第七章 微生物的遗传(笔记)
自学考试-微生物遗传学笔记、知识点、名词解释汇总
自学考试-微生物遗传学笔记、知识点、名词解释汇总第一章概论工业微生物育种在发酵工业中的地位1、决定产品种类及工业价值;2、决定发酵过程成败一、工业微生物菌种来源1、土壤;2、产品分离;3、动植物种;4、科研机构购买,发酵生产的工厂中二、工业生产的微生物菌种应具备的特性1、稳定性、遗传性,2、遗传代,易产生营养细胞,孢子或其他繁殖体,3、纯种,不带杂菌及噬菌体,4、种子生长快,节省种子罐的时间,5、产生产物时间短,6、易分离产物,对下游工程有利,7、抗污染能力强,节约成本,无菌,消毒,8、经济性能良好,市场竞争能力,产品稳定,时间长,9、对诱变剂敏感,易筛选出高产菌,10、相应的时间内,必须产出相应数量的产物,生产稳定。
三、菌种与发酵的关系1、菌种是内因,是关键,起决定性作用,是由遗传性决定的。
2、发酵条件是外因,菌种受外界条件的控制。
3、选择适当的外界条件,就能充分发挥菌种固有的生产潜力。
1.2 菌种选育的遗传学基础遗传与变异是相互联系相互渗透的,生物的不断进化是遗传与变异的结果。
1、遗传:指单细胞生物能产生遗传学上与亲本相同的子代,生物的上一代将自己的一整套遗传因子传递给下一代的行为。
2、变异:指微生物中发生频率很低的可遗传的变异,指生物体在某种外因的作用下所发生的遗传物质结构或数量的改变。
3、饰变:指不涉及遗传物质结构的改变而止发生在转录,转译水平上的表型变化。
其特点是整个群体中几乎每一个个体都发生同样的变化。
4、遗传型:又称基因型,指某一生物个体所含有的全部遗传因子即基因的总和,是一种内在的可能性潜力。
5、表型:指某一生物所有的一切外表特征及内在特性的总和。
是遗传型在合适环境下的具体表现。
与遗传型不同,它是一种现实性。
二、微生物遗传变异的特点1、繁殖快,2、外界环境作用的直接性,3、容易培养,4、代谢能力强,5、种类多,分布广。
解决育种原始菌种来源问题。
由于微生物具有以上特点,给育种工作带来很大方便。
微生物 第7章 微生物遗传变异
裂解
过程:供体菌
正常噬菌体 + 完全缺陷噬菌体
少量裂解物 + 大量受体菌 遗传稳定的转导子
2020/1/15
完全普遍转导
2020/1/15
感染复数(m.o.i,multiplicity of infection):
一、原核微生物的基因重组
• 基因重组的方式
– 转化 – 转导 – 接合 – 原生质体融合
2020/1/15
(一)转化(transformation)
1、转化及其发现:
R型活菌+S型死菌→ →S型活菌 ➢定义:受体菌自然或在人工技术作用下直接摄取来自供体菌 的游离DNA片段,并把它整合到自己的基因组中,而获得部 分新的遗传性状的基因转移过程,称为转化。转化后的的受 体菌称为转化子(transformant)。 ➢有关名词:
2020/1/15
2020/1/15
(二)噬菌体感染实验 • 创立人:美国人Hershey AND Chase于
1952年 • 研究对象:噬菌体
2020/1/15
(三)植物病毒的重建实验 • 创立人:Conrat AND Singer于1956年创立 • 研究对象:TMV AND HRV • 过程:将两病毒的RNA和蛋白质外壳分别抽取出来并
(一)遗传物质在7个水平上的形式 1、细胞水平 2、细胞核水平 3、染色体水平 4、核酸水平 5、基因水平 6、密码子水平 2020/1/175 、核苷酸水平
(二)微生物基因组结构的特点
1、原核生物(细菌、古生菌)的基因组
1)染色体为双链环状的DNA分子(单倍体); 2)基因组上遗传信息具有连续性; 基因数基本接近由它的基因组大小所估计的基因数 一般不含内含子,遗传信息是连续的而不是中断的。 3)功能相关的结构基因组成操纵子结构; 4)结构基因的单拷贝及rRNA基因的多拷贝; 5)基因组的重复序列少而短; 个别细菌(鼠伤寒沙门氏菌和犬螺杆菌)和古生菌的rRNA和tRNA 中也发现有内含子或间插序列
微生物遗传知识点总结
微生物遗传知识点总结一、微生物的遗传物质1.DNA:微生物的遗传物质主要是DNA(脱氧核糖核酸),DNA是微生物的基因组主要组成部分,承载了微生物的遗传信息。
2.RNA:微生物的遗传物质中还包括RNA(核糖核酸),RNA在微生物的蛋白质合成中起到重要的作用,有mRNA、tRNA和rRNA等不同类型。
3.质粒:微生物的遗传物质中还存在质粒,质粒是细胞外遗传物质,可以自主复制和传递,在微生物的分子遗传研究中具有重要的意义。
二、微生物的遗传变异1.突变:突变是指微生物遗传物质的突发性变异,包括点突变、插入突变和缺失突变等,突变会导致微生物表型的变化,包括对抗药物的耐药性等特征。
2.重组:重组是指微生物遗传物质的重组和重排,包括同一基因组内的DNA重组和来自不同基因组的DNA重组,重组可以导致各种遗传特征的变异和产生新的遗传组合。
3.外源基因的导入:微生物可以通过外源基因的导入来获得新的遗传特征,包括外源DNA的转化、噬菌体的侵染和质粒的转移等方式。
三、微生物的遗传传递1.垂直传递:垂直传递是指微生物遗传物质从父代到子代的传递,包括细菌的有丝分裂、芽生、孢子形成和病毒的感染传递等方式。
2.水平传递:水平传递是指微生物遗传物质在同一代的微生物个体之间的传递,包括细菌的共享基因池、DNA转化和连接转移等方式,可以导致微生物之间的基因交换和遗传多样性的增加。
四、微生物遗传的调控机制1.DNA修饰:微生物可以通过DNA修饰来调控基因的表达,包括DNA 甲基化和DNA腺苷酸修饰等方式,这些修饰可以影响基因的转录和翻译过程。
2.转录调控:微生物可以通过转录因子的结合和解离来调控基因的转录水平,包括正调控和负调控,这些调控作用可以响应内外环境的变化。
3.蛋白质修饰:微生物可以通过蛋白质的修饰来调控蛋白质的活性和稳定性,包括翻译后修饰和酶的磷酸化、乙酰化和甲基化等方式。
4. RNA干涉:微生物可以通过RNA干涉机制来调控基因表达,包括小分子RNA的介导和crispr-cas系统等方式,这些机制可以抑制或靶向性地破坏特定基因的表达。
微生物遗传知识点总结
微生物遗传知识点总结1. 细菌的遗传物质:细菌遗传物质主要为环状核糖体RNA(plasmid)和线状核糖体RNA(chromosome)。
环状核糖体RNA一般用来携带特定功能的基因,如抗药性基因等;线状核糖体RNA则包含了细菌的基本遗传信息。
2. 真菌的遗传物质:真菌的遗传物质为线状核糖体RNA (chromosome),真菌基因组(基因组大小较大)一般包含了细菌的基本遗传信息以及其他功能基因。
3.病毒的遗传物质:病毒遗传物质主要为DNA或RNA,可以是双链的或单链的。
病毒利用寄主细胞的复制机制进行自身的遗传,感染细胞后,病毒的基因会整合到宿主细胞的染色体上,成为细菌的一部分。
4.遗传修饰:微生物中常见的遗传修饰方式有化学修饰、DNA甲基化和结构修饰等。
这些修饰可以影响基因表达、DNA复制和修复等过程,从而影响微生物的遗传特征。
5.细菌的水平基因转移:细菌拥有多种水平基因转移机制,包括转染、共转移、转座子、转化等方式。
这些机制使得细菌能够快速适应环境变化,并具有快速产生新基因型的能力。
6.真菌的有性和无性生殖:真菌包括有性生殖和无性生殖两种方式。
有性生殖通过两个不同的配子的结合产生新的基因组,有助于增加基因的多样性;无性生殖则通过单个微生物细胞的分裂繁殖来维持和传递遗传信息。
7.病毒的突变:病毒突变是其遗传变异的主要方式。
突变可以是点突变(单个碱基的改变)、缺失突变(基因缺失)、插入突变(外源DNA插入)等方式,导致病毒的基因组结构和功能的改变。
8.抗药性的遗传机制:抗药性是微生物遗传的重要研究方向之一、细菌的抗药性主要通过基因的垂直传递和水平传递两种方式进行。
基因的垂直传递是指抗药性基因在细菌的染色体上遗传给后代细菌;水平传递则是指通过细菌间共享质粒等遗传物质,传递抗药性基因。
9.基因工程和生物技术:微生物遗传的研究对于基因工程和生物技术具有重要意义。
通过对微生物遗传物质进行改造和调控,可以实现基因的克隆、表达、突变和组合等操作,从而用于生物医学、农业、食品工业和环境保护等方面的应用。
第七章微生物的遗传变异和育种2
10-6~10-9
若干细菌某一性状的突变率
菌名
突变性状
突变率
Escherichia coil (大肠杆菌)
抗T1噬菌体
3×10-8
E.coil
抗T3噬菌体
1×10-7
E.coil
不发酵乳糖
1×10-10
E.coil
Staphylococcus aureus(金黄色葡 萄球菌)
S.aureus
抗紫外线 抗青霉素 抗链霉素
间接引起置换的诱变剂:
引起这类变异的诱变剂都是一些碱基类似物,如5-溴尿嘧 啶(5-BU)、5-氨基尿嘧啶(5-AU)、8-氮鸟嘌呤 (8-NG)、2-氨基嘌呤(2-AP)和6-氯嘌呤(6-CP) 等。它们的作用是通过活细胞的代谢活动掺入到DNA 分子中后而引起的,故是间接的。
(2)移码突变(frame-shift mutation 或phase-shift mutation)
(四) 基因突变的自发性和不对应性的证明
一种观点:突变是“定向变异”,是“驯化”,是由环 境因子诱发出来的;
另一种观点;基因突变是自发的,且与环境因素是不对 应的,后者只不过是选择因素;
1、 变量试验(fluctuation test) 又称波动试验或彷徨试 验。
2、涂布试验(Newcombe experiment) 3、平板影印培养试验(replica plating) 1952年,J.Lederberg夫妇
2、定向培育优良品种:指用某一特定因素长期处理某微生 物的群体,同时不断的对它们进行移种传代,以达到积 累并选择相应的自发突变株的目的。由于自发突变 的 频 率较低,变异程度较轻微,所以培育新种的过程十分缓 慢。与诱变育种、杂交育种和基因 工程技术相比,定向 培育法带有“守株待兔”的性质,除某些抗性突变外, 一般要相当长的时间
微生物的遗传变异与育种答案解析
第七章习题答案一.名词解释1.转座因子:具有转座作用的一段DNA序列.2.普遍转导:通过极少数完全缺陷噬菌体对供体菌基因组上任何小片段DNA进行“误包”,而将其遗传性状传递给受体菌的现象称为普遍转导。
3.准性生殖:是一种类似于有性生殖,但比它更为原始的两性生殖方式,这是一种在同种而不同菌株的体细胞间发生的融合,它可不借减数分裂而导致低频率基因重组并产生重组子.4.艾姆氏试验:是一种利用细菌营养缺陷型的回复突变来检测环境或食品中是否存在化学致癌剂的简便有效方法5.局限转导:通过部分缺陷的温和噬菌体把供体的少数特定基因携带到受体菌中,并与后者的基因整合,重合,形成转导子的现象.6.移码突变:诱变剂使DNA序列中的一个或几个核苷酸发生增添或缺失,从而使该处后面的全部遗传密码的阅读框架发生改变.7.感受态:受体细胞最易接受外源DNA片段并能实现转化的一种生理状态.8. 高频重组菌株:该细胞的F质粒已从游离态转变为整合态,当与F- 菌株相接合时,发生基因重组的频率非常高.9.基因工程:通过人工方法将目的基因与载体DNA分子连接起来,然后导入受体细胞,从而使受体细胞获得新的遗传性状的一种育种措施称基因工程。
10.限制性内切酶:是一类能够识别双链DNA分子的特定序列,并能在识别位点内部或附近进行切割的内切酶。
11.基因治疗:是指向靶细胞中引入具有正常功能的基因,以纠正或补偿基因的缺陷,从而达到治疗的目的。
12.克隆:作为名词,也称为克隆子,它是指带有相同DNA序列的一个群体可以是质粒,也可以是基因组相同的细菌细胞群体。
作为动词,克隆是指利用DNA体外重组技术,将一个特定的基因或DNA序列插入一个载体DNA分子上,进行扩增。
二. 填空1.微生物修复因UV而受损DNA的作用有光复活作用和切除修复.2.基因组是指一种生物的全套基因。
3.基因工程中取得目的基因的途径有 _____3_____条。
4.基因突变可分为点突变和染色体突变两种类型。
医学微生物学笔记 - 细菌的遗传与变异
细菌的遗传与变异●遗传(heredity):使微生物的性状保持相对稳定,子代与亲代生物学的性状基本相同,且代代相传。
●变异(variation):在一定条件下,子代与亲代之间以及子代与子代之间的生物学性状出现的差异,有利于物种的进化。
●基因型(genotype):细菌的遗传物质。
●表型(phenotype):基因表现出的各种性状。
●遗传性变异:是细菌的基因结构发生了改变,故又称基因型变异。
常发生于个别的细菌,不受环境因素的影响,变异发生后是不可逆的,产生的新性状可稳定地遗传给后代。
●非遗传性变异:细菌在一定的环境条件影响下产生的变异,其基因结构未改变,称为表型变异。
易受到环境因素的影响,凡在此环境因素作用下的所有细菌都出现变异,而且当环境中的影响因素去除后,变异的性状又可复原,表型变异不能遗传。
第一节细菌的遗传物质●DNA的结构与功能:结构——两条互相平行而方向相反的多核苷酸链功能——储存、复制和传递遗传信息复制——半保留复制特点——复制中易发生错误—基因突变蛋白合成——分子生物学中心法则(DNA-RNA-蛋白质)●基因与基因的转录结构基因——编码结构蛋白质基因结构非结构基因——编码功能蛋白质基因转录●遗传信息的翻译第二节细菌的遗传与变异一、染色体(chromosome)①一条环状双螺旋DNA长链,按一定构型反复回旋形成松散的网状结构;②缺乏组蛋白,无核膜包裹;③约含有5000个基因;二、质粒——是细菌染色体以外的遗传物质,是闭合环状的双链DNA。
1、质粒的特征:①质粒具有自我复制的能力。
②质粒DNA所编码的基因产物赋予细菌某些性状特征。
③质粒可自行丢失与消除。
④质粒的转移性。
⑤质粒可分为相容性与不相容性两种。
2、质粒的分类(1)根据质粒能否通过细菌的接合作用进行传递①接合性质粒②非接合性质粒(2)根据质粒在细菌内拷贝数多少①严紧型质粒②松弛型质粒(3)根据相容性①相容性——几种质粒同时共存于同一菌体内②不相容性——不能同时共存*可借此对质粒进行分组、分群。
第二十三单元--第七章微生物遗传学(五)
第八节 菌种的衰退、复壮和保藏
性状稳定的菌种是微生物学工作最重要的基本 要求,否则生产或科研都无法正常进行。
影响微生物菌种稳定性的因素:
a)变异; b)污染;
c)死亡.
Hale Waihona Puke 一、菌种的衰退(degenration)
1. 衰退的表现
1)原有形态形状变得不典型; 2)生长速度变慢; 3)代谢产物生产能力下降; 4)致病菌对宿主侵袭力下降; 5)对外界不良环境的抵抗力下降。
2. 过程:
1)菌丝联结; 2)异核体的形成;
(同时具有一个以上不同遗传型细胞核的细胞)
3)核融合和杂合二倍体的形成;
(细胞核中含有2个不同来源染色体组的菌体细胞。发生机会为 百万分之一。)
4)单倍体化
(杂合二倍体极不稳定,在其有丝分裂过程中,有极少数细 胞,其同源染色体的两条染色单体之间发生交换,在体细胞分 裂时,产生1个或1个以上标记的纯合现象,从而形成新性状的 单倍体杂合子。其单元化不是一次有丝分裂的结果,而要经过 若干次有丝分裂过程,每次分裂都有可能从二倍体核中失去部 分染色体,最后才回复成单倍体核。)
3. 有性生殖与准性生殖的比较
比较项目
参与接合的亲本细胞 独立生活的异核体阶 段 接合后双倍体的细胞 形态 双倍体变为单倍体的 途径 接合发生的几率
准性生殖
形态相同的体细胞 有 与单倍体基本相同 通过有丝分裂 偶然发生,几率低
有性生殖
形态或生理上有分化 的性细胞 无 与单倍体明显不同 通过减数分裂 正常出现,几率低
“小菌落”(呼吸缺陷型菌落): 酵母菌由于线粒体DNA严重缺损或大部分丢失,缺失 细胞色素a、b及细胞色素c氧化酶,即使在通气条件下, 细胞生长也很缓慢,在葡萄糖培养基上只能形成小菌落.
微生物遗传育种笔记
微生物遗传育种笔记一、遗传学发展史1、早期遗传学的发展2、经典遗传学的发展1)遗传学的初始时期:1900-1910年2)细胞遗传学的时期:1910-1940年3、微生物遗传学的时期:1940-1960年4、分子遗传学的时期:1953-至今5、基因组学、蛋白质族学遗传学发展:1986-至今三、微生物作为模式生物的优越性1、单细胞、单倍体、易培养、无性系、繁殖快2、易获得营养缺陷型3、复杂体制生物的简单遗传学模型第一节遗传物质一、转化实验1982年Griffith.f 肺炎链球菌:R型:粗糙型.无毒性S型:光滑型1944年O.T.A very 离体实验意义:1、性状本身是不遗传的,遗传的是DNA;2、决定了遗传物质的化学本质3、为DNA双螺旋结构的提出提供了基础二、噬菌体感染实验:1952年AD.Hershey M.Chase E.coli的T2噬菌体三、病毒重建实验:1956年H.Fraenkel Corat TMV HRV一、真核微生物中的存在状态:存在于细胞核内,典型的真核真核生物染色体的组成:DNA:30%-40% 组蛋白和非组蛋白根据电泳的性质,将组蛋白分为H1、H2A、H2B、H3和H4染色体的包装(即压缩)分为几级:1染色体DNA的一级包装:即染色体的结构模型核小体核心颗粒:由组蛋白八聚体组成连接区DNA:H1组蛋白,结合在连接DNA上,酵母核小体中无H12染色体二级包装结构模型:30nm螺旋线纤维3环状螺管:纤维缠绕在某些非组蛋白,构成的中心轴骨架上形成4具环形区的螺线管纤维进一步盘绕,折叠最终完成细胞生长和繁殖的不同时期的染色体包装。
二、DNA在原核微生物中的存在状态(细菌、放线菌、病毒、噬菌体)原核细胞:无核膜、定型的核,不形成染色体结构,一般只有一个以双链、共价闭合,环状的形式存在的DNA分子。
第三节DNA的复制复制方式:环状双链DNAθ型 E.coli滚环形φx174,F因子D型线粒体DNA线状DNA双向单点双向多点真核生物染色体原核的复制起点和方向:1.E.coli定点、双向对称复制2.T7在近一端的17%处开始,向两端延伸3.枯草杆菌有固定的起始点,双向不对称复制4.质粒R6K早期为单向复制,复制了约1/5基因组进行时双向复制5.质粒ColE1有固定起始点,但却为单向复制6.mtDNA进行D环复制7.真核有多个复制起点(i),双向等速复制一、原核1.细菌染色体复制:θ型复制,环状DNA,双向复制,复制叉会合,连在细胞壁上代表:E.coli染色体DNA按θ型方式进行双向等速复制。
微生物学主要知识点08微生物的遗传
微生物学主要知识点08微生物的遗传微生物的遗传是微生物学中的一个重要知识点,包括微生物的基因组结构、遗传物质的复制和转录、重组以及突变等方面。
了解微生物的遗传不仅可以帮助科学家研究微生物的进化和适应能力,还可以应用于微生物的工业生产和疾病防治等领域。
1.微生物的基因组结构:微生物的基因组由DNA组成,DNA通过多个螺旋体嵌入细胞的细胞核或质粒中。
微生物的基因组可以分为染色体和质粒两部分,质粒是一种较小的环状DNA。
染色体和质粒中都含有基因,基因通过编码蛋白质的方式决定了微生物的特征和功能。
2.遗传物质的复制和转录:微生物的DNA通过复制和转录的方式进行遗传物质的复制。
DNA复制是指将一个DNA分子复制成两个完全相同的DNA分子,从一个细胞传递到另一个细胞。
DNA转录是指根据DNA模板合成RNA的过程,RNA复制的结果是生成一个与DNA模板相对应的RNA分子。
这些RNA分子可以进一步转录成蛋白质。
3.重组:微生物的重组是指在微生物遗传物质中发生DNA片段的重新组合。
这种重组可以发生在同一染色体上的两个相同或不同的DNA片段之间,也可以发生在不同染色体或质粒之间。
微生物的重组有助于增加遗传多样性,并提高微生物的适应能力和进化速度。
4.突变:微生物的遗传中还会发生突变现象,突变是指DNA序列的改变。
突变可以是点突变,即DNA中的一个碱基替换为另一个碱基;也可以是插入和缺失,即DNA序列中添加或删除一个或多个碱基。
突变可能对微生物的生长和繁殖产生负面影响,也可能带来新的适应优势。
5.横向基因转移:微生物的遗传中还存在横向基因转移的现象。
横向基因转移是指将一个细胞(供体)中的基因转移到另一个细胞(受体)中,无需通过细胞分裂进行。
横向基因转移可以发生在同一物种的细菌之间,也可以发生在不同物种的细菌之间。
横向基因转移是微生物进化和适应性演化的重要驱动因素之一6.基因调控:微生物的基因表达受到一系列调控机制的控制。
微生物的遗传变异和育种
第七章微生物的遗传变异和育种第一节微生物的遗传变异的概述遗传和变异是生物体最本质的属性之一。
所谓遗传,讲的是发生在亲子间的关系,即指生物的上一代将自己的一整套遗传因子稳定地传递给下一代的行为或功能,它具有极其稳定的特性。
而变异是指子代与亲代之间的不相似性。
遗传是相对的,变异是绝对的。
遗传保证了物种的存在和延续,而变异推动了物种的进化和发展。
在学习遗传、变异内容时,先应清楚掌握以下几个概念:(一)遗传型又称基因型,指某一生物个体所含有的全部遗传因子即基因组所携带的遗传信息。
遗传型是一种内在可能性或潜力,其实质是遗传物质上所负载的特定遗传信息。
具有某遗传型的生物只有在适当的环境条件下,通过自身的代谢和发育,才能将它具体化,即产生表型。
(二)表型指某一生物体所具有的一切外表特征及内在特性的总和,是其遗传型在合适环境下通过代谢和发育而得到的具体体现。
所以,它与遗传型不同,是一种现实性。
(三)变异指在某种外因或内因的作用下生物体遗传物质结构或数量的改变,亦即遗传型的改变。
变异的特点是在群体中以极低的概率(一般为10-5~10-10)出现,性状变化的幅度大,且变化后的新性状是稳定的、可遗传的。
(四)饰变指一种不涉及遗传物质结构改变而只发生在转录、翻译水平上的表型变化。
其特点是整个群体中的几乎每一个体都发生同样变化;性状变化的幅度小;因其遗传物质不变,故饰变是不遗传的。
例如,Serratia marcescens(粘质沙雷氏菌)在25℃下培养时,会产生深红色的灵杆菌素,它把菌落染成鲜血似的。
可是,当培养在37℃下时,群体中的一切个体都不产色素。
如果重新降温至25℃,所有个体又可恢复产色素能力。
所以,饰变是与变异有着本质差别的另一种现象。
上述的S.marcescens产色素能力也会因发生突变而消失,但其概率仅10-4,且这种消失是不可恢复的。
从遗传学研究的角度来看,微生物有着许多重要的生物学特性:微生物结构简单,个体易于变异;营养体一般都是单倍体;易于在成分简单的合成培养基上大量生长繁殖;繁殖速度快;易于累积不同的最终代谢产物及中间代谢物;菌落形态特征的可见性与多样性;环境条件对微生物群体中各个体作用的直接性和均一性;易于形成营养缺陷型;各种微生物一般都有相应的病毒;以及存在多种处于进化过程中的原始有性生殖方式等。
微生物学:第七章微生物的遗传和变异
第二节、微生物的突变
基因突变
染色体畸变
DNA损伤的修复
概念
突变:指遗传物质发生数量或结构变化的现象。 变异:突变导致性状的改变叫变异。 基因突变:指一个基因内部遗传物质结构或 DNA序列的任何变化,包括一对或少数几对的 缺失、插入或置换,导致遗传性状的变化。 基因型:指贮藏在遗传物质中的信息,即DNA 碱基序列。 表型:指可观察或检测到的个体性状或特征,是 特定的基因型在一定环境条件下的表现。
实验室里通过提取获得 双链DNA有转化能力,单链没有.
感受态
受体细胞能接受转化的生理状态称为感受态, 只有处于感受态的细菌才能接受转化因子, 从出现到消失约为40分钟(对数期的中期)
感觉态出现原因
细菌失去部分细胞壁的结果 细菌在细胞表面产生某种E引起
感受态的决定决定因素
细胞遗传性决定 和菌龄有关 环腺苷酸CAMP可提高1000 倍 Ca2+能促使细胞进入感受态
原理 步骤
DNA只含P不含S
Pr 只含S不含P
1:用含同位素S35, P32的培养基培养大肠杆菌 2:让T2感染上述大肠杆菌使其打是S35P32标记
3: 吸附
10分钟后 搅动
离心
上清液 沉淀
结果:上清液中含15%放射击性;沉淀中含85%放射性
植物病毒的重建实验
植物病毒蛋白质和RNA可以人为地分开, 同时又可把它们重新组合成具感染性的病毒.
喷入T1保温
6个平板共353个菌落
6个平板共28个菌落
影印培养试验
原始敏 感菌种
无药 培养基
含药 培养基
基因突变机制
碱基的置换 移码突变
染色体畸变
1 诱变的机制
(1)碱基的置换
微生物第七章总结
二,遗传物质在微生物细胞内存在的部位和方式
(一)7个水平
1.细胞水平:真核和原核微生物的大部分DNA都集中在细胞核或核区中。
1.光复活作用:把经UV照射后的微生物立即暴露于可见光下时,就可以出现明显降低其死亡率的现象,即光复活作用。经了解,经UV照射后带有嘧啶二聚体的DNA分子,在黑暗下会被一种光激活酶——光解酶结合,这种复合物在300-500nm可见光下时,此酶会因获得光能而激活,并使二聚体重新分解成单体。
2.切除修复:是活细胞内一种用于被UV等诱变剂损伤后DNA的修复方式之一,又称暗修复。,这是一种不依赖可见光,只通过酶切作用去除嘧啶二聚体,随后重新合成一段正常DNA链的核酸修复方式。
1.Luria等的变量试验2.Newcombe的涂布试验3.Lederberg等的影印平板培养法。实验过程详见书P204-206
(五)基因突变及其机制:基因突变的机制是多样的,可以是自发的或诱发的,诱发的又可分仅影响一对碱基对的点突变和影响一段染色体的畸变。
1. 诱发突变:简称诱变,是指通过人为的方法,利用物理,化学或生物因素显著提高基因自发突变频率的手段。凡具有诱变效应的任何因素,都称为诱变剂。
1.诱变育种的基本环节:见书P214
2.诱变育种中的几个原则:
(1)选择简单有效的诱变剂 艾姆氏实验:是一种利用细菌营养缺陷型的回复突变来检测环境或食品中是否存在化学致癌剂的方法。
(2)挑选优良的出发菌株 出发菌株:就是用于育种的原始菌株。
第七章 微生物遗传变异与育种(2)
浓度:
细菌、放线菌 霉菌、酵母菌
108个/ml 106个/ml
表型迟延现象:指某一突变在DNA复制和细胞分裂 后,才在表型上显示出来,造成不纯的菌落。
产生原因: ①分离性迟延现象 ②生理性迟延现象
3.诱变处理: 诱变剂的作用:
①提高突变的频率 ②扩大产量变异的幅度 ③使产量变异朝着正突变或负突变移动 剂量的表示法:在诱变处理前,一般应预先作诱变剂用量 对菌体死亡数量的致死曲线,选择合适的处理剂 量。—致死率是最好的诱变剂相对剂量的表示方法。 最适剂量的选择:产量性状的育种中多倾向于低剂量(致 死率在70~80%)
缺陷型的检出:
①逐个检出法:
②影印平板培养法
③夹层培养法
缺陷型的鉴定:
①生长谱法 滤纸片法
测定一般应分两阶段:
第一阶段:测定是哪类物质的缺陷 型;
第二节段:根据第一阶段确定的范 围,进一步确定是哪种具体化合物 的缺陷型;
a
b
c
a
b
c
a
b
c
三大营养物质缺陷鉴定
a 氨基酸混合液 b 水溶性维生素混合液 C 核酸水解液
(每瓶一株)
(每瓶四株)
40株
40株
4.2 变异菌的一般筛选方法
4.2.1 平皿快速检测法 变色圈法 透明圈法 生长圈法 抑菌圈法 梯度平板法
4.2.2 摇瓶培养法
变
异
纸片培养显色法
菌
株
的
初
步 筛
透明圈法
选
琼脂块培养法
4.3 特殊变异菌的筛选方法:
4.3.1条件抗性突变型的筛选
初筛
中试
诱变育种的基本过程:
选择选择合适的出发菌株 ↓
第七章 微生物遗传与变异
7. 核苷酸水平
AMP、TMP、GMP、CMP,E.coli的T偶数噬菌体的DNA中 有5—羟甲基胞嘧啶。
2020/7/13
(二)原核生物的质粒
质粒电镜照片
2020/7/13
凡游离于原核生物 基因组外,具有独 立复制能力的小型 共价闭合环状的 dsDNA分子,称为 质粒。
1、质粒的分子结构
通常以共价闭合环状(covalently closed circle,简称CCC) 的超螺旋双链DNA分子存在于细胞中;
遗传型变异(基因变异、基因突变):遗传物质改变, 导致表型改变。 特点:遗传性、群体中极少数个体的行为。
(自发突变频率通常为10-6~10-9)
2020/7/13
遗传学的模式生物——微生物的独特生物学特性:
(1) 个体的体制极其简单; (2) 营养体一般都是单倍体; (3) 易于在成分简单的组合培养基上大量生长繁殖; (4) 繁殖速度快; (5) 易于积累不同的中间代谢产物或终产物; (6) 菌落形态特征的可见性和多样性; (7) 环境条件对微生物群体中各个个体作用的直接性和均一性; (8) 易于形成营养缺陷型; (9) 各种微生物一般都有相应的病毒; (10) 存在多种处于进化过程中的原始有性生殖方式。
生长繁殖过程中增添了一些特殊功能,如:接合、产毒、抗药、 固氮、产特殊酶、降解毒物等。 (4) 是一种独立存在于细胞内的复制子。 严紧型复制控制:复制行为与核染色体的复制同步。 松弛型复制控制:复制行为与核染色体的复制不同步。 (5) 少数质粒可在不同菌株间转移,如:F因子、R因子。 (6) 质粒消除:因某些理化因素的影响致使质粒复制受抑而核染 色体的复制仍继续进行,从而引起子代细胞中不带质粒的现象。 (7) 有些质粒具有与核染色体整合和脱离的功能——附加体。 (8) 质粒还有重组的功能:可在质粒与质粒间、质粒与核染色体 间2发020生/7/13基因重组。可用作基因工程的载体。
第七章 微生物遗传—变异物质基础
根癌土壤杆菌所含Ti质粒是引起双子叶植物冠瘿 瘤的致病因子。
35
36
Ti质粒中的T-DNA可携带任何外源基因整合到植物基 因组中,是植物基因工程中有效的克隆载体。
37
(5)代谢质粒(Metabolic plasmid)
质粒上携带有有利于微生物生存的基因,如能降 解某些基质的酶,进行共生固氮,或产生抗生素(某 些放线菌)等。
第七章 微生物遗传
遗传: 亲代与子代相似 变异: 亲代与子代、子代间不同个体不完全相同
遗传(inheritance)和变异(variation)是生命的最本质特性之一。
遗传型: 生物的全部遗传因子所携带的遗传信息 表型: 具有一定遗传型的个体,在特定环境条件下通过生
长发育所表现出来的外表特征和内在特征的总和。
plasmid) 毒性质粒(virulence plasmid) 代谢质粒(Metabolic plasmid) 隐秘质粒(cryptic plasmid)
28
(1)致育因子(Fertility factor,F因子)
又称F质粒,其大小约100kb,这是最早发现的一种与大肠 杆菌的有性生殖现象(接合作用)有关的质粒。
隐秘质粒不显示任何表型效应,它们的存在只 有通过物理的方法,例如用凝胶电泳检测细胞抽提 液等方法才能发现。
在应用上,很多隐秘质粒被加以改造作为基因 工程的载体(一般加上抗性基因)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原核微生物 通过转化、接合、转导等形式进行 一 部分物质转移和基因重组。(小结)
转化(transformation)
几个概念:转化、转化因子、感受态
转化过程
转化的特点
转 化 (transformation)
受体细胞直接吸收了来自供体细胞的 DNA片断,并把它整合到自己的基因组 中,细胞部分遗传性状发生变化的现 象叫转化。
转导(transduction)
遗传物质通过噬菌体的携带而转移的基因重组
转导的发现
转导的种类
转导的特点
完全普遍转导 流产普遍转导 低频转导 局 限 转 导 高频转导 溶 源 转 变
完全普遍性转导(compietetransduction)
供体
形成溶源菌
A-B+ A+B多数受体 鼠伤寒沙门氏菌 A-B+色氨酸缺陷型 A+B-组氨酸缺陷型
转化因子
转化是游离的DNA片断的转移和重组 游离的DNA片断叫转化因子 转化因子由供体提供 自然情况下可由细菌细胞自行裂解产生, 实验室里通过提取获得 双链DNA有转化能力,单链没有,
感受态
受体细胞能接受转化的生理状态称为感受态, 只有处于感受态的细菌才能接受转化因子, 从出现到消失约为40分钟(对数期的中期)
造成突变点以后全部遗传密码转录与转释发生错误
染色体畸变
某些理化因子,如X射线,紫外线, 亚硝 酸等,除能引起点突变外,还会引起DNA分 F 子大损伤,包括染色体易位,倒位,缺失, 重复等,即为染色体畸变。
染色体畸变
紫外线诱变作用机理
可使DNA链裂断,破坏核糖和磷酸间的键联
引起胞嘧啶和尿嘧啶产生水合作用造成氢键断裂 能使胸腺嘧啶成二聚体,使DNA结构发生改变
影印培养试验
原始敏 感菌种
影 印 培 养
无药 培养基
含药 培养基
诱变机制 碱基的置换 移码突变
染色体畸变
碱基的置换
NH2 C HNO2
直接引起置换的诱变剂
OH
C
O
C
腺嘌呤
次黄嘌呤(He)
次黄嘌呤(Hk)
A .. T
He .. T
Hk .. T
Hk .. C A .. T
Hk .. C G .. C
感觉态出现原因
细菌失去部分细胞壁的结果 细菌在细胞表面产生某种E引起
感受态的决定决定因素
细胞遗传性决定 和菌龄有关
Ca2+能促使细胞进入感受态
感受态因子
是受体细胞表面上的一种蛋白质 功能使转化因子结合在受体细胞表面
转化过程
每个受体细胞表面约有30 -80个转化因子 结合点,当转化因子结合到受体表面结合 点上时 ,DNA一条链被受体细胞膜上的核 酸酶分解,另一条链进入受体细胞,通过 整合与受体细胞进行基因重组,有人发现 DNA也可通过双链形式进入受体细胞形成 双倍体的转化子。
沉 淀
结果:上清液中含15%放射性;沉淀中含85%放射性
植物病毒的重建实验
植物病毒蛋白质和RNA可以人为地分开, 同时又可把它们重新组合成具感染性的病毒.
甲RNA+乙Pr → 感染症状同甲病毒;分离得到甲病毒 乙RNA+甲Pr → 感染症状同乙病毒;分离得到乙病毒
质粒
质粒
原核生物遗传物质 存在的另一种方式
含异烟肼
接敏感菌 含突变株
弱抗性 强抗性 中抗性
营养缺陷型的筛选办法
诱变剂处理 淘汰野生型 检出缺陷型 鉴定缺陷型 夹层培养法 逐个检出法 影印接种法 限量补充培养法 菌丝过滤法
夹层培养法及结果
小菌落是第二次长起 来的(营养缺陷型)
逐个检出法
菌种
涂布 培养
含诱变剂的液体培养基
完全培养基上长出菌落
S.t.his
阳性
阴性
挑选优良的出发菌株
生产中用过的自发变异菌株 采用具有有力性状的菌株 采用已发生其他变异的菌株 采用增变菌株 采用前体或最终产物代谢高的菌株
处理单孢子(或单细胞)悬液
芽孢杆菌应处理芽孢 放线菌,霉菌应处理孢子 细菌对数期,放线菌霉菌要稍 加萌发后使用 出发菌株应制成均匀悬液
选用最适剂量
诱变育种工作中应考虑的几个原则
选择简便有效的诱变剂 选优良的出发菌株 处理单孢子(或单细胞)悬液 选用最适剂量 利用复合处理的协同效应 利用和创造形态,生理与产量间的相关指标 设计或采用高效筛选方案或方法
利用回变检测致癌剂 ——艾姆斯试验法
S.t.his
可疑“致癌”试样 鼠肝匀浆 (含羟化酶) 保温 吸入 滤纸片 回 变
营养缺陷型 基本培养基上不长菌落
影印接种法
完全培养基
影印接种
营养缺陷型
基本培养基
限量补充培养法
微量(0.01%)蛋白胨的基本培养基上 小菌落是营养缺陷型突变株
菌丝 过滤法
筛选营养突变株
基本培养基
菌丝过滤得 营养突变株
接入微生物孢子
(含营养突变株)
涂布均匀后培养
长出菌丝体 (野生型)
细菌的基因重组
转化 过程
3∕
a
b
c
转 化 中 基 因 交 换 过 程 示 意 图
5∕ 5∕ 3∕
3∕ 5∕
A
B b
C c C c
D
E
a
3∕ 5∕ 5∕ 3∕
A
B
D
E
3∕ 5∕
A
B
C c
D
E
5∕ 3∕
3∕ 5∕ 3∕ 5∕
A A
B B
C c C
D D
E E
5∕ 3∕ 5∕ 3∕
转化的特点 不需两个细胞直接接触,供体 DNA提取出来,注入受体即可。
第七章 微生物的遗传 变异和育种
微生物是遗传学研究的最好材料和对象
微生物结构简单 营养体一般都是单倍体 微生物繁殖速度快 易积累不同的中间及最终代谢产物 环境条件对微生物作用直接均匀 存在多种方式的繁殖类型 微生物的变异易被识别 参与基因工程的载体供体受体三角色
内容提要
遗传的物质基础 基因突变和诱变育种 基因重组和杂交育种 基因工程
这种温和噬菌体是完整的,而不是缺陷的
获得新性状的是溶源化的宿主细胞,而不是转导子
获得的性状可随噬菌体的消失而同时消失
接合(conjugation)(
接 合 及 其 发 现 F因子和接合 雄性菌株与雌性菌株接合结果
接合及其发现
段 D N A 的 转 移 的 过 程 , 叫 接 合 通 过 细 胞 间 的 直 接 接 触 能 进 行 大 A+B+C-DA-B-C+D+
变量试验
大肠杆菌稀释培养物
10 ml
(培养前先分成50小管)
10 ml
(在同一个大管中作整体培养)
2
3
7
1
4
4
3
5
抗噬菌体菌落数
抗噬菌体菌落数
涂布试验
涂布敏感菌5×104个 共12个平板 5×104个菌落 5000个细菌/菌落 重新涂布后 喷入T1保温 喷入T1保温
6个平板共353个菌落
6个平板共28个菌落
与突变株的筛选相关的几个概念
基本培养基 [-] 完全培养基 补充培养基 野生型 [A型 [A+B+]
相关培养基
三类遗传型
抗性突变体的筛选方法
青霉素浓缩法 梯度培养皿法
青霉素浓缩法
培养基(含青霉素)
接入敏感菌液
(含抗性突变株)
涂布
抗青霉素菌落
培养
梯度培养皿法
转导的特点
需要噬菌体做媒介,不需要细胞间直接接触 普遍性转导 噬菌体DNA不接合到寄主染色体 噬菌体蛋白质包裹寄主任何一部分DNA片段 局限性转导 噬菌体DNA整合到寄主染色体上 噬菌体DNA与寄主染色体特定基因发生交换
溶源转变
温和噬菌体的基因整合到宿主核基因组上的现象
温和噬菌体并不携带外源供体菌的基因
微生物突变体的主要类型
形态突变型
按突变 实质分
生化突变型
菌落形态突变型 菌体形态突变型 营养突变体(营养缺陷型) 发酵突变体 抗性突变体 条件致死突变体 抗原突变型 产量突变型
突变的特点(证明)
不对应性 自发性 稀有性 独立性 诱变性 稳定性 可逆性
基因突变自发性和不对应性的证明
变 量 试 验 涂 布 试 验 影印培养试验
A-B+
A+B-
少数受体 A+B+ 经重组形成转导子
流产转导
低频转导
正常
λ
λ
正常切离
gal
bio
整合
gal
bio
宿主基因组
不正常切离 (10-4—10-6)
低频转导(LFT)裂解物的形成
λ dgal
λ dbio
高频转导
用高频转导裂解物去转导受体菌,可以 获得高达50%左右的转导子,这种转导被称 为高频转导。
碱基的置换
间接引起置换的诱变剂
C O
T : 酮式
C O H
T:烯醇式
酮式
A .. T
A .. T 烯醇式 T .. G
T .. A G .. C
碱基的置换 间接引起置换的诱变剂
C O Br
5-BU:酮式
C O H Br
5-BU:烯醇式
碱基的置换
A .. T
G .. C A .. BU
A .. T A .. BU
SⅠSⅡSⅢ三个血清型
RⅠRⅡRⅢ三个血清型
转化实验(1)动物实验 活
加活R菌或死S菌