力N和摩擦力f三个力作用,在运动过程中,摩擦力f的方向和大小都发生改变,因此摩擦力f是变力,是变力做功问题。

物体从A点运动到B点的过程中,弹力N不做功,重力G做功为零。

物体所受的三个力中摩擦力在物体从A点运动到B点的过程中对物体所做的功,就等于物体动能的变化量,则W外=W f=ΔE k=1/2mV B2-1/2mV A2=-96(J).三:用机械能守恒定律来求解我们知道,物体只受重力和弹力作用或只有重力和弹力做功时,系统的机械能守恒。

高中物理 第七章 机械能守恒定律 习题课1 功和功率

高中物理 第七章 机械能守恒定律 习题课1 功和功率

习题课1 功和功率[学习目标] 1.熟练掌握恒力做功的计算方法.2.能够分析摩擦力做功的情况,并会计算一对摩擦力对两物体所做的功.3.能区分平均功率和瞬时功率. 一、功的计算 1.恒力的功功的公式W =Fl cos α,只适用于恒力做功.即F 为恒力,l 是物体相对地面的位移,流程图如下:2.变力做功的计算(1)将变力做功转化为恒力做功在曲线运动或有往复的运动中,当力的大小不变,而方向始终与运动方向相同或相反时,这类力的功等于力和路程的乘积,力F 与v 同向时做正功,力F 与v 反向时做负功. (2)当变力做功的功率P 一定时,如机车恒定功率启动,可用W =Pt 求功.(3)用平均力求功:若力F 随位移x 线性变化,则可以用一段位移内的平均力求功,如将劲度系数为k 的弹簧拉长x 时,克服弹力做的功W =0+F 2x =kx 2·x =12kx 2.(4)用F -x 图象求功若已知F -x 图象,则图象与x 轴所围的面积表示功,如图1所示,在位移x 0内力F 做的功W =F 02x 0.图1例1 一物体在运动中受水平拉力F 的作用,已知F 随运动距离x 的变化情况如图2所示,则在这个运动过程中F 做的功为( )图2A.4 JB.18 JC.20 JD.22 J答案 B解析 方法一 由图可知F 在整个过程中做功分为三个小过程,分别做功为W 1=2×2 J=4 J ,W 2=-1×2 J=-2 J W 3=4×4 J=16 J ,所以W =W 1+W 2+W 3=4 J +(-2)J +16 J =18 J.方法二 F -x 图象中图线与x 轴所围成的面积表示做功的多少,x 轴上方为正功,下方为负功,总功取三部分的代数和,即(2×2-2×1+4×4)J=18 J ,B 正确.例2 在水平面上,有一弯曲的槽道AB ,由半径分别为R2和R 的两个半圆构成.如图3所示,现用大小恒为F 的拉力将一光滑小球从A 点拉至B 点,若拉力F 的方向时时刻刻均与小球运动方向一致,则此过程中拉力所做的功为( )图3A.零B.FRC.32πFR D.2πFR答案 C解析 小球受到的拉力F 在整个过程中大小不变,方向时刻变化,是变力.但是,如果把圆周分成无数微小的弧段,每一小段可近似看成直线,拉力F 在每一小段上方向不变,每一小段上可用恒力做功的公式计算,然后将各段做功累加起来.设每一小段的长度分别为l 1,l 2,l 3…l n ,拉力在每一段上做的功W 1=Fl 1,W 2=Fl 2…W n =Fl n ,拉力在整个过程中所做的功W =W 1+W 2+…+W n =F (l 1+l 2+…+l n )=F ⎝⎛⎭⎪⎫π·R 2+πR =32πFR .二、摩擦力做功的特点与计算1.不论是静摩擦力,还是滑动摩擦力都既可以是动力也可以是阻力,也可能与位移方向垂直,所以不论是静摩擦力,还是滑动摩擦力既可以对物体做正功,也可以对物体做负功,还可以对物体不做功.2.一对相互作用的滑动摩擦力等大反向但物体之间存在相对滑动,即两个物体的对地位移不相同,由W =Fl cos α可判断一对相互作用的滑动摩擦力做功的总和不为零.3.一对相互作用的静摩擦力等大反向且物体之间相对静止,即两个物体的对地位移相同,由W =Fl cos α可判断一对相互作用的静摩擦力做功的总和为零.例3 质量为M 的木板放在光滑水平面上,如图4所示.一个质量为m 的滑块以某一速度沿木板表面从A 点滑至B 点,在木板上前进了l ,同时木板前进了x ,若滑块与木板间的动摩擦因数为μ,求摩擦力对滑块、对木板所做的功各为多少?滑动摩擦力对滑块、木板做的总功为多少?图4答案 -μmg (l +x ) μmgx -μmgl解析 由题图可知,木板的位移为l M =x 时,滑块的位移为l m =l +x ,m 与M 之间的滑动摩擦力F f =μmg .由公式W =Fl cos α可得,摩擦力对滑块所做的功为W m =μmgl m cos 180°=-μmg (l +x ),负号表示做负功.摩擦力对木板所做的功为W M =μmgl M =μmgx . 滑动摩擦力做的总功为W =W m +W M =-μmg (l +x )+μmgx =-μmgl 三、功率的计算1.P =W t一般用来计算平均功率,而P =Fv 一般用来计算瞬时功率,此时v 为瞬时速度;但当v 为平均速度时,也可用来计算平均功率.2.应用公式P =Fv 时需注意 (1)F 与v 沿同一方向时:P =Fv .(2)F 与v 方向有一夹角α时:P =Fv cos α.例4 如图5所示,质量为2 kg 的物体以10 m/s 的初速度水平抛出,经过2 s 落地.取g =10 m/s 2.关于重力做功的功率,下列说法正确的是( )图5A.下落过程中重力的平均功率是400 WB.下落过程中重力的平均功率是100 WC.落地前的瞬间重力的瞬时功率是400 WD.落地前的瞬间重力的瞬时功率是200 W 答案 C解析 物体2 s 下落的高度为h =12gt 2=20 m ,落地的竖直分速度为v y =gt =20 m/s ,所以落到地面前的瞬间重力的瞬时功率是P =mgv y =400 W ,下落过程中重力的平均功率是P =mght=200 W ,选项C 正确. 四、机车的两种启动方式运动过程分析 汽车两种启动方式的过程分析与比较两种方式以恒定功率启动以恒定加速度启动P -t 图和v -t 图OA段过程分析v↑⇒F=P(不变)v↓⇒a=F-F fm↓a=F-F fm不变⇒F不变⇒v↑P=Fv↑直到P额=Fv1运动性质加速度减小的加速直线运动匀加速直线运动,维持时间t0=v1aAA′段过程分析v↑⇒F=P额v↓⇒a=F-F fm↓运动性质加速度减小的加速直线运动以恒定功率启动的AB 段和以恒定加速度启动的A′B段过程分析F=F fa=0F f=Pv mF=F fa=0F f=Pv m运动性质以v m做匀速运动以v m做匀速运动注意:(1)机车的输出功率:P=Fv,其中F为机车的牵引力,v为机车的瞬时速度.(2)无论哪种启动过程,机车的最大速度都等于其匀速运动时的速度,即v m=PF min =PF f.(3)机车以恒定加速度启动,匀加速过程结束时,功率最大,但速度不最大,v=PF<v m=PF f.(4)机车以恒定功率运行时,牵引力的功W=Pt.例5如图6所示,为修建高层建筑常用的塔式起重机.在起重机将质量m=5×103kg的重物竖直吊起的过程中,重物由静止开始向上做匀加速直线运动,加速度a=0.2 m/s2,当起重机输出功率达到其允许的最大值时,保持该功率直到重物做v m=1.02 m/s的匀速运动.取g=10 m/s2,不计额外功.求:图6(1)起重机允许的最大输出功率;(2)重物做匀加速运动所经历的时间和起重机在第2 s末的输出功率.答案(1)5.1×104 W (2)5 s 2.04×104 W解析(1)设起重机允许的最大输出功率为P0,重物达到最大速度时拉力F0等于重力.P0=F0v m,F0=mg.代入数据得,P0=5.1×104 W.(2)匀加速运动结束时,起重机达到允许的最大输出功率,设此时重物受到的拉力为F,速度为v1,匀加速运动经历的时间为t1,有:P0=Fv1,F-mg=ma,v1=at1.代入数据得,t1=5 s.第2 s末,重物处于匀加速运动阶段,设此时速度为v2,输出功率为P,v2=at,P=Fv2.得:P=2.04×104 W.1.(功的计算)将一质量为m的小球从地面竖直向上抛出,小球上升h后又落回地面,在整个过程中受到的空气阻力大小始终为F f,则关于这个过程中重力与空气阻力所做的功,下列说法正确的是( )A.重力做的功为2mgh,空气阻力做的功为-2F f hB.重力做的功为0,空气阻力做的功也为0C.重力做的功为0,空气阻力做的功为-2F f hD.重力做的功为2mgh,空气阻力做的功为0答案 C解析重力是恒力,可以用公式W=Fl cos α直接计算,由于位移为零,所以重力做的功为零;空气阻力在整个过程中方向发生了变化,不能直接用公式计算,可进行分段计算,上升过程和下降过程空气阻力做的功均为-F f h,因此在整个过程中空气阻力做的功为-2F f h.故选项C正确.2.(摩擦力做功的特点) 如图7所示,A、B两物体叠放在一起,A被不可伸长的细绳水平系于左墙上,B在拉力F作用下,向右匀速运动,在此过程中,A、B间的摩擦力做功情况是( )图7A.对A、B都做负功B.对A、B都不做功C.对A不做功,对B做负功D.对A做正功,对B做负功答案 C3.(功率的计算)如图8所示是小孩滑滑梯的情景,假设滑梯是固定光滑斜面,倾角为30°,小孩质量为m,由静止开始沿滑梯下滑,滑行距离为s时,重力的瞬时功率为( )图8A.mg gsB.12mg gs C.mg 2gs D.12mg 6gs 答案 B解析 小孩的加速度a =mg sin 30°m =12g ,由v 2=2as 得小孩滑行距离为s 时的速率v =gs ,故此时重力的瞬时功率P =mgv sin 30°=12mg gs ,B 正确.4.(机车启动问题)(多选)一辆质量为m 的轿车,在平直公路上运行,启动阶段轿车牵引力保持不变,而后以额定功率继续行驶,经过一定时间,其速度由零增大到最大值v m ,若所受阻力恒为F f .则关于轿车的速度v 、加速度a 、牵引力F 、功率P 的图象正确的是( ) 答案 ACD解析 由于启动阶段轿车受到的牵引力不变,加速度不变,所以轿车在开始阶段做匀加速运动,当实际功率达到额定功率时,功率不增加了,再增加速度,就须减小牵引力,当牵引力减小到等于阻力时,加速度等于零,速度达到最大值v m =P 额F =P 额F f,所以A 、C 、D 正确,B 错误.5.(机车启动问题)一种以氢气为燃料的汽车,质量为m =2.0×103kg ,发动机的额定输出功率为80 kW ,行驶在平直公路上时所受阻力恒为车重的110.若汽车从静止开始先匀加速启动,加速度的大小为a =1.0 m/s 2.达到额定输出功率后,汽车保持功率不变又加速行驶了800 m ,直到获得最大速度后才匀速行驶.试求:(g 取10 m/s 2) (1)汽车的最大行驶速度.(2)汽车匀加速启动阶段结束时的速度大小. (3)汽车从静止到获得最大行驶速度时阻力做的功. 答案 (1)40 m/s (2)20 m/s (3)-2×106J 解析 (1)汽车的最大行驶速度v m =P 额F f =8.0×104110×2.0×103×10 m/s =40 m/s.(2)设汽车匀加速启动阶段结束时的速度为v 1,由F -F f =ma ,得F =4×103N ,由P 额=Fv 1, 得v 1=8.0×1044×103 m/s =20 m/s.(3)匀加速阶段的位移为x 1=v 122a=200 m ,总位移x =x 1+x 2=1 000 m ,阻力做功W =-F f x=-2×106J.课时作业一、选择题(1~7为单项选择题,8~10为多项选择题) 1.关于摩擦力做功,下列说法中正确的是( ) A.滑动摩擦力阻碍物体的相对运动,一定做负功B.静摩擦力起着阻碍物体相对运动趋势的作用,一定不做功C.静摩擦力和滑动摩擦力一定都做负功D.滑动摩擦力可以对物体做正功 答案 D解析 摩擦力总是阻碍物体间的相对运动或相对运动趋势,而且摩擦力对物体既可以做正功,也可以做负功,还可以不做功.综上所述,只有D 正确.2.一个物体在粗糙的水平面上运动,先使物体向右滑动距离l ,再使物体向左滑动距离l ,正好回到起点,来回所受摩擦力大小都为F f ,则整个过程中摩擦力做功为( ) A.0 B.-2F f l C.-F f l D.无法确定答案 B解析 由题意可知,物体运动过程可分两段,两段内摩擦力均做负功,即W =-F f l ,则全程摩擦力所做的功W 总=-2F f l .3.起重机的吊钩下挂着质量为m 的木箱,如果木箱以大小为a 的加速度匀减速下降了高度h ,则木箱克服钢索拉力所做的功为( ) A.mgh B.m (a -g )h C.m (g -a )h D.m (a +g )h 答案 D4.质量为m 的汽车在平直公路上行驶,阻力F f 保持不变.当汽车的速度为v 、加速度为a 时,发动机的实际功率为( )A.F f vB.mavC.(ma +F f )vD.(ma -F f )v 答案 C解析 当汽车的加速度为a 时,有F -F f =ma ,解得F =ma +F f ;根据P =Fv ,则发动机的实际功率P =(ma +F f )v ,选项C 正确.5.质量为m 的汽车,其发动机额定功率为P .当它开上一个倾角为θ的斜坡时,受到的阻力为车重力的k 倍,则车的最大速度为( ) A.Pmg sin θB.P cos θmg (k +sin θ)C.P cos θmgD.P mg (k +sin θ)答案 D解析 当汽车做匀速运动时速度最大,此时汽车的牵引力F =mg sin θ+kmg ,由此可得v m =Pmg (k +sin θ),故选项D 正确.6.如图1所示,在天花板上的O 点系一根细绳,细绳的下端系一小球.将小球拉至细绳处于水平的位置,由静止释放小球,小球从位置A 开始沿圆弧下落到悬点的正下方的B 点的运动过程中,下面说法正确的是( )图1A.小球受到的向心力大小不变B.细绳对小球的拉力对小球做正功C.细绳的拉力对小球做功的功率为零D.重力对小球做功的功率先减小后增大 答案 C解析 小球从A 点运动到B 点过程中,速度逐渐增大,由向心力F =m v 2r可知,向心力增大,故A 错误;拉力的方向始终与小球的速度方向垂直,所以拉力对小球做功为零,功率为零,故B 错误,C 正确;该过程中重力的功率从0变化到0,应是先增大后减小,故D 错误. 7.放在粗糙水平地面上的物体受到水平拉力的作用,在0~6 s 内其速度与时间的图象和该拉力的功率与时间的图象如图2甲、乙所示.下列说法正确的是( )图2A.0~6 s 内物体的位移大小为20 mB.0~6 s 内拉力做功为100 JC.滑动摩擦力的大小为5 ND.0~6 s 内滑动摩擦力做功为-50 J 答案 D解析 在0~6 s 内物体的位移大小为x =12×(4+6)×6 m=30 m ,故A 错误;P -t 图线与时间轴围成的面积表示拉力做功的大小,则拉力做功W F =12×2×30 J+10×4 J=70 J ,故B 错误;在2~6 s 内,v =6 m/s ,P =10 W ,物体做匀速运动,摩擦力F f =F ,得F f =F =Pv=53 N ,故C 错误;在0~6 s 内物体的位移大小为30 m ,滑动摩擦力做负功,即W f =-53×30 J =-50 J ,D 正确.8. 如图3所示,一子弹以水平速度射入放置在光滑水平面上原来静止的木块,并留在木块当中,在此过程中子弹钻入木块的深度为d ,木块的位移为l ,木块与子弹间的摩擦力大小为F ,则( )图3A.F 对木块做功为FlB.F 对木块做功为F (l +d )C.F 对子弹做功为-FdD.F 对子弹做功为-F (l +d ) 答案 AD解析 木块的位移为l ,由W =Fl cos α得,F 对木块做功为Fl ,子弹的位移为l +d ,木块对子弹的摩擦力的方向与位移方向相反,故木块对子弹的摩擦力做负功,W =-F (l +d ).故A 、D 正确.9.汽车发动机的额定功率为60 kW ,汽车质量为5 t.汽车在水平面上行驶时,阻力与车重成正比,g =10 m/s 2,当汽车以额定功率匀速行驶时速度为12 m/s.突然减小油门,使发动机功率减小到40 kW ,对接下来汽车的运动情况的描述正确的有( ) A.先做匀减速运动再做匀加速运动 B.先做加速度增大的减速运动再做匀速运动C.先做加速度减小的减速运动再做匀速运动D.最后的速度大小是8 m/s 答案 CD解析 根据P =Fv 知,功率减小,则牵引力减小,牵引力小于阻力,根据牛顿第二定律知,汽车产生加速度,加速度的方向与速度方向相反,汽车做减速运动,速度减小,则牵引力增大,知汽车做加速度减小的减速运动,当牵引力再次等于阻力时,汽车做匀速运动,故A 、B 错误,C 正确;当功率为60 kW 时,匀速直线运动的速度为12 m/s ,则F f =P 1v 1=60 00012N=5 000 N ,当牵引力再次等于阻力时,又做匀速直线运动,v 2=P 2F f =40 0005 000m/s =8 m/s ,故D 正确.10. 质量为2 kg 的物体置于水平面上,在运动方向上受到水平拉力F 的作用,沿水平方向做匀变速运动,拉力F 作用2 s 后撤去,物体运动的速度图象如图4所示,则下列说法正确的是(取g =10 m/s 2)( )图4A.拉力F 做功150 JB.拉力F 做功350 JC.物体克服摩擦力做功100 JD.物体克服摩擦力做功175 J 答案 AD解析 由图象可知撤去拉力后,物体做匀减速直线运动,加速度大小a 2=2.5 m/s 2,所以滑动摩擦力F f =ma 2=5 N ;加速过程加速度大小a 1=2.5 m/s 2,由F -F f =ma 1得,拉力F =ma 1+F f =10 N.由图象可知F 作用2 s 时间内的位移l 1=15 m ,撤去F 后运动的位移l 2=20 m ,全程位移l =35 m ,所以拉力F 做功W 1=Fl 1=10×15 J=150 J ,A 正确,B 错误;物体克服摩擦力做功W 2=F f l =5×35 J=175 J ,C 错误,D 正确. 二、非选择题11.如图5甲所示,在风洞实验室里,一根足够长的细杆水平固定,某金属小球穿在细杆上静止于细杆左端,现有水平向右的风力F 作用于小球上,风力F 随时间t 变化的F -t 图象如图乙所示,小球沿细杆运动的v -t 图象如图丙所示,取g =10 m/s 2,求0~5 s 内风力所做的功.图5答案 18 J解析 由题图丙可知0~2 s 内为匀加速阶段,a =v -0t 1=22m/s 2=1 m/s 2 0~2 s 内的位移:x 1=12at 1 2=12×1×4 m=2 m , 2~5 s 内的位移:x 2=vt 2=2×3 m=6 m ,则风力做功为W =F 1x 1+F 2x 2=18 J.12.一辆重5 t 的汽车,发动机的额定功率为80 kW.汽车从静止开始以加速度a =1 m/s 2做匀加速直线运动,车受到的阻力为车重的0.06倍.(g 取10 m/s 2)求:(1)汽车做匀加速直线运动的最长时间;(2)汽车开始运动后,5 s 末和15 s 末的瞬时功率.答案 (1)10 s (2)40 kW 80 kW解析 (1)设汽车做匀加速运动过程中所能达到的最大速度为v 0,对汽车由牛顿第二定律得F -F f =ma即P 额v 0-kmg =ma , 代入数据得v 0=10 m/s所以汽车做匀加速直线运动的最长时间t 0=v 0a =101s =10 s (2)由于10 s 末汽车达到了额定功率,5 s 末汽车还处于匀加速运动阶段,P =Fv =(F f +ma )at =(0.06×5×103×10+5×103×1)×1×5 W=40 kW15 s 末汽车已经达到了额定功率P 额=80 kW.13.某探究性学习小组对一辆自制遥控车的性能进行研究.他们让这辆小车在水平地面上由静止开始运动,并将小车运动的全过程记录下来,通过数据处理得到如图6所示的v -t 图象,已知小车在0~t 1时间内做匀加速直线运动,t 1~10 s 时间内小车牵引力的功率保持不变,7 s 末达到最大速度,在10 s 末停止遥控让小车自由滑行,小车质量m =1 kg ,整个运动过程中小车受到的阻力F f 大小不变.求:图6(1)小车所受阻力F f 的大小;(2)在t 1~10 s 内小车牵引力的功率P ;(3)求出t 1的值及小车在0~t 1时间内的位移.答案 (1)2 N (2)12 W (3)1.5 s 2.25 m解析 (1)在10 s 末撤去牵引力后,小车只在阻力F f 的作用下做匀减速运动, 由图象可得减速时加速度的大小为a =2 m/s 2则F f =ma =2 N(2)小车做匀速运动阶段即7~10 s 内,设牵引力为F ,则F =F f 由图象可知v m =6 m/s解得P =Fv m =12 W(3)设t 1时间内的位移为x 1,加速度大小为a 1,t 1时刻的速度大小为v 1, 则由P =F 1v 1得F 1=4 N , F 1-F f =ma 1得a 1=2 m/s 2,则t 1=v 1a 1=1.5 s ,x 1=12a 1t 1 2=2.25 m.。

求变力做功的六种方法

求变力做功的六种方法

求变力做功的六种方法-CAL-FENGHAI.-(YICAI)-Company One1求变力做功的六种方法都匀市民族中学:王方喜在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教学的难点。

本文举例说明了在高中阶段求变力做功的常用方法,比如微元累积(求和)法、平均力等效法、功率的表达式PtW=、F-x图像、用动能定理、等效代换法等来求变力做功。

一、运用微元积累(求和)法求变力做功求変力做功还可以用微元累积法,把整个过程分成极短的很多段,在极短的每一段里,力可以看成是恒力,则可用功的公式求每一段元功,再求每一小段上做的元功的代数和。

由此可知,求摩擦力和阻力做功,我们可以用力乘以路程来计算。

用微元累积法的关键是如何选择恰当的微元,如何对微元作恰当的物理和数学处理,微元累积法对数学知识的要求比较高。

例1如图1-1所示,某人用力F转动半径为R的转盘,力F的大小不变,但方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做多少功.图1-1【分析与解答】在转动转盘一周过程中,力F的方向时刻变化,但每一瞬时力F总是与该瞬时的速度同向(切线方向),即F在每瞬时与转盘转过的极小位移Δs同向.这样,无数瞬时的极小位移Δs1,Δs2,Δs3…Δsn都与当时的F方向同向.因而在转动一周过程中,力F做的功应等于在各极小位移段所做功的代数和.即W=FΔs1+FΔs2+…FΔsn=F(Δs1+Δs2+Δs3+…Δsn)? =F2πR【总结】变力始终与速度在同一直线上或成某一固定角度时,可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W=FLcosθ计算功,而且变力所做功应等于变力在各小段所做功之和。

【检测题1-1】如图1-2所示,有一台小型石磨,某人用大小恒为F、方向始终与磨杆垂直的力推磨,设施力点到固定转轴的距离为L,在使磨转动一周的过程中,推力做了多少功图1-2【检测题1-2】小明将篮球以10 m/s的初速度,与水平方向成30°角斜向上抛出,被篮球场内对面的小虎接到,小明的抛球点和小虎的接球点离地面的高度都为 1.8 m.由于空气阻力的存在,篮球被小虎接到时的速度是6 m/s.已知篮球的质量m=0.6 kg,g取10 m/s2.求:(1)全过程中篮球克服空气阻力做的功;(2)如果空气阻力恒为5 N,篮球在空中飞行的路程.二、运用平均力等效法求变力做功当力的方向不变,而大小随位移线性..变化时(即F=kx+b),可先求出力的算术平均值221FFF+=,再把平均值当成恒力,用功的计算式求解。

第29讲 变力做功的6种计算方法(解析版)

第29讲 变力做功的6种计算方法(解析版)

第29讲变力做功的6种计算方法一.知识回顾方法举例说法1.应用动能定理用力F把小球从A处缓慢拉到B处,F做功为W F,则有:W F-mgL(1-cosθ)=0,得W F=mgL(1-cosθ)2.微元法质量为m的木块在水平面内做圆周运动,运动一周克服摩擦力做功W f=F f·Δx1+F f·Δx2+F f·Δx3+…=F f(Δx1+Δx2+Δx3+…)=F f·2πR3.等效转换法恒力F把物块从A拉到B,绳子对物块做功W=F·⎝⎛⎭⎪⎫hsinα-hsinβ4.平均力法弹簧由伸长x1被继续拉至伸长x2的过程中,克服弹力做功W=kx1+kx22·(x2-x1)6.图像法在F­x图像中,图线与x轴所围“面积”的代数和就表示力F在这段位移上所做的功7.功率法汽车恒定功率为P,在时间内牵引力做的功W=Pt二.例题精析例1.如图所示,质量均为m的木块A和B,用一个劲度系数为k的竖直轻质弹簧连接,最初系统静止,重力加速度为g,现在用力F向上缓慢拉A直到B刚好要离开地面,则这一过程中弹性势能的变化量△E p和力F做的功W分别为()A .m 2g 2k,m 2g 2kB .m 2g 2k,2m 2g 2kC .0,m 2g 2kD .0,2m 2g 2k【解答】解:开始时,A 、B 都处于静止状态,弹簧的压缩量设为x 1,由胡克定律有 kx 1=mg ,解得:x 1=mgk物体A 恰好离开地面时,弹簧对B 的拉力为mg ,设此时弹簧的伸长量为x 2,由胡克定律有 kx 2=mg ,解得:x 2=mg k由于弹簧的压缩量和伸长量相等,则弹簧的弹性势能变化为零; 这一过程中,物体A 上移的距离为:d =x 1+x 2=2mgk ,根据功能关系可得拉力做的功等于A 的重力势能的增加量,则有:W =mgd =2m 2g 2k ,故D 正确,ABC 错误。

变力做功的计算【范本模板】

变力做功的计算【范本模板】

变力做功的计算公式适用于恒力功的计算,对于变力做功的计算,一般有以下几种方法.一、微元法对于变力做功,不能直接用进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。

这种处理问题的方法称为微元法,这种方法具有普遍的适用性.但在高中阶段主要用于解决大小不变、方向总与运动方向相同或相反的变力的做功问题.例1. 用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图1所示,已知物块的质量为m,物块与轨道间的动摩擦因数为。

求此过程中摩擦力所做的功。

图1思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果。

图2正确解答:把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为,,…,,摩擦力在一周内所做的功。

误点警示:对于此题,若不加分析死套功的公式,误认为位移s=0,得到W=0,这是错误的。

必须注意本题中的F是变力。

小结点评:对于变力做功,一般不能用功的公式直接进行计算,但有时可以根据变力的特点变通使用功的公式。

如力的大小不变而方向总与运动方向相同或相反时,可用计算该力的功,但式子中的s不是物体运动的位移,而是物体运动的路程。

[发散演习]如图3所示,某个力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向任何时刻与作用点处的切线方向保持一致。

则转动半圆,这个力F做功多少?图3答案:31。

4J。

二、图象法在直角坐标系中,用纵坐标表示作用在物体上的力F,横坐标表示物体在力的方向上的位移s。

如果作用在物体上的力是恒力,则其F-s图象如图4所示。

经过一段时间物体发生的位移为s0,则图线与坐标轴所围成的面积(阴影面积)在数值上等于力对物体做的功W =Fs,s轴上方的面积表示力对物体做正功(如图4(a)所示),s轴下方的面积表示力对物体做负功(如图4(b)所示)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

功习题课:变力做功和摩擦力做功
一、摩擦力做功
1、如图2所示,在光滑水平地面上有一辆平板小车,车上放着一个滑块,滑块和平板小车间有摩擦,滑块在水平恒力F作用下从车的一端拉到另一端.第一次拉滑块时将小车固定,第二次拉时小车没有固定.在这先后两次拉动木块的过程中,
下列说法中正确的是( )
A.滑块所受的摩擦力一样大
B.拉力F做的功一样大
C.滑块获得的动能一样大图2
D.系统增加的内能一样大
2、质量为M的长木板放在光滑的水平地面上,如图1-1-10所示,一个质量为m的滑块以某一速度沿木板表面从A端滑到B点,在木板上前进了L,而木板前进s,若滑块与木板间的动摩擦因数为μ.求:
(1)摩擦力对滑块所做功的大小;
(2)摩擦力对木板所做功的大小.
(3)摩擦力对滑块和木板做功的代数和。

图1-1-10
①相互摩擦的系统内,一对静摩擦力所做的总功等于零。

②相互摩擦的系统内,一对滑动摩擦力所做的功总是负值,其绝对值等于滑动摩擦力与相对位移的乘积,即恰等于系统损失的机械能。

二、变力做功
功的计算公式W=FScosa只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,对变力做功问题归纳如下:
1、微元法:当力的大小不变,而力的方向始终与运动方向相同或相反时,这类变力的功等于力和路程的乘积,如:滑动摩擦力、空气阻力做功等等。

始终垂直呢?
(1)马用水平力拉着碌子在场院上轧谷脱粒,若马的拉力为800牛顿,碌子在场院上转圈的半径是10米,求转一圈马对碌子做的功。

(2)用细绳系一小球,在水平面内运动一周,求绳的拉力做的功
(3)如图,设物体的质量为m,放在木板上,木板一端抬高的过程中,物体始终
相对木板静止,设物体升高了h,在这一过程中,判断摩擦力、支持力重力对物
体做功情况。

2、图像法
如果参与做功的变力,方向与位移方向始终一致而大小随时变化,我们可作出该力随位移变化的图像。

那么F-S 图线下方所围成的面积,即为变力做的功。

W=F S
已知某弹簧的劲度系数为k ,当弹簧伸长x 米时,求弹簧的弹力对小球做的功?
3、等值法 等值法即若某一变力的功和某一恒力的功相等,则可以通过计算该恒力的功,求出该变力的功。

恒力做功可以用W=FScosa 计算。

如图,定滑轮至滑块的高度为h ,已知细绳的拉力为F (恒定),滑块沿水平面由A 点前进S 至B 点,滑块在
初、末位置时细绳与水平方向夹角分别为α和β。

求滑块由A 点运动到B 点过程中,绳的拉力对滑块所做的功。

4、如图,物体在F 的作用下沿水平面移动了S ,求这一过程中F 所做的功
F
t 0 t 1
F。

相关文档
最新文档