工程管理专业外文文献翻译

合集下载

工程管理中英文对照外文翻译文献

工程管理中英文对照外文翻译文献

中英文对照外文翻译文献中英文对照外文翻译The Internet is Applicated in Real EstateThe Real Estate Industry and the World Wide Web: Changing Technology, Changing Location.The Internet, in its Web based graphics version, has captured the imagination of both consumers and businesses. Its convenience, speed, low cost and versatility are being exploited on a daily basis in ever-changing ways. Together with its capacity to transform existing businesses, promote new businesses and facilitate exchange of information and data, its other striking attribute has been the speed with which this new technology has spread throughout the global economy.Keywords:The internet;Real Estate;ApplicatedThe number of computer hosts grew by more than ten-fold between 1995 and early 1999. The number of Web sites increased almost 100-fold, to over two million, between 1995 and 1998.By the year 2000, there will be approximately 400-500 million Internet users in the world, and the total number of Web sites will exceed five million.This new technology has the potential for affecting the real estate industry directly and indirectly. Directly, it may become a tool that allows a real estate business to expand its information and sales network. Indirectly, it may change the location equation where and how firms do business which in turn will affect the role of firms involved in real estate development, investment and transactions.Measuring the Spread of the WebThere are few reliable published statistics on Internet or Web use, and statistics reported by different analysts are often inconsistent. Our discussion of the Web and real estate is based on limited information from surveys and on examination of Web sites rather than on more comprehensive data. We have built our overview of the role of the World Wide Web and real estate by examining a variety of sources(including trade publications, existing Web sites, and our own survey of selected real estate firms)From E-mail to E-commerceBefore the advent of the World Wide Web, the Internet existed mostly for the purposes of e-mail, data transfers, newsgroups and bulletin boards, and its reach was limited primarily to the academic and the defense community. The technology itself was not particularly user-friendly, the network speed was not very high, the medium was limited to text and data, and accessing information was cumbersome and time-consuming. The browser technology greatly simplified usage, enabled multimedia information, and created interactive possibilities. The technology brought together TV entertainment, library information, news bulletins, communication and data in one desktop machine.Although initially the greatest patrons of the Internet were the academic community, the commercial sector quickly caught on to the potential of the Web. The private sector saw in the Web an opportunity to widen its marketing reach, lower costs of information dissemination, improve customer relations, and ultimately to conduct sales. Existing private sector Web sites can be roughly categorized into three types, as summarized. The most basic level is for simple information dissemination. The firm registers a Web site and develops a page giving basic company information. The second stage is an expansion of information, marketing goods and services or providing other customer information. The third stage is the addition of transactions tothe activities possible on the Web site.Most business sites at present are in Stage 2. The use of the World Wide Web for detailed information dissemination, and marketing has had several advantages. For the firm, marketing, information dissemination and customer services on the Web can be monitored and analyzed with some details unavailable from conventional methods of marketing using other media. Internet tools can now provide a firm with data on who accessed the site, which pages were visited most, heavily, from where and for how long. This information contributes to improved measures of the results of promotional efforts. The promotional costs associated with the Internet have also been very low. For example, in direct mail marketing, to send a one-page color brochure to 5,000 random addresses will cost upwards of $2,500. The cost of setting up a Web site could be one-tenth of this amount or less (although tracking and analysis can quickly add to the cost)?Many different sectors, including real estate, have found the Internet to be both efficient and cost-effective as a marketing device.The next logical step - a full-fledged office/store on the Web with transaction capability and commerce on the Internet is now being attempted in varying degrees depending on the firm's area of business. Retail sites selling products between $10 and $100, the kind that are traditionally part of a direct mail sales catalog, seem to be the ones having the greatest success(although 4% of sites sell products over $10,000 and another 13% sell products ranging from $100 to$9,999)?A number of retail sites have also harnessed a secondary revenue stream from advertising. Advertising revenues on the Web have crossed the billion-dollar mark and total Internet generated revenue will approach$100 billion this year.Consumers' Use of the WebSurveys of consumers using the Web suggest that a Web site does notsubstitute for the more traditional forms of business, but can greatly facilitate the run-up to the final transaction. The most common use of the Web is for information searching, closely followed by work-related uses, education, and entertainment. A significant majority of those that use the Web for shopping do so to carry out detailed research on product information(90%)and to do price comparisons(85%). This more often leads to purchases through normal channels(67%). Most of the online purchases tend to be of items that are standardized-four of the five top items bought on the Web, according to survey, are software, books, hardware and music (the fifth is travel). More than half of consumers who make purchases on the Web spend less than $500 in a six-month period.The demographics of Web users vary widely in age and income. Surveys by Georgia Tech, Active Media and Web indicate that the average age of Web users is 35 years, with average household income $67,000. Most are college educated (65%). A high proportion of the respondents (42%) has accessed real estate sites.Limits to the Web - Some "Catches" to the New Technology New technology is frequently a mixed blessing, and the World Wide Web is no exception. Apart from the teething troubles that any new technology faces and the time, as well as resources needed to learn, adapt and master it, the Web poses some unique issues and problems of its own. Consumers today are facing information overload of taxing proportions. It is not always easy, or even possible, to locate the relevant information on the Web, despite sophisticated search engines. Once the site is located, fancy graphics, complex linkages, labyrinthine routings, and a lot of irrelevant information may overwhelm the consumer - in short, poor and confusing site design can reduce the site's effectiveness.From the point of view of the business, there are two commonly heardcomplaints. First, the business may find that its site does not figure prominently on search results, limiting the number of customers reached. Second, for many firms, Web initiated leads are as yet few and far between. Real Estate Web SitesReal Estate firms and related businesses were among the early private sector pioneers of Internet use and have had a fast growing presence on the Web. presence on the Web. One example of the real estate sector's presence on the Internet in its pre-World Wide Web incarnation was the real estate classified bulletin board of Prodigy, the online service, which had listings for homes and other real estate. A few real estate related Web sites started in 1994 (generally regarded as the inaugural year of the Web). The New York City Real Estate Guide Web site, created in the summer of 1994, was one of the first to offer free access to the latest New York real estate information. By the summer of 1995, the site was receiving more than 100,000 inquiries a month.The real estate industry registered its entry on the Web in a dramatic way in 1995. By the end of that year there were close to 4,000 real estate Web sites. The content matter of the sites, as well as the mix of real estate related firms on the Web have changed over time. Initially, quite a few of the sites were residential real estate brokerages and listing guides, but fairly rapidly the list expanded to include commercial and retail listings, mortgage brokers,appraisers, architects, real estate attorneys, developers, construction firms, and suppliers. As investment vehicles for real estate expanded, REITs, publicly held firms, and investment advisors also added Web sites.The early real estate broker Web sites quickly took advantage of the unique features of the Web. Prospective customers could find out what properties were for sale or rent, look up detailed descriptions of each listing, view photographs and floor plans, and contact the broker by e-mail. Viewerscould also look up statistical and data reports on conditions in various geographical areas and on emerging macroeconomic trends.Ever since then, the real estate industry has been among the most enthusiastic users of the Web, by some measures accounting for 4% to 6% of commercial Web sites. A survey conducted by Real Estate Broker's Insider in early 1998 confirmed that nearly 95% of the respondents/brokers had a Web site, and more than 90% of the housing stock on sale at a given time is now listed on the Web. Indeed, because of the dispersed, localized nature of the role of information in real estate, the prospective gains from information dissemination, comparability, and Web links were particularly significant in real estate.For much of the real estate sector, the Internet generates not so much the actual transactions themselves, but creates initial leads that are later followed by transactions, purchases and sales. Web sites frequently lead to contacts that are then nurtured through telephone and person-to-person meetings. For residential real estate, Web activity includes residential searches, housing details, and pricing information (both on houses and mortgages), with follow-up contact with brokers. Real estate-related transactions are seen in the hospitality industry (making reservations for hotels and vacation homes and in online mortgage applications). Mortgage and home loan finance companies report both inquiries from mortgage shoppers who obtained initial information from their Web sites, as well as closing of loans through the Web, lead to great savings in time and overhead costs.It is not just the real estate professionals who are enthusiastic about their Internet presence, judging it to be as effective as print and radio advertising. Mortgage shoppers, homebuyers and vacation rental seekers as well applaud, in particular, the convenience it brings to the entire process of searching, researching, comparing, communicating and transacting business.Beyond these sectors, many other types of real-estate related firms are using the Web to broaden their market areas, increase the depth of their marketing, and to provide a range of services to existing customers. Commercial brokers provide not only information on available sites but also on market conditions for different locations and sometimes more in-depth economic analysis of a region. REITs and other investment firms provide detailed information on their products as well as background market or economic information. Public companies provide up-to-date stock quotes and quarterly and annual reports on the Web.Web Penetration and Use: The Experience of Leading Real Estate Firms We conducted a limited survey of a sample of leading real-estate related firms in the US and California. Responses from approximately 60 of these firms showed that over four-fifths had Web Sites by March 1999. 2 Of those with Web sites, one-third had inaugurated their sites by the end of 1996. Among the earliest with a Web presence were brokers, investment firms, lenders, business and financial services firms, law firms, residential developers, and a trade organization. Another third of the group were newcomers, with sites inaugurated in 1998 or early 1999. Commercial developers were prominent among this group, with residential developers, consultants and advisors, lenders, REITs and investment firms also among this group. Those without sites were more likely to be privately held firms with a relatively narrow base of activity (for example, a commercial developer centered in the San Francisco Bay Area)?Most with Web sites used their site to provide information about the company and to market services. In addition, about one-third marketed property from their site, providing detailed information on the characteristics of buildings available, surrounding communities, and other related data. Other Web site uses include employee recruiting, providing information formembers or investors, and disseminating related information on topics such as regulations or real estate markets.What does the Web specifically do for Real Estate?According to Activemedia, an internet research company, some of the sectors experiencing the greatest growth in terms of their presence on the Web in 1998 were computer hardware and software, real estate, publishing and information, finance and Internet services. A significant initial motivation for this rush for the Web is provided by, what can be termed, the "tiptoe" effect. The first ones on the Web had an additional advantage over those who did not; information on their services, products, home listings now be accessed conveniently by those with computers. The low setup cost, however, and the potential disadvantage of not having a Web presence has propelled others in the profession to set up their own sites.Real estate shares in some of the basic advantages of the Web mentioned earlier, such as ease of marketing, communication and feedback from clients, lowered costs of operations and convenience of customer service and support. In addition, the Web provides positive features specific to the real estate industry.Key elements include the following.1.Increased geographic reach.The Web has dramatically increased the geographic reach of both buyers and sellers. Although the "local" aspect of real estate will perhaps never be whittled away completely, there is no doubt that inquiries about properties can now emanate from far away to a much greater degree than before. This, in turn, potentially increases the size and "depth" of the market and makes it more efficient.2.Capability of visualization.In some sense, increased geographic reach has become possible due tothe other emergent feature of the Web, the capability of visualization. In its most state-of-the-art form, Web sites now allow prospective buyers to take virtual tours of homes, resorts, hotels and convention centers.3.Reduced transaction costs.The Web may reduce transactions costs. This has been particularly apparent in the case of mortgages. According to Fannie Mae, 1.5% of all mortgages were handled online this past year. The Web-attributable features that make this kind of a transaction possible are instantaneous comparability, interactive capability, online calculation, online applications, and continuous updating of the sites.4.Improved information dissemination.The Web offers broad opportunities for increasing the scope and depth of information provided by many different types of firms. A well constructed home page gives an overview of a firm's range of services or activities. Links allow the customer or client to learn much more detail about the selected items of most interest, while ignoring less relevant pieces of information. A number of sites take advantage of the ability to link to resources beyond the company's Web pages, linking customers and clients to related Web resources.Unlike retail sectors, such as books and computer hardware, the Web as yet has not become a threat to the "middle man" role of many real estate firms. Instead, it is more likely to be used as a means of expanding services offered or locations served. However, in the long term, the Web and related Internet technology have the potential to change the structure of business activity, which in turn will affect the demand for real estate in type if not in quantity. For example, some retailers already have closed stores while expanding sales on the Web. Also, the Internet has been seen as one factor allowing the decentralization of office space. These trends to date have notled to a decline, but rather to a redistribution in the demand for office, retail and warehouse space.These are summarized .Speculation on Potential Impact of Internet on Real Estate Industry.1.Shortening of Transaction Cycle2.Precise Market Targeting3.Transformed Competition4.Cost savings:a)Marketing,b)Sales,c)Operation5.Possibility of Disintermediation;Lowering of Commissionsbination of Comparison Shopping and Direct Sales7.Access to MBS Secondary MarketHow to Find the Real Estate Sector on the WebThere are a few key sites that can be used to access the broad range of real-estate related Web sites. These include:-Site sponsored by the National Association of Realtors, linking users to realtor, home sales and market information.-Site sponsored by the National Association of Home Builders, providing a wide range of market information.-Directory to commercial real estate sites, including brokers,developers, investors and analysts. and , two sites that provide users with information about mortgage rates, mortgage brokers and with the opportunity to submit an application online. (National Association of Real Estate Investment Trusts) and (Real Estate Investment Advisory Council), two associations related to real estate investment trusts.-The California Association of Realtors site.the site for the Urban Land Institute, with information onthe organization, programs, conferences, and publications related to real estate and land use. has three online magazines including National Real Estate Investor, Shopping Center World, and Midwest Real Estate News. An additional real estate online magazine, can available at .Ashok Deo BardhanRESEARCH FELLOWCynthia A. KrollREGIONAL ECONOMIST互联网在房地产业的应用摘要:互联网,仅仅它的网页图形版本,就已经吸引了众多消费者和商家的目光。

工程管理专业英语全文翻译

工程管理专业英语全文翻译

工程管理专业英语全文翻译Unit 1 the owner’s perspective 第1单元业主的观点1.2 Major Types of Construction 1.2大建筑类型Since most owners are generally interested in acquiring only aspecific type of constructed facility, they should be aware of the common industrial practices for the type of construction pertinent to them [1]. Likewise, the construction industry is a conglomeration of quite diverse segments and products. Some owners may procure a constructed facility only once in a long while and tend to look forshort term advantages. However ,many owners require periodic acquisition of new facilities and/or rehabilitation of existing facilities. It is to their advantage to keep the construction industry healthy and productive. Collectively, the owners have more power to influence the construction industry than they realize because, by their individual actions, they can provide incentives for innovation, efficiency and quality in construction [2]. It is to the interest of all parties that the owners take an active interest in the construction and exercise beneficial influence on the performance of the industry.由于大多数业主通常只对获得特定类型的建筑设施感兴趣,所以他们应该了解与他们有关的建筑类型的常见工业实践[1]。

工程管理专业外文文献以及汉文翻译

工程管理专业外文文献以及汉文翻译

外文文献:The project management office as an organisational innovationBrian Hobbs *, Monique Aubry,Denis ThuillierUniversity of Quebec at Montreal, Department of Management and Technology,PO Box 8888,Downtown Station,Montreal,Que,Canada H3C 3P8Received 15 May 2008; accepted 20 May 2008AbstractThe paper presents an investigation of the creation and the reconfiguration of project management offices (PMOs) as an organizational innovation。

The analysis of 11 organisational transformations centred on the implementation or reconfiguration of PMOs is presented. The objective of the paper is to contribute to a better understanding of PMOs and of the dynamic relationship between project management and the organisational context。

The aim is also to integrate the examination of PMOs as an organisational innovation into the mainstream of research on the place of project management in organisations and more widely to the ‘‘rethinking of project management.”1。

土木建筑工程工程管理毕业论文中英文资料外文翻译文献

土木建筑工程工程管理毕业论文中英文资料外文翻译文献

土木建筑工程工程管理毕业论文中英文资料外文翻译文献土木建筑工程工程管理中英文资料外文翻译文献Abstract:To study the application of continuum structural topology optimization methods to real engineering structures,an optimization method for an optimal topology design of multistory steel frame bracing systems is presented.On a sensitivity analysis,an element removal criterion for continuum structures with stress and multi-displacement constraints under multiple lateral loading conditions is proposed.A concept of mean thickness of a design domain is provided to ensure the reasonableness of optimal results.In the proposed optimization method,the optimal design of an unbraced steel frame without displacement constraints is performed firstly,and then the optimal topology of a bracing system for the multistory steel frame considering displacement constraints is obtained by using evolutionary structural optimization and the given removal criterion,and finally the optima layout of the bracing system is interpreted as bracing members.An example of 3-bay 12-story plane steel frame shows that it is effective for the given optimization method in the optimal design of bracing systems for multistory steel frames.Key words:steel frame;bracing system;continuum;topology optimization;evolutionary structural optimization2.1 Reinforced ConcretePlain concrete is formed from a hardened mixture of cement ,water ,fine aggregate, coarse aggregate (crushed stone or gravel),air, and often other admixtures. The plastic mix is placed and consolidated in the formwork, then cured to facilitate the acceleration of the chemical hydration reaction lf the cement/water mix, resulting in hardenedword文档可自由复制编辑concrete. The finished product has high pressive strength, and low resistance to tension, such that its tensile strength is approximately one tenth lf its pressive strength. Consequently, tensile and shear reinforcement in the tensile regions of sections has to be provided to pensate for the weak tension regions in the reinforced concrete element.It is this deviation in the position of a reinforces concrete section from the homogeneity of standard wood or steel sections that requires a modified approach to the basic principles of structural design. The two ponents of the heterogeneous reinforced concrete section are to be so arranged and proportioned that optimal use is made of the materials involved. This is possible because concrete can easily be given any desired shape by placing and pacting the wet mixture of the constituent ingredients are properly proportioned, the finished product bees strong, durable, and, in bination with the reinforcing bars, adaptable for use as main members of any structural system.The techniques necessary for placing concrete depend on the type of member to be cast: that is, whether it is a column, a bean, a wall, a slab, a foundation. a mass columns, or an extension of previously placed and hardened concrete. For beams, columns, and walls, the forms should be well oiled after cleaning them, and the reinforcement should be cleared of rust and other harmful materials. In foundations, the earth should be pacted and thoroughly moistened to about 6 in. indepth to avoid absorption of the moisture present in the wet concrete. Concrete should always be placed in horizontal layers which are pacted by means of high frequency power-driven vibrators of either the immersion or external type, as the case requires, unless it is placed by pumping. It must be kept in mind, however, that over vibration can be harmful since it could cause segregation of the aggregate and bleeding of the concrete.Hydration of the cement takes place in the presence of moisture at temperatures above 50°F. It is necessary to maintain such a condition in order that the chemical hydration reaction can take place. If drying is too rapid, surface cracking takes place. This would result in reduction of concrete strength due to cracking as well as the failure to attain full chemical hydration.It is clear that a large number of parameters have to be dealt with in proportioning a reinforced concrete element, such as geometrical width, depth, area of reinforcement, steel strain, concrete strain, steel stress, and so on. Consequently, trial and adjustment is necessary in the choice of concrete sections, with assumptions based on conditions at site,word文档可自由复制编辑availability of the constituent materials, particular demands of the owners, architectural and headroom requirements, the applicable codes, and environmental reinforced concrete is often a site-constructed posite, in contrast to the standard mill-fabricated beam and column sections in steel structures.A trial section has to be chosen for each critical location in a structural system. The trial section has to be analyzed to determine if its nominal resisting strength is adequate to carry the applied factored load. Since more than one trial is often necessary to arrive at the required section, the first design input step generates into a series of trial-and-adjustment analyses.英语学习土木建筑工程工程管理毕业论文中英文资料外文翻译文献The trial-and –adjustment procedures for the choice of a concrete section lead to the convergence of analysis and design. Hence every design is an analysis once a trial section is chosen. The availability of handbooks, charts, and personal puters and programs supports this approach as a more efficient, pact, and speedy instructional method pared with the traditional approach of treating the analysis of reinforced concrete separately from pure design.2.2 EarthworkBecause earthmoving methods and costs change more quickly than those in any other branch of civil engineering, this is a field where there are real opportunities for the enthusiast. In 1935 most of the methods now in use for carrying and excavating earth with rubber-tyred equipment did not exist. Most earth was moved by narrow rail track, now relatively rare, and the main methods of excavation, with face shovel, backacter, or dragline or grab, though they are still widely used are only a few of the many current methods. To keep his knowledge of earthmoving equipment up to date an engineer must therefore spend tine studying modern machines. Generally the only reliable up-to-date information on excavators, loaders and transport is obtainable from the makers. Earthworks or earthmoving means cutting into ground where its surface is too high ( cuts ), and dumping the earth in other places where the surface is too low ( fills). Toreduce earthwork costs,the volume of the fills should be equal to the volume of the cuts and wherever possible the cuts should be placednear to fills of equal volume so as to reduce transport and double handlingof the fill. This work of earthwork design falls on the engineer who lays out the road since it is the layout of the earthwork more than anything else which decides its cheapness. From the available maps ahd levels, the engineering must try to reach as many decisions as possible in the drawing office byword文档可自由复制编辑drawing cross sections of the earthwork. On the site when further information bees available he can make changes in jis sections and layout,but the drawing lffice work will not have been lost. It will have helped him to reach the best solution in the shortest time.The cheapest way of moving earth is to take it directly out of the cut and drop it as fill with the same machine. This is not always possible, but when it canbe done it is ideal, being both quick and cheap. Draglines, bulldozers and face shovels an do this. The largest radius is obtained with the dragline,and the largest tonnage of earth is moved by the bulldozer, though only over short distances.The disadvantages of the dragline are that it must dig below itself, it cannot dig with force into pacted material, it cannot dig on steep slopws, and its dumping and digging are not accurate.Face shovels are between bulldozers and draglines, having a larger radius of action than bulldozers but less than draglines. They are anle to dig into a vertical cliff face in a way which would be dangerous tor a bulldozer operator and impossible for a dragline. Each piece of equipment should be level of their tracks and for deep digs in pact material a backacter is most useful, but its dumping radius is considerably less than that of the same escavator fitted with a face shovel.Rubber-tyred bowl scrapers are indispensable for fairly level digging where the distance of transport is too much tor a dragline or face shovel. They can dig the material deeply ( but only below themselves ) to a fairly flat surface, carry it hundreds of meters if need be, then drop it and level it roughly during the dumping. For hard digging it is often found economical to keep a pusher tractor ( wheeled or tracked ) on the digging site, to push each scraper as it returns to dig. As soon as the scraper is full,the pusher tractor returns to the beginning of the dig to heop to help the nest scraper.Bowl scrapers are often extremely powerful machines;many makers build scrapers of 8 cubic meters struck capacity, which carry 10 m 3 heaped. The largest self-propelled scrapers are of 19 m 3 struck capacity ( 25 m 3 heaped )and they are driven by a tractor engine of 430 horse-powers. Dumpers are probably the monest rubber-tyred transport since they can also conveniently be used for carrying concrete or other building materials. Dumpers have the earth container over the front axle on large rubber-tyred wheels, and the container tips forwards on most types, though in articulated dumpers the direction of tip can be widely varied. The smallest dumpers have a capacity of about 0.5 m 3, and the largest standard types are of about 4.5 m 3. Special types include the self-loading dumper of up to 4 m 3word文档可自由复制编辑and the articulated type of about 0.5 m 3. The distinction between dumpers and dump trucks must be remembered .dumpers tip forwards and the driver sits behind the load. Dump trucks areheavy, strengthened tipping lorries, the driver travels in front lf the load and the load is dumped behind him, so they are sometimes called rear-dump trucks.英语学习土木建筑工程工程管理毕业论文中英文资料外文翻译文献(2)2.3 Safety of StructuresThe principal scope of specifications is to provide general principles and putational methods in order to verify safety of structures. The " safety factor ", which according to modern trends is independent of the nature and bination of the materials used, can usually be defined as the ratio between the conditions. This ratio is also proportional to the inverse of the probability ( risk ) of failure of the structure.Failure has to be considered not only as overall collapse of the structure but also as unserviceability or, according to a more precise. Common definition. As the reaching of a " limit state " which causes the construction not to acplish the task it was designed for. There are two categories of limit state :(1)Ultimate limit sate, which corresponds to the highest value of the load-bearing capacity. Examples include local buckling or global instability of the structure; failure of some sections and subsequent transformation of the structure into a mechanism; failure by fatigue; elastic or plastic deformation or creep that cause a substantial change of the geometry of the structure; and sensitivity of the structure to alternating loads, to fire and to explosions.(2)Service limit states, which are functions of the use and durability of the structure. Examples include excessive deformations and displacements without instability; early or excessive cracks; large vibrations; and corrosion.Computational methods used to verify structures with respect to the different safety conditions can be separated into:(1)Deterministic methods, in which the main parameters are considered as nonrandom parameters.(2)Probabilistic methods, in which the main parameters are considered as random parameters. Alternatively, with respect to the different use of factors of safety, putational methods can be separated into:(1)Allowable stress method, in which the stresses puted under maximum loads are pared with the strength of the material reduced by given safety factors.word文档可自由复制编辑英语学习土木建筑工程工程管理毕业论文中英文资料外文翻译文献(3)。

土木工程、工程管理专业毕业设计英文文献翻译

土木工程、工程管理专业毕业设计英文文献翻译

Unit Eight The Cost of Building Structure1. IntroductionThe art of architectural design was characterized as one of dealing comprehensively with a complex set of physical and nonphysical design determinants. Structural considerations were cast as important physical determinants that should be dealt with in a hierarchical fashion if they are to have a significant impact on spatial organization and environmental control design thinking.The economical aspect of building represents a nonphysical structural consideration that, in final analysis, must also be considered important. Cost considerations are in certain ways a constraint to creative design. But this need not be so. If something is known of the relationship between structural and constructive design options and their cost of implementation, it is reasonable to believe that creativity can be enhanced. This has been confirmed by the authors’ observation that most enhanced. This has been confirmed by the authors’ observation that most creative design innovations succeed under competitive bidding and not because of unusual owner affluence as the few publicized cases of extravagance might lead one to believe. One could even say that a designer who is truly creative will produce architectural excellence within the constraints of economy. Especially today, we find that there is a need to recognize that elegance and economy can become synonymous concepts.Therefore, in this chapter we will set forth a brief explanation of the parameters of cost analysis and the means by which designers may evaluate the overall economic implications of their structural and architectural design thinking.The cost of structure alone can be measured relative to the total cost of building construction. Or, since the total construction cost is but a part of a total project cost, one could include additional consideration for land(10~20percent),finance and interest(100~200 percent),taxes and maintenance costs (on the order of20 percent).But a discussion of these so-called architectural costs is beyond the scope of this book, and we will focus on the cost of construction only.On the average, purely structural costs account for about 25 percent of total construction costs. This is so because it has been traditional to discriminate between purely structural and other so-called architectural costs of construction. Thus, in tradition we find that architectural costs have been taken to be those that are not necessary for the structural strength and physical integrity of a building design.“Essential services” forms a third construction cost category and refers to the provision of mechanical and electrical equipment and other service systems. On the average, these service costs account for some 15 to 30 percent of the total construction cost, depending on the type of building. Mechanical and electrical refersto the cost of providing for air-conditioning equipment and he means on air distribution as well as other services, such as plumbing, communications, and electrical light and power.The salient point is that this breakdown of costs suggests that, up to now, an average of about 45 to 60 percent of the total cost of constructing a typical design solution could be considered as architectural. But this picture is rapidly changing. With high interest costs and a scarcity of capital, client groups are demanding leaner designs. Therefore, one may conclude that there are two approaches the designer may take towards influencing the construction cost of building.The first approach to cost efficiency is to consider that wherever architectural and structural solutions can be achieved simultaneously, a potential for economy is evident. Since current trends indicate a reluctance to allocate large portions of a construction budget to purely architectural costs, this approach seems a logical necessity. But, even where money is available, any use of structure to play a basic architectural role will allow the nonstructural budget to be applied to fulfill other architectural needs that might normally have to be applied to fulfill other architectural needs that might normally have to be cut back. The second approach achieves economy through an integration of service and structural subsystems to round out one’s effort to produce a total architectural solution to a building design problem.The final pricing of a project by the constructor or contractor usually takes a different form. The costs are broken down into (1) cost of materials brought to the site, (2)cost of labor involved in every phase of the construction process, (3)cost of equipment purchased or rented for the project, (4)cost of management and overhead, and(5) profit. The architect or engineer seldom follows such an accurate path but should perhaps keep in mind how the actual cost of a structure is finally priced and made up.Thus, the percent averages stated above are obviously crude, but they can suffice to introduce the nature of the cost picture. The following sections will discuss the range of these averages and then proceed to a discussion of square footage costs and volume-based estimates for use in rough approximation of the cost of building a structural system.2. Percentage EstimatesThe type of building project may indicate the range of percentages that can be allocated to structural and other costs. As might be expected, highly decorative or symbolic buildings would normally demand the lowest percentage of structural costs as compared to total construction cost. In this case the structural costs might drop to 10~15percent of the total building cost because more money is allocated to the so-called architectural costs. Once again this implies that the symbolic components are conceived independent of basic structural requirements. However, where structure and symbolism are more-or-less synthesized, as with a church or Cathedral, the structural system cost can be expected to be somewhat higher, say, 15and20 percent(or more).At the other end of the cost scale are the very simple and nonsymbolic industrial buildings, such as warehouses and garages. In these cases, the nonstructural systems, such as interior partition walls and ceilings, as will as mechanical systems, are normally minimal, as is decoration, and therefore the structural costs can account for60 to 70 percent, even 80 percent of the total cost of construction.Buildings such as medium-rise office and apartment buildings(5~10 stories)occupy the median position on a cost scale at about 25 percent for structure. Low and short-span buildings for commerce and housing, say, of three or four stories and with spans of some 20 or 30 ft and simple erection requirements, will yield structural costs of 15~20 percent of total building cost.Special-performance buildings, such as laboratories and hospitals, represent another category. They can require long spans and a more than average portion of the total costs will be allocated to services (i.e., 30~50 percent), with about 20 percent going for the purely structural costs. Tall office building (15 stories or more) and/or long-span buildings (say, 50 to 60 ft) can require a higher percentage for structural costs (about 30to 35percent of the total construction costs), with about 30 to 40 percent allocated to services.In my case, these percentages are typical and can be considered as a measure of average efficiency in design of buildings. For example, if a low, short-span and no monumental building were to be bid at 30 percent for the structure alone, one could assume that the structural design may be comparatively uneconomical. On the other hand, the architect should be aware of the confusing fact that economical bids depend on the practical ability of both the designer and the contractor to interpret the design and construction requirements so that a low bid will ensue. Progress in structural design is often limited more by the designer’s or contractor’ slack of experience, imagination, and absence of communication than by the idea of the design. If a contractor is uncertain, he will add costs to hedge the risk he will be taking. It is for this reason that both the architect and the engineer should be well-versed in the area of construction potentials if innovative designs ate to be competitively bid. At the least the architect must be capable of working closely with imaginative structural engineers, contractors and even fabricators wherever possible even if the architecture is very ordinary. Efficiency always requires knowledge and above all imagination, and these are essential when designs are unfamiliar.The foregoing percentages can be helpful in approximating total construction costs if the assumption is made that structural design is at least of average (of typical) efficiency. For example, if a total office building construction cost budget is ﹩5,000,000,and 25 percen t is the “standard” to be used for structure, a projected structural system should cost no more than ﹩1,250,000.If a very efficient design were realized, say, at 80 percent of what would be given by the “average” efficientdesign estimate stated above the savings,(20 percent),would then be﹩250,000 or 5 percent of total construction costs ﹩5,000,000.If the ﹩5,000,000 figure is committed, then the savings of ﹩250,000 could be applied to expand the budget for “other” costs.All this suggests that creative integration of structural (and mechanical and electrical) design with the total architectural design concept can result in either a reduction in purely construction design concept can result in either a reduction in purely construction costs or more architecture for the same cost. Thus, the degree of success possible depends on knowledge, cleverness, and insightful collaboration of the designers and contractors.The above discussion is only meant to give the reader an overall perspective on total construction costs. The following sections will now furnish the means for estimating the cost of structure alone. Two alternative means will be provided for making an approximate structural cost estimate: one on a square foot of building basis, and another on volumes of structural materials used. Such costs can then be used to get a rough idea of total cost by referring to the “standards” for efficient design given above. At best, this will be a crude measure, but it is hoped that the reader will find that it makes him somewhat familiar with the type of real economic problems that responsible designers must deal with. At the least, this capability will be useful in comparing alternative systems for the purpose of determining their relative cost efficiency.3. Square-foot EstimatingAs before, it is possible to empirically determine a “standard” per-square-foot cost factor based on the average of costs for similar construction at a given place and time. More-or-less efficient designs are possible, depending on the ability of the designer and contractor to use materials and labor efficiently, and vary from the average.The range of square-foot costs for “normal” structural systems is ﹩10 to ﹩16 psf. For example, typical office buildings average between ﹩12 and ﹩16 psf, and apartment-type structures range from ﹩10 to ﹩14.In each case, the lower part of the range refers to short spans and low buildings, whereas the upper portion refers to longer spans and moderately tall buildings.Ordinary industrial structures are simple and normally produce square-foot costs ranging from ﹩10 to ﹩14,as with the more typical apartment building. Although the spans for industrial structures are generally longer than those for apartment buildings and the loads heavier, they commonly have fewer complexities as well as fewer interior walls, partitions, ceiling requirements, and they are not tall. In other words, simplicity of design and erection can offset the additional cost for longer span lengths and heavier loads in industrial buildings.Of course there are exceptions to these averages. The limits of variation depend on a system’s complexity, span length over “normal” and special loading or foundation conditions. For example, the Crown Zellerbach high-rise bank and office building in San Francisco is an exception, since its structural costs were unusually high. However, in this case, the use of 60 ft steel spans and free-standing columns at the bottom, which carry the considerable earthquake loading, as well as the special foundation associated with the poor San Francisco soil conditions, contributed to the exceptionally high costs. The design was also unusual for its time and a decision had been made to allow higher than normal costs for all aspects of the building to achieve open spaces and for both function and symbolic reasons. Hence the proportion of structural to total cost probably remained similar to ordinary buildings.The effect of spans longer than normal can be further illustrated. The “usual” floor span range is as follows: for apartment buildings,16 to 25 ft; for office buildings,20 to 30 ft; for industrial buildings,25 to 30 ft loaded heavily at 200 to 300 psf; and garage-type structures span,50 to 60 ft, carrying relatively light(50~75 psf) loads(i.e., similar to those for apartment and office structures).Where these spans are doubled, the structural costs can be expected to rise about 20 to 30 percent.To increased loading in the case of industrial buildings offers another insight into the dependency of cost estimates on “usual” standards. If the loading in an industrial building were to be increased to 500psf(i.e., two or three times), the additional structural cost would be on the order of another 20 to 30 percent.The reference in the above cases is for floor systems. For roofs using efficient orthotropic (flat) systems, contemporary limits for economical design appear to be on the order of 150 ft, whether of steel or prestressed concrete. Although space- frames are often used for steel or prestressed concrete. Although space-frames are often used for steel spans over 150 ft the fabrication costs begin to raise considerably.At any rate, it should be recognized that very long-span subsystems are special cases and can in themselves have a great or small effect on is added, structural costs for special buildings can vary greatly from design to design. The more special the form, the more that design knowledge and creativity, as well as construction skill, will determine the potential for achieving cost efficiency.4. Volume-Based EstimatesWhen more accuracy is desired, estimates of costs can be based on the volume of materials used to do a job. At first glance it might seem that the architect would be ill equipped to estimate the volume of material required in construction with any accuracy, and much less speed. But it is possible, with a moderate learning effort, to achieve some capability for making such estimates.V olume-based estimates are given by assigning in-place value to the pounds or tons of steel, or the cubic yards of reinforced or prestressed concrete required to build a structural system. For such a preliminary estimate, one does not need to itemize detailed costs. For example, in-place concrete costs include the cost of forming, falsework, reinforcing steel, labor, and overhead. Steel includes fabrication and erection of components.Costs of structural steel as measured by weight range from ﹩0.50 to ﹩0.70 per pound in place for building construction. For low-rise buildings, one can use stock wide-flange structural members that require minimum fabrication, and the cost could be as bow as ﹩0.50 per pound. More complicated systems requiring much cutting and welding(such as a complicated steel truss or space-frame design) can go to ﹩0.70 per pound and beyond. For standard tall building designs (say, exceeding 20 stories), there would typically be about 20 to 30 pounds of steel/psf, which one should wish not to exceed. A design calling for under 20 psf would require a great deal of ingenuity and the careful integration of structural and architectural components and would be a real accomplishment.Concrete costs are volumetric and should range from an in-place low of ﹩150 per cu yd for very simple reinforced concrete work to ﹩300 per cu yd for expensive small quantity precast and prestressed work. This large range is due to the fact that the contributing variables are more complicated, depending upon the shape of the precise components, the erection problems, and the total quantity produced.Form work is generally the controlling factor for any cast-in-place concrete work. Therefore, to achieve a cost of ﹩150 per cu yd, only the simplest of systems can be used, such as flat slabs that require little cutting and much reuse of forms. Where any beams are introduced that require special forms and difficulty in placement of concrete and steel bars, the range begins at ﹩180 per cu yd and goes up to ﹩300.Since, in a developed country, high labor costs account for high forming costs, this results in pressure to use the simplest and most repetitive of systems to keep costs down. It become rewarding to consider the possibility of mass-produced precast and prestressed components, which may bring a saving in costs and\or construction completion time. The latter results in savings due to lower construction financing costs for the contractor plus quicker earnings for the owner.One important exception to the above cost picture is that of concrete work in foundations. Here the cost of forming and casting simple foundations (i.e., for spread foundations with very little steel, such as subgrade bearing walls and mat foundations) should be considered at about $90 per cu yd. But in case pile can cost $12 per ft or more in place, of course depending on soil conditions.It is enlightening to pay some attention to the makeup of these in-place concrete estimates. The cost of concrete alone for ordinary reinforced concrete work is about $40 per cu yd delivered. For special concrete, such as lightweight and/or high-strengthquick-setting concrete, the cost can go to $50 or even $60 per cu yd. Mild reinforcing steel, depending on the cutting and fabricating complexity of the required reinforcing design, can rang from 30¢to46¢per lb in place. For an average of about 150 lb of steel per cubic yard of ordinary reinforced concrete, the steel cost would range from about $45 to $60 per sq yd. Labor, including placing of reinforcing and concrete, cost about $20 to $40 per cu yd depending on the complexity of placing and working the concrete.Form work represents the largest single cost factor for most concrete work. The cost can be stated as per square feet of contact area, with slabs requiring single-side and walls double-side forming. In either case, efficiency depends on reusability and the simplicity of form design. For the simplest reusable plywood forms, such as for a flat slab, the costs will run a minimum of $1 psf of contact area. This amounts to some $80 of forming cost per cu yd of concrete for an ordinary 8-in wall. When beams are introduced, cutting and erection costs are much affected by high labor cost, and the forming costs can easily go to $2.50or $3.00 psf of contact area. Special designs for very complicated forming, such as for nonstandard waffle systems, or for shell and suspension design, will often contribute a large portion to cast-in –place concrete cost, unless the forms are reused.The mass of concrete per square foot of plan area affects the form/cost ratio. This is pronounced in the case of, say, a simple 3-in shell as compared with an 8-in flat slab. At $1 psf form cost, one cubic yard of concrete placed for a 3-in shell will require 108 sq ft of form, at a cost of $108.Thus, the thinner the system, the greater the influence of form costs on total costs.Prestressing costs can now be compared with nonprestressed concrete work. The material and labor for prestressing steel cost about $40 to $60 per cu yd for pretensioned precast concrete and $60 to $80 per cu yd for post tensioned in-place concrete. But with competent design, prestresse structural members are designed thinner in comparison with reinforced concrete design, and the overall cost of prestressed concrete construction could often be cheaper than ordinary reinforced concrete work. The other advantages of weight reduction and minimum deflection are additional.Often where prestressing is not found to be less expensive in term of immediate construction cost, the ability to design for longer spans and lighter elements with less wall, column and foundation loading, as well as the increased architectural freedom, determine the desirability of going to prestressed elements. The point for the designer to remember is that good design in either material will be competitive and frequently one’s decision is in a context of many important building design determinants, only one of which is the structural system.To summarize, the range of cost per cubic yard of standard types of poured-in-place concrete work will average from $150 to $250, the minimum being for simple reinforced work and the maximum for moderately complicated post tensioned work. This range is large and any estimate that ignores the effect of variables above will be commensurately inaccurate.5.SummaryThe estimate and economical design of structure building are important and essential work, which should be valued by all architects and engineers and others. Better you do it, more profit you will receive from it!中文翻译:建筑结构的成本1.导言建筑艺术设计被描绘成了作为一个既包含处理很多物质因素,又考虑诸多非物质方面的因素的复杂形式。

有关工程管理的英语文献

有关工程管理的英语文献

有关工程管理的英语文献Engineering management is the application of thepractice of management to the practice of engineering. It involves the planning, organizing, staffing, directing, coordinating, reporting, and budgeting of engineering activities. It is a discipline that focuses on the application of engineering principles and techniques to the planning, organization, and control of engineering projects and activities.Engineering management involves the integration of engineering, business, and management principles to develop and implement effective engineering solutions. It requires a deep understanding of both technical and managerial aspects of engineering projects.One of the key responsibilities of engineering management is to ensure that engineering projects are completed on time and within budget. This requireseffective planning and coordination of resources, as well as the ability to identify and mitigate risks.In addition, engineering management involves the development and implementation of strategies to improve the efficiency and effectiveness of engineering processes. This may involve the adoption of new technologies, the development of new processes, or the implementation of new management practices.Overall, engineering management plays a critical role in the success of engineering projects. It requires a unique blend of technical and managerial skills, as well as the ability to effectively communicate and collaborate with a wide range of stakeholders.工程管理是将管理实践应用于工程实践的一种学科,它涉及工程活动的规划、组织、人员配备、指导、协调、报告和预算。

工程管理英文文献1500词范文

工程管理英文文献1500词范文

工程管理英文文献1500词范文Project Management in the Construction Industry: A Comprehensive Overview.Introduction.Project management plays a pivotal role in the construction industry, ensuring the successful execution and delivery of construction projects. It encompasses a wide range of activities, from project planning and coordination to resource allocation and risk management. This article provides a comprehensive overview of project management in construction, exploring its key principles, processes, and best practices.Principles of Project Management.The fundamental principles of project management guide the way construction projects are planned, executed, and controlled. These principles include:Project Planning: Establishing a clear and detailed plan that outlines project objectives, scope, deliverables, and timelines.Communication: Maintaining effective communication among project stakeholders, including owners, contractors, suppliers, and consultants.Risk Management: Identifying and mitigating potential risks that may impact project outcomes.Collaboration: Fostering teamwork and collaboration among project members to achieve common goals.Control: Regularly monitoring and evaluating project progress to ensure adherence to plans and objectives.Project Management Processes.Project management in construction involves several key processes that are typically executed sequentially:1. Project Initiation: Defining the project scope, objectives, and feasibility.2. Project Planning: Developing a detailed project plan that outlines tasks, resources, and timelines.3. Project Execution: Implementing the project plan and managing resources to achieve project deliverables.4. Project Monitoring and Control: Tracking progress, identifying deviations, and taking corrective actions to ensure successful project completion.5. Project Closure: Finalizing deliverables, completing documentation, and evaluating project performance.Best Practices in Project Management.To optimize project outcomes, construction industry professionals follow established best practices, such as:Use of Project Management Software: Utilizing project management software can streamline planning, scheduling, and collaboration.Stakeholder Engagement: Actively engaging project stakeholders throughout the project lifecycle to ensure alignment and buy-in.Risk Management Framework: Implementing a structured risk management framework to identify, assess, and manage project risks effectively.Change Management Process: Establishing a clear and proactive process for managing project changes to minimize disruptions and ensure project success.Continuous Improvement: Regularly reviewing project performance and seeking opportunities for improvement to enhance future project outcomes.Benefits of Effective Project Management.Effective project management in construction brings numerous benefits, including:On-Time Delivery: Adherence to project schedules and timelines, meeting stakeholder expectations.Cost Control: Managing project costs effectively, minimizing overruns and staying within budget.Quality Assurance: Ensuring high-quality construction outcomes that meet project specifications and industry standards.Risk Mitigation: Identifying and managing risks proactively, safeguarding projects from potential threats and ensuring smooth execution.Improved Stakeholder Satisfaction: Maintaining strong relationships with project stakeholders by delivering successful projects that align with their needs and objectives.Conclusion.Project management is essential for the successful execution of construction projects. By understanding its key principles, following established processes, and implementing best practices, construction industry professionals can optimize project outcomes, ensure on-time delivery, control costs, manage risks, and enhance stakeholder satisfaction. As the construction industry continues to evolve, leveraging advanced technologies and innovative approaches to project management will become increasingly critical for project success.。

工程管理英文文献

工程管理英文文献

Engineering supervision system in China's Engineering constructionin the positionWith the dominance of China's socialist market economy, the determination of the project supervision system in China's highway construction is gradually becoming more mature. Talking about the project in the country, people always focus on project quality side, it seems that the focus of the task of supervision is to protect the quality of projects, in fact, it is very comprehensive, according to FIDIC provisions in the project construction, project quality, of course, crucial, but only to protect the project supervision of the three objectives (quality, duration, cost), one of these three goals are interrelated and influence, from different angles to protect the owners of the project efficiency. Of which cost control is also very important to the management aspect of this work, good or bad, is directly related to whether the quality of the project can achieve the desired goals, and whether the progress can be completed on time.First, the design phase of the design phase of SupervisionThe introduction of engineering supervision, determine a reasonable design, mature technology, reduce the construction phase of major design changes and program changes to occur, the effective cost control will play a certain role. Experts say: If the project supervision involved in the design stage, then, and can be ruled out, to correct 80% of the errors, but to the construction stage to be involved in supervision of works, at best, can only save 20% of the investment. According to the information briefing, a German university laboratory building, the original design is three and a basement, the project management company to meet the commission's space requirements and functional conditions, proposed to increase the layer to shorten the two-axis then the abolition of the basement. But also reduces the flow of people to evacuate distance (to the required standards), so modified after the design is not only reduced costs, has also been improved functionality, access to credit and praise of the municipal government. At present, China for engineering supervision at the design stage to introduce the practice is still rare, we should learn from foreign countries mature and developed system, the development of relevant systems, and standardize the market. Advocates strengthening the design phase of the supervision, control and management from a cost sense, ex ante control, prevention, which is scientific and reasonable. Therefore, to enhance the design stage to control the cost ofsupervision is necessary.Second, the construction phase of the SupervisionAs we all know, domestic and international construction markets are the dominant owners of a buyer's market, the construction of competition among enterprises is very cruel. In order to bid, bidders tend to almost zero profits or even below cost bids, but the owners often use low-cost way of winning. While the bidders promised to abide by the provisions of contract documents, but once the contract, they refused to the end there is no profit or losing money, so, often with inferior materials, do not follow standard construction, bribery, or layers of subcontracting means to profit. This time, the absence of an effective supervision mechanism, the victims can only be the owners.From the process, process control the cost of supervision of supervision engineer should not only be concerned with whether the works to meet the required quality goals, he should be the focus all the objectives of the project design, in the actual operation, the contractor engaged in construction prior to permanent per days must be carried out by a variety of inspection, testing, content or face a new job, workload, construction methods, measures, materials testing and sub-contracting part of the work or works submitted to the approval of supervisory engineer. The contractor can only work within the approved, without approval or beyond the approved engineer's work can not be recognized. At the same time is also an engineer approved the contractor to obtain a basis for progress payments. Engineers, contractors, any non-approved inputs (manpower, materials, equipment) will not receive compensation, meaning that there is no engineer's approval, the contractor shall not proceed to the next one process or face, shall not be put into construction materials, use, shall not subcontract part of the project or work.Supervision and Control of project cost from the cost of the engineering supervision of the project cost management goal is to project to be completed within the contract price can not be there far exceed estimates. Supervision of the strict monitoring of the project, due to the contractor causes the possibility of super-budget is almost zero. This is because: Engineering Super-budget, no more than two kinds of reasons, the first rise in unit labor and materials, first, during the construction works increased volume, while the contractor's bid is a commitment to its binding, and the contractor not entitled to their own works to increase the amount of the project, even if there are engineers, required the contractor to increase the input of resources toprotect the project design goals, the contractor has no right to be compensated, therefore, because in the tender document, the contractor can protect a large number of frequently cited the successful completion of the project personnel and mechanical equipment. From equipment costs, materials costs and equipment costs control supervision, materials costs in the capital projects account for about 70% of the entire cost. It is the project a major component of direct costs. Materials, equipment, high and low prices will directly affect the size of the construction costs.Thus, in the supervision process, can not be ignored that part. To introduce competition, and create competitive conditions. Owners can delegate the direct supervision through public tender selecting the suppliers, so that contractors can avoid unauthorized lower prices, delays in provider payments and thus lead to shoddy supplier, delivery is not timely, thereby affecting the progress of projects happening. The contractor in the preparation of tender prices, mainly the prices of materials and equipment owners and suppliers signed price quotation, by the suppliers of materials and equipment will be mainly transported to the scene by the supervising engineers and contractors to co-sign, the by the owner will focus on the procurement of materials and equipment shall be paid directly to suppliers.From the above procedures is easy to see the contractor in addition to supervising engineers no choice but to obey. This is because the supervising engineer contractor performance has a strong economic constraints means, economic means of payment by the project system and the deposit system, composition, they are the heads of the two contractors, "inhibition".The project payment system: in fact, the project payment system is to project the economic risk of being transferred to the contractor. Contractor must obtain economic benefits (the bid price and the difference between the actual cost of the project) prior advance money or other resources, that is: He had to buy the materials, equipment, payment of wages and other expenses, under the supervision of the supervising engineer contract documents all requests to create a project. Can only be the work of the contractor to complete the written approval of the supervisory engineer and the quality of bond, after deducting there from the owner to obtain compensation (for projects). If the contractor's work should not be so satisfied with supervision, he not only no hope of profit, and even the cost of inputs can not be recovered.Project Margin System: As a rule, signed contract before the contractor must pay the contract price equal to 10% of the performance bond or letter of guarantee. Thecontractor prior to commencement of course, can be obtained from the owners of 10% of the total contract price of the advance payment, but he must also be matched to the owners to submit a bond or letter of guarantee. Even if the contractor has received final acceptance certificates from the project, he will be leaving 5% of total contract price of the retention money. Here the performance bond and retention payments totaling 15% of the project contract price, far greater than the contractor's profit margin. The contractor's default can cause bond be forfeited, and whether the breach of contract only to evaluate the supervisory engineer.Third, completion of the project closing of SupervisionThe first job done in several stages, based on the completion of settlement on a lot easier. Labor Exchange acceptance of the project handled immediately after completion of billing processing. Completion of the contract price settlement value is value of claims already liquidated damages.According to FIDIC terms or model of China's construction contract terms and the actual text of the provisions of the terms of the contract is signed: involving construction claims and breach of contract issues, supervision engineers must clearly define the responsibilities to minimize the claims, to reduce the claim should note the following: strengthening contract management, improve the terms of the contract; before projects should be fully prepared to work; enhance the design of the review, the timely detection of problems in the design to avoid the construction.Engineering design changes due to claims arising; to strengthen quality management, and strengthen the quality of tracking, to avoid or reduce the contract sample tests or works outside the review of claims arising; to improve the quality of supervision engineers found that claims in a timely manner.In short, the supervision engineer in Cost Control of the importance of the role and status is beyond question, supervision is entrusted by the owners on the implementation of the project to conduct supervision and management, reform and opening up of China's foreign towards WTO needs. Project Management is a need for a variety of professional and technical, economic, legal and other integrated management of multi-disciplinary knowledge and skills in intellectual-intensive service work, which requires supervisors controlling costs, management contracts and information, the ability to mediate economic disputes, continually improve their own quality, and enhance awareness of contract management, improve the legal system. To this end, the state unit of the Ministry of Construction Supervision of social hierarchyand the corresponding conditions and qualification standards, supervision of qualified engineers to make separate provision accordingly. Project Management in China has generally been carried out, as a mature project management experience in the management of cost control will certainly play a key role.。

工程管理专业外文文献3000字范文

工程管理专业外文文献3000字范文

工程管理专业外文文献1. 研究背景工程管理作为一门涵盖工程技术、商业管理和项目管理等多个领域的学科,其在现代社会中扮演着日益重要的角色。

随着全球化和跨国企业的兴起,工程管理的研究和实践也逐渐受到重视。

对于工程管理专业的学生和从业人员来说,了解国外的研究进展和理论成果是至关重要的。

2. 国外工程管理专业外文文献在国外,工程管理专业的研究和学术交流非常活跃,许多优秀的论文和研究成果被发表在国际知名的学术期刊上。

以下是一些关于工程管理的优秀外文文献,它们涵盖了工程项目管理、风险管理、质量管理、成本管理、进度管理等各个方面的内容。

3. 《Project management in small to medium-sized enterprises: matching processes to the nature of the firm》这篇文献研究了项目管理在中小企业中的应用。

作者通过案例分析和实证研究,探讨了中小企业与大型企业在项目管理实践中的区别,提出了与企业规模相适应的项目管理流程,为中小企业的项目管理提供了宝贵的经验和启示。

4. 《Evaluating risk oversight in public sector mega-projects》这篇文献关注公共部门超大型项目中的风险监管问题。

作者通过对多个公共部门项目的案例分析,评估了目前风险监管的情况,并提出了改进措施和建议。

该文献对于公共部门项目的风险管理研究具有重要的参考价值。

5. 《Quality management in construction projects: A literature review》这篇文献综述了建筑项目中的质量管理理论和实践。

作者对国际上大量的质量管理研究和案例进行了梳理和总结,系统地阐述了建筑项目中质量管理的重要性、管理方法和工具。

对于从事建筑项目管理和质量控制的专业人士来说,这篇文献具有很高的参考价值。

工程管理论文中英文资料对照外文翻译

工程管理论文中英文资料对照外文翻译

工程管理论文中英文资料对照外文翻译The Internet is Applicated in Real EstateThe Real Estate Industry and the World Wide Web: Changing Technology, Changing Location.The Internet, in its Web based graphics version, has captured the imagination of both consumers and businesses. Its convenience, speed, low cost and versatility are being exploited on a daily basis in ever-changing ways. Together with its capacity to transform existing businesses, promote new businesses and facilitate exchange of information and data, its other striking attribute has been the speed with which this new technology has spread throughout the global economy.Keywords:The internet;Real Estate;ApplicatedThe number of computer hosts grew by more than ten-fold between 1995 and early 1999. The number of Web sites increased almost 100-fold, to over two million, between 1995 and 1998.By the year 2000, there will be approximately 400-500 million Internet users in the world, and the total number of Web sites will exceed five million.This new technology has the potential for affecting the real estate industry directly and indirectly. Directly, it may become a tool that allows a real estate business to expand its information and sales network. Indirectly, it may change the location equation where and how firms do business which in turn will affect the role of firms involved in real estate development, investment and transactions.Measuring the Spread of the WebThere are few reliable published statistics on Internet or Web use, and statistics reported by different analysts are often inconsistent. Our discussion of the Web and real estate is based on limited information from surveys and on examination of Web sites rather than on more comprehensive data. We have built our overview of the role of the World Wide Web and real estate by examining a variety of sources(including trade publications, existing Web sites, and our own survey of selected real estate firms)From E-mail to E-commerceBefore the advent of the World Wide Web, the Internet existed mostly for the purposes of e-mail, data transfers, newsgroups and bulletin boards, and its reach was limited primarily to the academic and the defense community. The technology itself was not particularly user-friendly, the network speed was not very high, the medium was limited to text and data, and accessing information was cumbersome and time-consuming. The browser technology greatly simplified usage, enabled multimedia information, and created interactive possibilities. The technology brought together TV entertainment, library information, news bulletins, communication and data in one desktop machine.Although initially the greatest patrons of the Internet were the academic community, the commercial sector quickly caught on to the potential of the Web. The private sector saw in the Web an opportunity to widen its marketing reach, lower costs of information dissemination, improve customer relations, and ultimately to conduct sales. Existing private sector Web sites can be roughly categorized into three types, as summarized. The most basic level is for simple information dissemination. The firm registers a Web site and develops a page giving basic company information. The second stage is an expansion of information, marketing goods and services or providing other customer information. The third stage is the addition of transactions tothe activities possible on the Web site.Most business sites at present are in Stage 2. The use of the World Wide Web for detailed information dissemination, and marketing has had several advantages. For the firm, marketing, information dissemination and customer services on the Web can be monitored and analyzed with some details unavailable from conventional methods of marketing using other media. Internet tools can now provide a firm with data on who accessed the site, which pages were visited most, heavily, from where and for how long. This information contributes to improved measures of the results of promotional efforts. The promotional costs associated with the Internet have also been very low. For example, in direct mail marketing, to send a one-page color brochure to 5,000 random addresses will cost upwards of $2,500. The cost of setting up a Web site could be one-tenth of this amount or less (although tracking and analysis can quickly add to the cost)?Many different sectors, including real estate, have found the Internet to be both efficient and cost-effective as a marketing device.The next logical step - a full-fledged office/store on the Web with transaction capability and commerce on the Internet is now being attempted in varying degrees depending on the firm's area of business. Retail sites selling products between $10 and $100, the kind that are traditionally part of a direct mail sales catalog, seem to be the ones having the greatest success(although 4% of sites sell products over $10,000 and another 13% sell products ranging from $100 to$9,999)?A number of retail sites have also harnessed a secondary revenue stream from advertising. Advertising revenues on the Web have crossed the billion-dollar mark and total Internet generated revenue will approach$100 billion this year.Consumers' Use of the WebSurveys of consumers using the Web suggest that a Web site does notsubstitute for the more traditional forms of business, but can greatly facilitate the run-up to the final transaction. The most common use of the Web is for information searching, closely followed by work-related uses, education, and entertainment. A significant majority of those that use the Web for shopping do so to carry out detailed research on product information(90%)and to do price comparisons(85%). This more often leads to purchases through normal channels(67%). Most of the online purchases tend to be of items that are standardized-four of the five top items bought on the Web, according to survey, are software, books, hardware and music (the fifth is travel). More than half of consumers who make purchases on the Web spend less than $500 in a six-month period.The demographics of Web users vary widely in age and income. Surveys by Georgia Tech, Active Media and Web indicate that the average age of Web users is 35 years, with average household income $67,000. Most are college educated (65%). A high proportion of the respondents (42%) has accessed real estate sites.Limits to the Web - Some "Catches" to the New Technology New technology is frequently a mixed blessing, and the World Wide Web is no exception. Apart from the teething troubles that any new technology faces and the time, as well as resources needed to learn, adapt and master it, the Web poses some unique issues and problems of its own. Consumers today are facing information overload of taxing proportions. It is not always easy, or even possible, to locate the relevant information on the Web, despite sophisticated search engines. Once the site is located, fancy graphics, complex linkages, labyrinthine routings, and a lot of irrelevant information may overwhelm the consumer - in short, poor and confusing site design can reduce the site's effectiveness.From the point of view of the business, there are two commonly heardcomplaints. First, the business may find that its site does not figure prominently on search results, limiting the number of customers reached. Second, for many firms, Web initiated leads are as yet few and far between. Real Estate Web SitesReal Estate firms and related businesses were among the early private sector pioneers of Internet use and have had a fast growing presence on the Web. presence on the Web. One example of the real estate sector's presence on the Internet in its pre-World Wide Web incarnation was the real estate classified bulletin board of Prodigy, the online service, which had listings for homes and other real estate. A few real estate related Web sites started in 1994 (generally regarded as the inaugural year of the Web). The New York City Real Estate Guide Web site, created in the summer of 1994, was one of the first to offer free access to the latest New York real estate information. By the summer of 1995, the site was receiving more than 100,000 inquiries a month.The real estate industry registered its entry on the Web in a dramatic way in 1995. By the end of that year there were close to 4,000 real estate Web sites. The content matter of the sites, as well as the mix of real estate related firms on the Web have changed over time. Initially, quite a few of the sites were residential real estate brokerages and listing guides, but fairly rapidly the list expanded to include commercial and retail listings, mortgage brokers,appraisers, architects, real estate attorneys, developers, construction firms, and suppliers. As investment vehicles for real estate expanded, REITs, publicly held firms, and investment advisors also added Web sites.The early real estate broker Web sites quickly took advantage of the unique features of the Web. Prospective customers could find out what properties were for sale or rent, look up detailed descriptions of each listing, view photographs and floor plans, and contact the broker by e-mail. Viewerscould also look up statistical and data reports on conditions in various geographical areas and on emerging macroeconomic trends.Ever since then, the real estate industry has been among the most enthusiastic users of the Web, by some measures accounting for 4% to 6% of commercial Web sites. A survey conducted by Real Estate Broker's Insider in early 1998 confirmed that nearly 95% of the respondents/brokers had a Web site, and more than 90% of the housing stock on sale at a given time is now listed on the Web. Indeed, because of the dispersed, localized nature of the role of information in real estate, the prospective gains from information dissemination, comparability, and Web links were particularly significant in real estate.For much of the real estate sector, the Internet generates not so much the actual transactions themselves, but creates initial leads that are later followed by transactions, purchases and sales. Web sites frequently lead to contacts that are then nurtured through telephone and person-to-person meetings. For residential real estate, Web activity includes residential searches, housing details, and pricing information (both on houses and mortgages), with follow-up contact with brokers. Real estate-related transactions are seen in the hospitality industry (making reservations for hotels and vacation homes and in online mortgage applications). Mortgage and home loan finance companies report both inquiries from mortgage shoppers who obtained initial information from their Web sites, as well as closing of loans through the Web, lead to great savings in time and overhead costs.It is not just the real estate professionals who are enthusiastic about their Internet presence, judging it to be as effective as print and radio advertising. Mortgage shoppers, homebuyers and vacation rental seekers as well applaud, in particular, the convenience it brings to the entire process of searching, researching, comparing, communicating and transacting business.Beyond these sectors, many other types of real-estate related firms are using the Web to broaden their market areas, increase the depth of their marketing, and to provide a range of services to existing customers. Commercial brokers provide not only information on available sites but also on market conditions for different locations and sometimes more in-depth economic analysis of a region. REITs and other investment firms provide detailed information on their products as well as background market or economic information. Public companies provide up-to-date stock quotes and quarterly and annual reports on the Web.Web Penetration and Use: The Experience of Leading Real Estate Firms We conducted a limited survey of a sample of leading real-estate related firms in the US and California. Responses from approximately 60 of these firms showed that over four-fifths had Web Sites by March 1999. 2 Of those with Web sites, one-third had inaugurated their sites by the end of 1996. Among the earliest with a Web presence were brokers, investment firms, lenders, business and financial services firms, law firms, residential developers, and a trade organization. Another third of the group were newcomers, with sites inaugurated in 1998 or early 1999. Commercial developers were prominent among this group, with residential developers, consultants and advisors, lenders, REITs and investment firms also among this group. Those without sites were more likely to be privately held firms with a relatively narrow base of activity (for example, a commercial developer centered in the San Francisco Bay Area)?Most with Web sites used their site to provide information about the company and to market services. In addition, about one-third marketed property from their site, providing detailed information on the characteristics of buildings available, surrounding communities, and other related data. Other Web site uses include employee recruiting, providing information formembers or investors, and disseminating related information on topics such as regulations or real estate markets.What does the Web specifically do for Real Estate?According to Activemedia, an internet research company, some of the sectors experiencing the greatest growth in terms of their presence on the Web in 1998 were computer hardware and software, real estate, publishing and information, finance and Internet services. A significant initial motivation for this rush for the Web is provided by, what can be termed, the "tiptoe" effect. The first ones on the Web had an additional advantage over those who did not; information on their services, products, home listings now be accessed conveniently by those with computers. The low setup cost, however, and the potential disadvantage of not having a Web presence has propelled others in the profession to set up their own sites.Real estate shares in some of the basic advantages of the Web mentioned earlier, such as ease of marketing, communication and feedback from clients, lowered costs of operations and convenience of customer service and support. In addition, the Web provides positive features specific to the real estate industry.Key elements include the following.1.Increased geographic reach.The Web has dramatically increased the geographic reach of both buyers and sellers. Although the "local" aspect of real estate will perhaps never be whittled away completely, there is no doubt that inquiries about properties can now emanate from far away to a much greater degree than before. This, in turn, potentially increases the size and "depth" of the market and makes it more efficient.2.Capability of visualization.In some sense, increased geographic reach has become possible due tothe other emergent feature of the Web, the capability of visualization. In its most state-of-the-art form, Web sites now allow prospective buyers to take virtual tours of homes, resorts, hotels and convention centers.3.Reduced transaction costs.The Web may reduce transactions costs. This has been particularly apparent in the case of mortgages. According to Fannie Mae, 1.5% of all mortgages were handled online this past year. The Web-attributable features that make this kind of a transaction possible are instantaneous comparability, interactive capability, online calculation, online applications, and continuous updating of the sites.4.Improved information dissemination.The Web offers broad opportunities for increasing the scope and depth of information provided by many different types of firms. A well constructed home page gives an overview of a firm's range of services or activities. Links allow the customer or client to learn much more detail about the selected items of most interest, while ignoring less relevant pieces of information. A number of sites take advantage of the ability to link to resources beyond the company's Web pages, linking customers and clients to related Web resources.Unlike retail sectors, such as books and computer hardware, the Web as yet has not become a threat to the "middle man" role of many real estate firms. Instead, it is more likely to be used as a means of expanding services offered or locations served. However, in the long term, the Web and related Internet technology have the potential to change the structure of business activity, which in turn will affect the demand for real estate in type if not in quantity. For example, some retailers already have closed stores while expanding sales on the Web. Also, the Internet has been seen as one factor allowing the decentralization of office space. These trends to date have notled to a decline, but rather to a redistribution in the demand for office, retail and warehouse space.These are summarized .Speculation on Potential Impact of Internet on Real Estate Industry.1.Shortening of Transaction Cycle2.Precise Market Targeting3.Transformed Competition4.Cost savings:a)Marketing,b)Sales,c)Operation5.Possibility of Disintermediation;Lowering of Commissionsbination of Comparison Shopping and Direct Sales7.Access to MBS Secondary MarketHow to Find the Real Estate Sector on the WebThere are a few key sites that can be used to access the broad range of real-estate related Web sites. These include:-Site sponsored by the National Association of Realtors, linking users to realtor, home sales and market information.-Site sponsored by the National Association of Home Builders, providing a wide range of market information.-Directory to commercial real estate sites, including brokers,developers, investors and analysts. and , two sites that provide users with information about mortgage rates, mortgage brokers and with the opportunity to submit an application online. (National Association of Real Estate Investment Trusts) and (Real Estate Investment Advisory Council), two associations related to real estate investment trusts.-The California Association of Realtors site.the site for the Urban Land Institute, with information onthe organization, programs, conferences, and publications related to real estate and land use. has three online magazines including National Real Estate Investor, Shopping Center World, and Midwest Real Estate News. An additional real estate online magazine, can available at .Ashok Deo BardhanRESEARCH FELLOWCynthia A. KrollREGIONAL ECONOMIST互联网在房地产业的应用摘要:互联网,仅仅它的网页图形版本,就已经吸引了众多消费者和商家的目光。

工程管理毕业论文外文文献及翻译BIM Beyond Boundaries

工程管理毕业论文外文文献及翻译BIM Beyond Boundaries

工程管理毕业论文外文文献及翻译BIM BeyondBoundaries外文文献:BIM Beyond BoundariesSeptember 10, 2012 ? by Randy DeutschAbstract: Opting for depth over breadth of expertise is a false choice that will lead individuals, organizations, the profession, and industry in the wrong direction.Keywords: BIM, expertise, anti-learning, master builderSeveral forces are converging to create an unprecedented and timely opportunity for organizations that have embraced building information modeling (BIM). These forces —including the rise of the expert, the growing complexity and speedof projects, and BIM’sincreasing recognition as an enabler, catalyst, and facilitator of team collaboration — also presentsignificant challenges that can be overcome with the right approach and mindset.At one time, being an expert meant knowing more than one’s competitors in a particularfield. Firms that reinforced their expert culture hoarded information, which resulted in silos of expertise. Today, many firms are looking to hire people perceived as building and software technologyexperts, shortsightedly addressing today’s needs at the expense of tomorrow’s. While architects have always been trees with many branches, our current economic climate has discouraged them from being anythingbut palm trees: all trunk, no branches.And yet things change so quickly that those who went to bed experts are unlikely to wake up experts in the morning. Due to the speed and complexity of projects, we do not have time to acquire knowledge the old way — slowly, over time, through traditional means. Even when we supplement our book learning with conferences, webinars, and continuing education, it is impossible to keep up with the flow of new information in our industry.Expertise today is a much more social, fluid, and iterative process than it used to be. Being an expert is no longer about telling people what you know so much as understanding what questions to ask, who to ask, and applying knowledge flexibly and contextually to the specificsituation at hand. Expertise has often been associated with teaching and mentoring. Today it’smore concerned with learning than knowing: less to do withcontinuing education and more with practicing and engaging in continuous education.Social media presents the would-be expert with both opportunitiesand challenges. Working- 1 -with the understanding that somebody somewhere has already done what you are trying to do, design professionals, like agile technology experts, can find what they’re looking for by tapping into their networks and aggregating the responses. Conversely, due to the rise of social media, virtually all anyone has to do today to be considered a technology expert is to call themselves one. Because social networks allow people to proclaim themselves experts, it can be hard to know who to turn to, resulting in the rise of otherwise unnecessary certifications.An expert today is someone whose network, community, or team deems him or her so. Such acknowledgment from one’s community can be considered a form of social certification. To grow one’s professional reputation, expertise in BIM counter-intuitively requires unlearning, detachment, collaboration, and developing both deep skills and broad interests.BIM EXPERTISE REQUIRES UNLEARNINGAs we grow in our careers, we tend to focus more on people issues and less on technology. We also tend to cooperate conditionally, responding to the behavior of others. This has huge implications for design and construction professionals who might be naturally collaborative —through sharing knowledge, learning, mentoring, and teaching — but are otherwise conditionedand tempered by the culture of the firm where they work.Working in BIM provides an unprecedented opportunity to learn: how buildings go together, how projects are scheduled, cost implications of decisions, and impact on the environment. At the same time, there is a great deal we still need to unlearn with BIM. We can start by asking some questions: Which aspects of the traditional design process change with BIM and which stay the same? What knowledge, methods and strategies must be abandoned due to BIM and what is critical to keep? And perhaps most important: What, while learning to work in BIM, needs to be unlearned?While unlearning habits we picked up working in CAD would seem like a good place to start, there’s also a great deal we need to unlearn in order to return to our original sharing attitude and cooperative ways. These include bad habits we’ve acquired since we left the cocoon of school and embarked on the hard knocks of a career in architecture and construction, where we may have learned to be mistrustful, skeptical, competitive, secretive, and working independently in silos. In doing so, we’ve unlearned many of the critical natural habits, attitu des, and mindsets necessary to work effectively and collaboratively on integrated teams.- 2 -BIM EXPERTISE REQUIRES DETACHMENTFrom Japanese martial arts there’s the concept of shuhari: First learn, then detach, and finally transcend. As consultant Ian Rusk has explained, shu, ha, and ri are considered three phases of knowledge thatone passes through in the study of an art. They can be described as the phases of traditional knowledge, breaking with tradition, and transcending it.Working in BIM, we need to address all three steps to meet our goals. Of the steps, the second (detachment, or breaking with tradition) is the most important. Detachment requires that we remain flexible and agile while learning, not holding on tightly to our ideas, agendas, or prejudices, so that we can move beyond them.BIM EXPERTISE REQUIRES COLLABORATIONWhile we as an industry have now lived with BIM for more than two decades, most firms have acquired and implemented the technologyprimarily as a visualization and coordination tool in the past several years. We appear to have reached a standstill in the software’s use, with manyfirm leaders wondering how to make the leap to more advanced uses. Further mastery of the application through traditional means won’t help us get there. If we are to achieve our personal, organizational, professional, and industry-wide goals of fully participating in public, community, creative, and economic life, something more needs to happen.Achieving higher levels of BIM use — including analysis, computation, and fabrication —requires skills and a mindset that allow us to work productively and effectively in a collaborative setting. Working with BIM enables but doesn’t necessarily lead to collaboration. We each have to decidewhether or not to look beyond BIM as a tool and embrace it as a process. When recognized as a process, BIM can be a powerful catalyst and facilitator of team collaboration.BIM EXPERTISE REQUIRES DEPTH AND BREADTHIt would be a mistake to assume that expertise in BIM as a technology alone will lead to greater leadership opportunities on integrated teams. In this capacity, BIM requires attention to acquiring skills that, while easy to attain, can be overlooked if we focus primarily on the software tools.With BIM, technical expertise should not be considered moreimportant than increasing one’s social intelligence, empathy, or the ability to relate well with others. Additionally, the conventional window for achieving technological expertise is too long. Better that one achieves a- 3 -high level of BIM competency motivated by passion and curiosity. Having competency in one subject doesn’t preclude you from addressing others. In fact, it can be a determinant for doing so.Being versatile flies in the face of current thinking that to succeed we should bolster our strengths over our weaknesses. The answer to Should I be a specialist or generalist? is yes. There must be people who can see the details as well as those who can see the big picture. One gift of the design professional is the rare (and underappreciated)ability to do both simultaneously. As with any hybrid — generalizing specialist or specializing generalist —one’s strength provides the confidence to contribute openly from many vantage points and perspectives.It is critical for “T-shaped” experts to reach out and make connections (the horizontal arm ofthe T) in all the areas they know little or nothing about from their base of technical competence (the vertical arm of the T). T-shaped experts have confidence because of their assurance that they know or do one thing well. Their confidence allows them to see as others see by means of — notthrough —what they know. Their expertise doesn’t color their perception so much as provide a home base to venture from and return to with some assurance that they’ll maintain their bearings when venturing out across the table.Broad-minded design professionals often find themselves in the roleof “anti-experts,”approaching challenges from the perspective of the outsider. To this Paula Scher of Pentagram said, “When I’m totally unqualified for a job, that’s when I do my best work.” Once we balance,own, and ultimately realize our expert and anti-expert selves, we(as a community, profession, and industry) will do our best work.WHAT DO WE DO NOW?Firms want to know how to optimize their work processes to become more efficient at what they do best, to remain competitive by leveraging the competitive advantage of BIM and integrated design. One of the ironies facing the in dustry is that in order to master BIM, don’t learn more BIM. Instead, do other things.What will bring about greater efficiencies and effectiveness, increase productivity and deliver value, is not additional technology knowledge but our ability to communicate, relate, work together, think like one another, have empathy, understand, and listen. If design professionals want to lead they will do so not by increasing their depth but by benefit of broader capabilities involving their reach.- 4 -What do we do now? Go wide and deep. Go against common wisdom and fortify your soft skills, your reach and wingspan. To master BIM you have to transcend BIM.We need to develop both sides of ourselves in order to move beyond our own and others’ biases and anticipate consequences for courses of action before they are acted upon. We need to develop the ability to put the project first, navigate iRooms and packed conference tables to get our ideas and points across, be able to read people for overt and subliminal responses, have the confidence to ask questions without feeling threatened and be asked questions without becoming defensive. It is as though we have placed so much emphasis on the bricks we’veforgotten the mortar that allows us to communicate genuinely, to relate well with one another and integrate.Having to choose between depth and breadth is a false choice that heads our profession and industry in the wrong direction. Rather than focusing on one over the other, we need to develop simultaneously vertical deep skills and horizontal soft skills, to work on our strengths and weaknesses, to be expert and anti-expert, specialist and generalist, to design from evidence and from intuition, to be task- and people-oriented, to have mastery over one thing and be a jack-of-all-trades.As one blog commenter recently asserted, “In order to practice architecture well, you need tounderstand a lot of things that aren’t architecture.” BIM technology experts know one thing. To flourish and persevere, we need to know and do many things.Often overlooked in mutual mentoring of computer technology and building technology by senior and junior staff are basic people skills: listening, questioning, negotiating, collaborating, communicating. The concern is that the emerging design professional — adept at BIM tools while learning how buildings come together —won’t learn the necessary communication andpeople management skills to negotiate a table full of teammates onan integrated team. These skills need to be nurtured, mentored, and acquired as assuredly as computer and building technology skills. Theseskills require the same amount of deliberate practice and feedback as the mastery of technology skills. Developing complementary,collaborative skills is as critical as becoming competent with the technology. As Ernest Boyer anticipated, “The future belongs to the integrators.” And that future has arrived.Succeeding in practice today is a both/and, not an either/or, proposition. Design professionals must be both BIM technologist and building technologist. Those who accept this- 5 -model will lead, persevere, and flourish in our new economy.Last year in Design Intelligence, Stephen Fiskum wrote, “One thing is certain: The solution to the current malaise in our profession is not for us to go broader but to go deeper” (“Preparing for a New Practice Paradigm,” January/February 2010). This is a new world: By going wider anddeeper we provide owners and our organizations with the most value and increased productivity. Working effectively and collaboratively in BIM will help us transcend our current state, bridge the gap, and cross over to more advanced uses.THE MULTIDISCIPLINARY MINDSETIt is not just that the integrated team is now multidisciplinary,but we each must become multidisciplinary. Doing so requires a multidisciplinary mindset. This entails empathy, a genuine appreciationfor others’ ideas, seeing from many perspectives, and anticipating possibleconsequences to any course of action. An industry representative recently stated in a public forum, “I don’t want the architect tothink like a structural engineer. I need for him to think like an architect!” To leverage our technology tools and work processes, being an architect today means that we think like a structural engineer aswell as a contractor and owner. Doing so doesn’t take away from architects’ role but increases their credibility by making them more effective andinfluential at what they do well.Working in BIM — inward focused, object-oriented, filling-in dialog boxes — discouragesthis mindset. It is a mistake to think that those who work in BIMare technicians and that a firm principal or senior designer who seesthe big picture will mediate between the model and the world in whichthe model operates. Leaders must see to it that their teams look outward, keeping an eye on the model while seeing the horizon.THE TECHNOLOGY/SOCIAL CONTINUUMWorking in CAD, there are those who focus on drafting and those more adept at communication, negotiation, and persuasion. With BIM, technical understanding and people know-how must exist in each and every design professional.The majority of BIM-related literature has been focused on the technology, not on the people who use it. People issues and attitudes are the main impediment to the collaborative work processes enabled by the technology. Human issues, issues of communication and collaboration, firm culture, motivation, and workflow — all exacerbated by the advent of BIM into the- 6 -workplace — are an even greater challenge than the admittedly considerable software application and technical problems associated with BIM’s use.LEADING FROM THE MODELWorking in CAD, a senior team member would redline an emerging employee’s work. Leadership was decidedly top-down: Someone senior designed or detailed, and someone less senior drew it up. The problem was that the senior team member never knew whether the emerging employee understood what was being drawn.Working in BIM provides a completely different work flow — one we have yet to leveragefully. Because those on the front lines are not only the first to discover clashes and inconsistencies but also to visualize what something looks like and how it might function, BIM allows our emerging talent to lead the process — to learn on the job while recognizingtheirpower from their privileged position of the first look in the model.The new leadership mandate in this process is for architects to lead from their involvement in the BIM environment. Leading from the modelcan be likened to leading from the middle in that BIM requires and even enables followership, and servant- and situational-leadership, as opposed to top-down or command-and-control. While leadershiphistorically has been top-down, working in BIM and on integrated teams changes that. Leading in BIM and integrated design is more similar to followership, in which middle managers lead from within the organization. Thus with BIM, the top-down and bottom-up approaches converge, where leading from the middle becomes leading from the model.BIM AND THE MASTER BUILDER TEAMArchitects who find themselves on increasingly large teams must find a way to lead and regain their voice in the design and construction process. If architects learn how to design buildings that are optimized to give owners, contractors, and other team members what they need — of high quality, low cost, sooner, with less waste, while acquiring the mindsets, attitudes, and skills necessary to collaborate with others —then architects will be trusted, newly esteemed, andreturn to their desired leadership role. What is critical is notthat we linearly help emerging professionals move from technical experts to leaders but to be technical experts and project, team, and process leaders at the same time. Expertise is cultivated by creating the right conditions for experts to flourish; people cannot be forced to learn and grow.- 7 -Many A/E/C professionals are stressing the role of the team over the role of any one individual mastering any one subject or technology in advancing practice. The general consensus is that appointing any one individual as master of the project is largely irrelevant. Instead, the architect who works in BIM serves as master facilitator or strategic orchestrator on integrated teams. By working with as well as through others, we get the most out of fellow teammates.The concept of the composite master builder is the brainchild of visionary environmentalist Bill Reed. The term recasts the historical single master builder (or virtual master builder) as a diverse group of professionals working together toward a common end: the master builder team. The intention is to bring all specialists together, allowing them to function as if they were one mind. A better prescription for what ails our industry would be hard to find.- 8 -中文译文:超越边界的BIM2012年9月10,兰迪•多伊奇摘要: 在BIM 应用中,对于专业的深度要求超过了广度是一个错误的选择,这将使个人、组织,以及这个职业和整个产业走向错误的方向。

工程管理专业,外文翻译资料

工程管理专业,外文翻译资料

外文资料翻译资料来源:文章名:Predicting Effectiveness of Construction Project Management: Decision-Support Tool for Competitive Bidding书刊名:An International Journal作者:Rasa Apanaviciene, Arvydas Juodis出版社:国际杂志,2006章节:V ol.6, No.3 / September - December 2006页码:P347~P360文章译名:建设工程项目管理的预测功效:用于决策支持工具竞争性招标姓名:学号:指导教师(职称):专业:班级:所在学院:外文原文Predicting Effectiveness of Construction Project Management: Decision-Support Tool for Competitive Bidding1.IntroductionConstruction projects are delivered under conditions of risk in the competitive market environment. The origin of risk is the uncertainty inherent to any project, and every risk is associated with a cause, a consequence and the probability or likelihood of the event occurring. There are external risks (economic, political, financial and environmental) and internal risks based on project management issues, i.e. projects manager's and his team competency, experience, strategic and tactic decisions made during construction project delivery. The opportunity to improve organizational performance through more effective project management could provide substantial savings for construction management company. Project management effectiveness depends on certain factors of project management system. The literature review revealed a substantial volume of work on measuring or identifying the factors or conditions contributing to the effectiveness of construction projects. There are three main trends of previous research on construction project success factors:●key factors identification for construction project success [Jaselskis et. A1.(1991);Sanvido et. A1. (1992); Chua et. A1. (1997)];●identification of key success factors for a particular group of construction projects,e.g.BOT, design-build, public-private partnerships [Tiong (1996);Molenaar et. A1. (2001);Chan et. AI. (2001), Zhang (2005), Shen et. A1.(2005)];●analysis of a particular factor impact on construction project success [Cheng et. A1.(2000); Bower et. A1. (2002); Ford (2002)].Some writers were attempting to develop predictive models while others focused on generating a list of practices. Predictive models developed to identify the key factors and to measure their impact on overall project success were using regression and correlation techniques, factor analysis, Monte-Carlo simulation, experts and multicriteria decision-making support methods. Essentially in these approaches the functional relationships between the input factors and project outcome is assumed and tested against the data. The relationships are modified and retested until the models that best fit the data are found.When developing construction project management effectiveness model (CPMEM) referred to here, the writers attempted to cull the best aspects of artificial neural networks (ANN) methodology. The neural network approach does not require an a priori assumption of the functional relationship. Artificial neural networks are very useful because of their functional mapping properties and the ability to learn from examples. Networks have been compared with many other functional approximation systems and found to be competitive in terms of accuracy [Haykin 1999]. This and the ability to learn from examples allow modelling the complex construction project management system where behavioural rules are not known in detail and are difficult to analyze correctly.2.Methodology of Artificial Neural NetworksThe foundation of the artificial neural networks (ANN) paradigm was laid in the 1950s, andANN has gained significant attention in the past decade because of the development of more powerful hardware and neural algorithms [Haykin (1999)]. Artificial neural networks have been studied and explored by many researchers where they have been used, applied, and manipulated in almost every field. For example, they have been used in system modelling and identification, control, pattern recognition, speech pronunciation, system classifications, medical diagnosis as well as in prediction, computer vision, and hardware implementations. As in civil engineering and management applications, neural networks have been employed in different studies. Some of these studies cover the mathematical modelling of non-linear structural materials, damage detection, non-destructive analysis, earthquake classification, dynamical system modelling, system identifications, and structural control of linear and non-linear systems, construction productivity modelling, construction technology evaluation, cost estimation, organisational effectiveness modelling and others [Adeli et. A1. (1998), Sinha et. A1. (2000)].A neural network can be defined as a model of reasoning based on human brain [Wasserman (1993)]. Learning is a fundamental and essential characteristic of biological neural networks. The ease with which they can learn led to attempts to emulate a biological network in a computer.2.1 Model of Artificial Neural NetworkAn artificial neural network consists of a number of very simple and highly interconnected processors, also called neurons, which are analogous to the biological neurons in the brain. The neurons are connected by weighted links passing signals from one neuron to another. Each neuron receives a number of input signals through its connections; however, it never produces more than a single output signal. The output signal is transmitted through the neuron's outgoing connection (corresponding to the biological axon). The outgoing connection, in turn, splits into a number of branches that transmit the same signal (the signal is not divided among these branches in any way). The outgoing branches terminate at the incoming connections of other neurons in the network. Figure 1 represents connections of a typical ANN.As shown in Figure 1, a typical ANN is made up of a hierarchy of layers, and the neurons in the networks are arranged along these layers. Each layer in a multilayer neural network has its own specific function. The input layer accepts input signals from the outside world and distributes them to all neurons in the hidden layer. These neurons detect the features; the weights of the neurons represent the features hidden in the input patterns. These features are then used by the output layer for determining the output pattern. The output layer accepts output signals from the hidden layer and establishes the output pattern of the entire network. The neurons are connected by links, and each link has a numerical weight associated with it. Weights are the basic means of long-term memory in ANN. Weights express the strength (importance) of each neuron input. A neural network "learns" through repeated adjustment of these weights.The network in Figure 1 is fully connected and has a feedforward structure, meaning there are no connection loops that would allow outputs to feed back to their inputs, although a recurrent neural network has feedback loops from its outputs to its inputs. The indices i, j and k in Figure 1 refer to neurons in input, hidden and output layers, respectively. Input signals, x1, x2 ..... x i, x n, are propagated from left to right, and error signals, c1, c2 .... c i, from right to left. The symbol w ij denotes the weight for the connection between neuron i in the input layer and neuron j in the hidden layer, and the symbol w jk the weight between neuron j in the hidden layer and neuron k in the output layer; symbols y1, y2 ..... y k, y t denote outputs of the neurons in the output layer.2.2 Modelling by Applying Artificial Neural NetworksThe architecture and size of a neural network depends on the problem complexity. The number of neurons in the input and output layers is decided by the selected input-output variables of the analysed system. The simulation experiments of neural network training and testing indicate the optimal number of hidden layers as well as the number of neurons in these layers.The goal of neural network training is to find the functional relationship between the input patterns and target outputs. Before training ANN, all the available data are randomly divided into a training set and a test set. A training set of the input patterns and corresponding desired outputs or targets is presented to the network. The network computes its output pattern, and if there is an error - a difference between actual and desired output patterns - the weights are adjusted to reduce this error according to the learning law of training algorithm. The error function is a useful indicator of the network's performance. The training algorithm attempts to minimise this criterion. When the value of the error function in an entire pass through all training sets, or epoch, is sufficiently small, a network is considered to have converged. Once the training phase is complete, the networks ability to generalise is tested against examples of the test set.More than a hundred different learning algorithms are available, but the most popular method is backpropagation. The backpropagation learning algorithm has two phases. First, a training input pattern is presented to the network input layer. The network then propagates the input pattern from layer to layer until the output pattern is generated by the output layer. If this pattern is different from the desired output, an error is calculated and then propagatedbackwards through the network from the output layer to the input layer. The weights are modified as the error is propagated.Among the numerous artificial neural networks that have been proposed, backpropagation networks have been extremely popular for their unique learning capability [Haykin (1993)]. 80% of practical ANN applications used the backpropagation neural networks. Development of construction project management effectiveness model by applying multilayer backpropagation neural networks is presented in chapter 4.3. Construction Project Management Effectiveness FactorsTraditionally, construction project management effectiveness is defined as the degree to which project goals and expectations are met. It should be viewed from respective perspectives of different project participants and the goals related to a variety of elements, including technical, financial, social and professional issues. Criteria are needed to compare the goal level against the performance level. The criteria are the set of principles or standards by which judgment is made [Lim et. A1. (1999)]. While effectiveness is measured in terms of goal attainment, there is ambiguity in determining whether a project is success or failure.Different factors are identified in project success studies. Ashley et. A1. (1987) conducted a pilot study within their research that, based on their analysis, established six determinants of construction project success. Jaselskis and Ashley (1991) developed a predictive discrete-choice model that focused on the project manager, the project team, planning and controls. Pinto and Slevin (1988) determined a group of predictive critical success factors. Sanvido et al. (1992) established the four most critical success factors derived from the integrated building process model. Chua et al. (1997, 1999) distinguished between the critical success factors for different project objectives of budget, schedule, and quality using the analytic hierarchy process. They established 10 critical factors for each project objective. Overall, they identified 67 different success-related factors.Other measures of project success for particular group of projects were provided by Tiong (1996), Mohsini and Davidson (1996), Chan et al. (2001), Molenaar and Songer (2001), Zhang (2005). Cheng et al. (2001) established a partnering framework to identify the critical success factors that can improve the productivity and performance of construction projects. Other studies of particular factors impact on construction project success was provided by Back and Moreau ((2000), Mitropoulus and Tatum (2000), Faniran et al. (1998), Angelides (1999), Bower et al. (2002), Ford (2002) and Jan et al. (2002). All the above mentioned studies revealed many different factors and their qualitative impact on project success. This research, differently from the previous, focus on the functional relationships between the input factors and project outcome, analyses and enables to forecast quantitative impact of determined critical factors onto the effectiveness of construction project management. In this study the framework for the list of construction management effectiveness factors covering areas related to project manager, project team, project planning, organization and control was selected from the research conducted by Jaselskis and Ashley (1991). However, the actuality of each construction management factor was retested by interviewing construction management practitioners and the approach was modified according to the interviewer's opinion (Table 1).4. Development of Construction Project ManagementEffectiveness Model by Applying Neural NetworksConstruction project management effectiveness modelling by applying neural networks consists of the following stages:●selection of the variables of the construction project management effectiveness neuralnetwork model (CPMEM);●selection and preparation of training data for the CPMEM;●designing and training the construction project management effectiveness neural network;●evaluation of the importance of a particular input factor to the CPMEM output byapplying a sensitivity analysis technique;●identification of the key construction project management effectiveness factors andmodification of the CPMEM;●determining the validation range of the CPMEM practical applications.Construction project management effectiveness factors are the input variables of the CPMEM. The output variable of this model is the construction project management effectiveness in terms of construction cost variation. The construction project cost variation was calculated by equation:Q = (PI - FI)/PI* 100%where PI - predicted construction project cost; FI - actual construction project cost.The present study is based on a set of data obtained in a questionnaire survey on construction project management effectiveness factors from construction management organizations in Lithuania and the USA. Twelve Lithuanian companies presented information on 32 completed construction projects. The average size for the projects is 4.3 million Litas (1.6 million USD) and the mean duration is 7 months. 27 US construction management companies presented information on 54 completed construction projects with the average size of 30.1 million USD and the mean duration of 14 months. Statistical analysis proved that those two groups of the projects belong to the same statistical population. Thus, neural network model was trained with 76 project samples and retested with 10 project samples. The construction project management effectiveness neural network model had been developed using NEURAL NETWORKS TOOLBOX by MA TLAB.A neural network works best when all its inputs and outputs vary within the range 0 and 1. Preparation of the training data and statistical computations had been performed by applying Microsoft Excel. The input data - project management factors - was classified into six groups and the output data - the percentage of the construction cost variation in loss or profit - was classified into five groups (Table 2). The number of neurons in the input and output layer was decided by the number of input and output variables of the construction project management effectiveness neural network. Thus, the input layer had 27 neurons and the output layer had 5 neurons, representing five classes of the construction cost variation. The number of hidden layers was determined during the neural network training.The neural network was trained to Solve the classification task by applying resilient backpropagation learning algorithm. The network performance in this study was measured by the modified regularization error function. The interpretation of the network output is based on the Bayesian posterior probability: the construction project cost variation belongs to the class represented by the output layer neuron of the highest output value. The classification error was calculated by equation:where Tp - actual class of project cost variation; Pp- class of project cost variation predicted by neural network; p - construction project index; q - number of examples for testing.All construction management effectiveness factors were incorporated into the model at the first stage of model development. The initial network model comprised 27 neurons in theinput layer with 9 neurons in the hidden layer and 5 neurons in the output layer. In order to understand the importance of a particular input to the network output, a sensitivity analysis technique was applied. The priority level for each factor was set based on their different impact to the project results. Insignificant factors were trimmed from the network gradually by eliminating the least important factors, respectively to the results of sensitivity analysis. In this model development stage 12 key determining construction management effectiveness factors were identified. Nine key factors showed positive influence on the CPMEM output. The higher values of these factors allow improving the construction project management effectiveness. Three key factors, i.e. PM subordinates, independent constructability analysis, and control system budget, showed negative influence on the CPMEM output. These factors appear to be associated with project complexity and risk. The higher project complexity and the higher level of risk degree means the higher values of these three factors: there are more employees and subcontractors supervised by PM, the cost of independent constructability analysis as well as control budget is respectively higher (Table 3).The final neural network model was built with 12 neurons in the input layer, 4 neurons in hidden layer and 5 neurons in the output layer.The established CPMEM represents the input-output functional relationships reflected by the specific characteristics of the training data set. The model was validated by 10 project samples, 2 for each class. All testing samples were classified correctly. Thus, the model is valid within this particular range of training data. However, the analogical model can be developed by applying training data of any group of construction projects or construction management organizations.5. Decision-Support Tool for Competitive BiddingAuthors of the paper established the construction project management effectiveness model and developed the application algorithm of that model for competitive bidding process (Figure 2). The range of potential construction project cost variation can be evaluated by applying CPMEM on the specific project, project team and construction company as the follows:The first stage's target is to obtain the maximum of existing information about the mainfeatures of the project.●The second stage entails a detail study of the project, suggesting possible changes for theproject, estimating costs and defining target profit margin.●In the third stage the project management team is formed to deal with the projectplanning, management and delivery. In that stage the intended project management effectiveness factors should be evaluated.●In the fourth stage the project's construction cost variation is predicted by applyingconstruction project management effectiveness model. This step is very useful to identify hidden project management risks.●In the fifth stage the initial total bid price is adjusted according to the CPMEM results.●The sixth stage entails a search and analysis of historical information about similarinternal and external projects. The obtained information about the potential competitors and their strengths and weaknesses should be measured. Then the adjusted bid price should be evaluated in comparison with forecasted prices of competitive bidders. Finally, the decision if everything goes forward or if the project requires serious reconsideration should be made. If the project management system considered to be changed, the potential project management factors (e.g. different project planning or control strategy, different project team size or qualification, organizational structure, etc.) should be re-evaluated. The analyzers should go back to the third stage and repeat the process until the selected criterion is satisfied. If the project management system considered not to be changed, the decision about the participation in the bidding process should be made.Case study: The request for bidding proposal was issued by the private company to manage the construction of industrial project of 20 million USD on a fixed price contract basis. Construction company X prepared bidding material for that project. Company's X estimated total bid price was 20.7 million USD, 10 % profit margin was included. According to the market analysis the competitive bids might fall into the range of 20-21 million USD. What would be the company's X bidding decision?Solution: The estimated construction cost was 18.82 million USD. The predicted cost variation was calculated within the range of-3 % and +3 % by applying CPMEM construction projects management effectiveness neural network model. If the worst happened, the construction cost would increase by 3 % up to 19.38 million USD and the mark-up would reduce to 6.8%. If the target mark-up for that project procurement was 10%, the company should re-estimate the bid price up to 21.32 million USD. Though, that price would not be competitive.The managers decided to replace two members of the project team by more qualified professionals and not to hire outside consultants, i.e. re-evaluated the CPMEM factors of project team monetary incentives and independent constructability analysis. By applying CPMEM model for the second time, the predicted cost variation was calculated within the range of +3% and + 10%. In that case there was a possibility of at least 3% construction cost reduction, i.e. 0.56 million USD (18.82*0.03=0.56). Thus, adjusted bid price was calculated at 20.08 million USD [(18.82-0.56)* 1.1 ] =20.08.X Company must make a decision - whether to submit the bid price of 20.08 million USD, which seems competitive enough, or keep trying to reduce it by strengthening the other aspects of project management system, thus resources can be deployed even more effectively. By applying the construction project management effectiveness neural network model, managers of construction company can indicate how much importance each factor has for a particular project outcome, find the best possible arrangement of construction management effectiveness factors and examine the construction cost variation tendencies.6. ConclusionsThe paper presents a new methodology for construction project management effectiveness modelling by applying artificial neural networks. The approach of artificial neural networks allows the CPMEM to be built and to determine the key determinants from a host of possible management factors that affect project effectiveness in terms of construction cost variation. The historical data of project performance has been used to build the neural network model. A survey questionnaire was distributed to construction management companies in Lithuania and the USA. Twelve key determinants factors that influence project management effectiveness were identified covering areas related to the project manager, project team, project planning, organization and control.The established neural network model can be used during the competitive bidding process to evaluate management risk of a construction project and predict construction cost variation. The model allows the construction project managers to focus on the key success factors and reduce the level of construction risk. The model can serve as a framework for further development of construction management decision support systems.译文建设工程项目管理的预测功效:用于决策支持工具竞争性招标1.介绍建设项目在竞争激烈的市场环境风险的情况下交付。

工程管理外文翻译(原文+译文)

工程管理外文翻译(原文+译文)

Concrete Construction matterT. Pauly, M. J. N. PriestleyAbstractViewed in terms of accepted practices, concrete construction operations leave much to be desired with respect to the quality, serviceability, and safety of completed structures. The shortcomings of these operations became abundantly clear when a magnitude 7.6 earthquake struck northern Paki-stan on October 8, 2005, destroying thousands of buildings, damaging bridges, and killing an esti-mated 79,000 people. The unusually low quality of construction operations prevalent was a major cause of the immense devastation.Keywords: Concrete Placing Curing Construction TechnologyPlacing ConcreteIf concrete is placed in the surface, the sur-face should be filled with water sufficiently to prevent it from absorbing the concrete of its water. If fresh concrete is to be placed on or nearby to concrete that has solidified, the surface of the placed concrete should be cleaned absolutely, preferably with a high-pressure air or water jet or steel-wire brushes. The surface should be wet, but there should be no much water. A little quantity of cement grout should be brushed over the whole area, and then followed immediately with the application of a 1/2-in Layer of mortar. The fresh concrete should be placed on or against the mortar.In order to decrease the disintegration re-sulting from carriage after it is placed. The con-crete should be placed as nearly as probably in itsfinal point. It should be placed in layers to permit uniform compaction. The time interval between the placing of layers should be limited to assure perfect bond between the fresh and previously placed concrete.In placing concrete in deeper patters, a ves-sel should be used to limit the free fall to not over 3 or 4 ft, in order to prevent concrete disintegra-tion. The vessel is a pipe made of lightweight metal, having adjustable lengths and attached to the bottom of a hopper into which the concrete is deposited. As the patters are filled, sections of the pipe may be removed.Immediately after the concrete is placed, it should be compacted by hand pudding or a me-chanical vibrator to eliminate voids. The vibrator should be left in one position only long enough to reduce the concrete around it to a plastic mass; then the vibrator should be moved, or disintegra-tion of the aggregate will occur. In general, the vibrator should not be permitted to penetrate concrete in the prior lift.The mainly advantage of vibrating is that it permits the use of a drier concrete, which has a higher strength because of the reduced water content. Among the advantages of vibrating con-crete are the following:1.The decreased water permits a reduction in the cement and fine aggregate because less cement paste is needed.2.The lower water content decreases shrinkage and voids.3.The drier concrete decreases the cost of finishing the surface.4.Mechanical vibration may replace three to eight hand puddles.5.The lower water content increases the strength of the concrete.6.The drier mixture permits theremoval of some patters more quickly, which may reduce the cost of patters.Curing ConcreteIf concrete is to gain its maximum strength and other desirable properties, it should be cured with adequate moisture and at a favorable tem-perature. Failure to provide these conditions may result in an inferior concrete.The initial moisture in concrete is adequate to hydrate all the cement, provided it is not should replace the moisture that does evaporate. This may be accomplished by many methods, such as leaving the patters in place, keeping the surface wet, or covering the surface with a liquid curing compound, which comes being to a water-tight membrane that prevents the escape of the initial water. Curing compounds may be applied by brushes or pressure sprayers. A gallon will cover 200 to 300 sq ft.Concrete should be placed at a temperature not less than 40 or more than 80°F.A lower tem-perature will decrease the rate of setting, while ahigher temperature will decrease the ultimate strength.Placing Concrete in Cold WeatherWhen the concrete is placed during cold weather, it is usually necessary to preheat the water, the aggregate, or both in order that the ini-tial temperature will assure an initial set and gain in strength .Preheating the water is the most ef-fective method of providing the necessary tem-perature. For this purpose a water reservoir should be equipped with pipe coils through which steam can be passed, or steam may bedischarged directly into the water, several outlets being used to given better distribution of the heat.When the temperatures of the mixtures are known, some specific charts may be used to cal-culate the temperature of concrete. A straight line pass all three scales, passing through every two known temperatures, will assure the determina-tion of the third temperature. If the surface of sand isdry, the fact lines of the scales giving the temperature of concrete should be used. However, if the sand contains about 3 percent moisture, the dotted lines should be used.Specifications usually demand that freshly placed concrete shall be kept at a temperature of not less than 70°F for 3 days or 50°F for 5 days after it is placed. Some proper method must be provided to keep the demanded temperature when the cold weather is estimated.Reinforcing steels for concreteCompared with concrete, steel is a high strength material. The useful strength of ordinary reinforcing steels in tension as well as compres-sion, i.e., the yield strength, is about 15 times the compressive strength of common structural con-crete, and well over 100 times its tensile strength. On the other hand, steel is a high-cost material compared with concrete. It follow that the two materials are the best used in combination if theconcrete is made to resist the compressive stresses and the compressive force, longitudinal steel reinforcing bars are located close to the ten-sion face to resist the tension force., and usually additional steel bars are so disposed that they re-sist the inclined tension stresses that are caused by the shear force in the beams. However, rein-forcement is also used for resisting compressive forces primarily where it is desired to reduce the cross-sectional dimensions of compression members, as in the lower-floor columns of multi-story buildings. Even if no such necessity exits , a minimum amount of reinforce- ment is placed in all compression members to safeguard them against the effects of small accidental bending moments that might crack and even fail an unre-inforced member.For most effective reinforcing action, it is essential that steel and concrete deform together, i. e., that there be a sufficiently strong bond be-tween the two materials to ensure that no relative movements of the steel bars and the surrounding concrete occur. This bond is provided by the rela-tively large chemical adhesion which develops at the steel-concrete interface, by the natural roughness of the mill scale of hot-rolled rein-forcing bars , and by the closely spaced rib-shap-ed surface deformations with which reinforcing bars are furnished in order to provide a high de-gree of interlocking of the two materials.Steel is used in two different ways in con-crete structures: as reinforcing steel and as prestressing steel .reinforcing steel is placed in the forms prior to casting of the concrete. Stresses in the steel, as in the hardened concrete, are caused only by the loads on the structure, except for possible parasitic stresses from shrinkage or similar causes. In contrast, in priestesses concrete structures large tension forces are applied to the reinforcement prior to letting it act jointly with the concrete in resistingexternal.The most common type of reinforcing steel is in the form of round bars, sometimes called rebars, available in a large range of diameters,from 10 to 35 mm for ordinary applications and in two heavy bar sizes off 44 and 57 mm these bars are furnished with surface deformations for the purpose of increasing resistance to slip be-tween steel and concrete minimum requirements for these deformations have been developed in experimental research. Different bar producers use different patterns, all of which satisfy these requirements.Welding of rebars in making splices, or for convenience in fabricating reinforcing cages for placement in the forms, may result in metal-lurgical changes that reduce both strength and ductility, and special restrictions must be placed both strength and ductility, and special restric-tions must be placed both on the type of steel used and the welding procedures the provisions of ASTM A706 relatespecifically to welding.In reinforced concrete a long-time trend is evident toward the use of higher strength materi-als, both steel and concrete.Reinforcing bars with 40ksi yield stress , almost standard 20 years ago , have largely been replaced by bars with 60ksi yield stress , both because they are more economical and because their use tends to reduce congestion of steel in the forms .The ACI Code permits reinforcing steels up to Fy=80ksi. Such high strength steels usually yield gradually but have no yield plateau in this situation the ACI Code requires that at the speci-fied minimum yield strength the total strain shall not exceed 0.0035 this is necessary to make cur-rent design methods, which were developed for sharp-yielding steels with a yield plateau, appli-cable to such higher strength steels. there is no ASTM specification for deformed bars may be used , according to the ACI Code , providing they meet the requirements stated under special circumstances steel in this higher strength range has its place, e.g., in lower-story columns of high-rise buildings.In order to minimize corrosion of rein-forcement and consequent spelling of concrete under sever exposure conditions such as in bridge decks subjected to deicing chemicals , galvanized or epoxy-coated rebars may be specified.Repair of Concrete StructuresReinforced concrete is generally a very du-rable structural material and very little repair work is usually needed. However, its durability can be affected by a variety of causes, including those of design and construction faults, use of inferior materials and exposure to aggressive en-vironment. The need for a repair is primarily dic-tated by the severity of the deterioration as de-termined from the diagnosis. Good workmanship is essential if any thing more than just a cosmetic treatment to the creation is required.1. performance requirements of repair systemHaving established the causes of the defect by carefully diagnosing the distress, the next step should be to consider the requirements of the re-pair method that will offer an effective solution to the problem (see fig.).①DurabilityIt is important to select repair materials that provide adequate durability. Materials used for the repair job should be at least as durable as the substrate concrete to which it is applied.②Protection of steelThe mechanism of protection provided to the reinforcing depends on the type of repair ma-terials used. For example, cementations materials can protect the steel from further corrosion by their inhibitive effect of increasing the alkalinity of the concrete, whereas epoxy resin mortars can give protection against the ingress of oxygen,moisture and other harmful agents.③Bond with substrateThe bond with the substrate must produce an integral repair to prevent entry of moisture and atmospheric gases at the interface. With most re-pair materials, the bond is greatly enhanced with the use of a suitable bonding aid such as an un-filled epoxy resin systems and slurry of Portland cement, plus any latex additives for a Portland cement-based repair system. Precautions should also be takento remove all loose and friable ma-terials from the surfaces to be bonded.④Dimensional StabilityShrinkage of materials during curing should be kept to a minimum. Subsequent dimensional change should be very close in the substrate in order to prevent failure⑤Initial Resistance to Environmentally In-duced DamageSome initial exposure conditions may lead to premature damage lo repairs. For example, partially cured Portland cement repairs can dete-riorate from hot weather preventing full hydration of the cement. To prevent this from happening extra protection during curing time may be nec-essary.⑥Ease of ApplicationMaterials should be easily mixed and ap-plied so that they can be worked readily into small crevices and voids. Ideally, the material should not stick to tools, and should not shear while being trowel led nor slump after placement.⑦AppearanceThe degree to which the repair material should match the existing concrete will depend on the use of the structure and the client' s re-quirements. A surface coating may be required when appearance is important or when cover to reinforcement is small.2. Selection of Repair MethodsA suitable repair counteracts all the defi-ciencies which are relevant to the use of the structure.The selection of tile correct method and material for a particular, application requires careful consideration, whether to meet special requirements for placing strength, durability or other short-or long-term properties. These con-siderations include:1. Nature of the DistressIf alive crack is filled with a rigid material, then either the repair material will eventually fail or some new cracking will occur adjacent to the original crack. Repairs to live cracks must either use flexible materials to accommodate move-ments or else steps must be taken prior to the re-pair to eliminate the movement.2. Position of the CrackTechniques which rely on gravity to intro-duce the material into the crack are more suc-cessfully carried out on horizontal surfaces but are rarely effective on vertical ones.3. EnvironmentIf moisture, water or contaminants are found in the crack, then it is necessary to rectify the leaks Repair to slop leaks may be further com-plicated by the need to make the repairs while the structure is in service and the environment is damp.4. WorkmanshipThe skill the operatives available to carry put the repairs is another relevant factors. Some-times this can mean the difference between a permanent repair and premature failure of the re-pair material.5. CostThe cost of repair materials is usually small compared with the costs of providing access, preparation and actual labor.6. AppearanceThe repair surface may be unsightly, par-ticularly when it appears on a prominent part of the building. In this case, the repair system will include some form of treatment over the entire surface.Reference[1]Philip Jodidio, Contemporary European Architecture, Taschen, Koln, pp.148-153[2]Ann Breen & Dick Rigby, Waterfronts, McGraw-Hill, Inc. New York, 1994, pp.297-300[3]Ann Breen & Dick Rigby, The New Waterfront, Thames and Hudson, London, 1996, pp.118-120[4]Ann Breen & Dick Rigby, The New Waterfront, Thames and Hudson, London, 1996, pp.52-55[5]Robert Holden, International Landscape Design, Laurence King Publishing, London, 1996, pp.10-27[6] A new concept in refrigerant control for heat pumps ,J.R.Harnish,IIR Conference Pa-per,Cleveland,Ohio.May,1996[7]Carrier Corporation-Catalog 523 848,1997[8]Waste Heat Management Handbook, Na-tional Bureau of Standardc Handbook 121, Pub-lica-tion PB 264959, February,1997Ten design principles for air to air heat pumps,Allen Trask,ASHRAE Journal,July,1997重庆科技学院学生毕业设计(论文)外文译文学院建建筑工程学院专业班级工管103学生姓名李学号201044241附件1:外文资料翻译译文混凝土施工事项T.Pauly, M.J.N.Priestley摘要:根据一般承认的惯例看,巴基斯坦的混凝土结构建筑物在结构上的质量,效用和安全需要上都留下了很多值得关注的问题。

工程管理专业外文文献及翻译

工程管理专业外文文献及翻译

本科毕业设计外文文献及译文文献、资料题目:Changing roles of the clientsArchitects and contractors Through BIM文献、资料来源:Engineering, Construction, Archi-tectual Management文献、资料发表(出版)日期:2010.2院(部):专业:班级:姓名:学号:指导教师:翻译日期:外文文献:Changing roles of the clients,architects and contractors throughBIMRizal SebastianTNO Built Environment and Geosciences, Delft, The NetherlandsAbstractPurpose–This paper aims to present a general review of the practical implications of building information modelling (BIM) based on literature and case studies. It seeks to address the necessity for applying BIM and re-organising the processes and roles in hospital building projects. This type of project is complex due to complicated functional and technical requirements, decision making involving a large number of stakeholders, and long-term development processes.Design/methodology/approach–Through desk research and referring to the ongoing European research project InPro, the framework for integrated collaboration and the use of BIM are analysed. Through several real cases, the changing roles of clients, architects, and contractors through BIM application are investigated. Findings–One of the main findings is the identification of the main factors for a successful collaboration using BIM, which can be recognised as “POWER”: product information sharing (P),organisational roles synergy (O), work processes coordination (W), environment for teamwork (E), and reference data consolidation (R). Furthermore, it is also found that the implementation of BIM in hospital building projects is still limited due to certain commercial and legal barriers, as well as the fact that integrated collaboration has not yet been embedded in the real estate strategies of healthcare institutions.Originality/value– This paper contributes to the actual discussion in science and practice on the changing roles and processes that are required to develop and operate sustainable buildings with the support of integrated ICT frameworks and tools. It presents the state-of-the-art of European research projects and some of the first real cases of BIM application in hospital building projects.Keywords Europe, Hospitals, The Netherlands, Construction works, Response flexibility, Project planningPaper type General review1. IntroductionHospital building projects, are of key importance, and involve significant investment, and usually take a long-term development period. Hospital building projects are also very complex due to the complicated requirements regarding hygiene, safety, special equipments, and handling of a large amount of data. The building process is very dynamic and comprises iterative phases and intermediate changes. Many actors with shifting agendas, roles and responsibilities are actively involved, such as: the healthcare institutions, national and local governments, project developers, financial institutions, architects, contractors, advisors, facility managers, and equipment manufacturers and suppliers. Such building projects are very much influenced, by the healthcare policy, which changes rapidly in response to the medical, societal and technological developments, and varies greatly between countries (World Health Organization, 2000). In The Netherlands, for example, the way a building project in the healthcare sector is organised is undergoing a major reform due to a fundamental change in the Dutch health policy that was introduced in 2008.The rapidly changing context posts a need for a building with flexibility over its lifecycle. In order to incorporate life-cycle considerations in the building design, construction technique, and facility management strategy, a multidisciplinary collaboration is required. Despite the attempt for establishing integrated collaboration, healthcare building projects still faces serious problems in practice, such as: budget overrun, delay, and sub-optimal quality in terms of flexibility, end-user’s dissatisfaction, and energy inefficiency. It i s evident that the lack of communication and coordination between the actors involved in the different phases of a building project is among the most important reasons behind these problems. The communication between different stakeholders becomescritical, as each stakeholder possesses different set of skills. As a result, the processes for extraction, interpretation, and communication of complex design information from drawings and documents are often time-consuming and difficult. Advanced visualisation technologies, like 4D planning have tremendous potential to increase the communication efficiency and interpretation ability of the project team members. However, their use as an effective communication tool is still limited and not fully explored (Dawood and Sikka, 2008). There are also other barriers in the information transfer and integration, for instance: many existing ICT systems do not support the openness of the data and structure that is prerequisite for an effective collaboration between different building actors or disciplines.Building information modelling (BIM) offers an integrated solution to the previously mentioned problems. Therefore, BIM is increasingly used as an ICT support in complex building projects. An effective multidisciplinary collaboration supported by an optimal use of BIM require changing roles of the clients, architects, and contractors; new contractual relationships; and re-organised collaborative processes. Unfortunately, there are still gaps in the practical knowledge on how to manage the building actors to collaborate effectively in their changing roles, and to develop and utilise BIM as an optimal ICT support of the collaboration.This paper presents a general review of the practical implications of building information modelling (BIM) based on literature review and case studies. In the next sections, based on literature and recent findings from European research project InPro, the framework for integrated collaboration and the use of BIM are analysed. Subsequently, through the observation of two ongoing pilot projects in The Netherlands, the changing roles of clients, architects, and contractors through BIM application are investigated. In conclusion, the critical success factors as well as the main barriers of a successful integrated collaboration using BIM are identified.2. Changing roles through integrated collaboration and life-cycle design approachesA hospital building project involves various actors, roles, and knowledgedomains. In The Netherlands, the changing roles of clients, architects, and contractors in hospital building projects are inevitable due the new healthcare policy. Previously under the Healthcare Institutions Act (WTZi), healthcare institutions were required to obtain both a license and a building permit for new construction projects and major renovations. The permit was issued by the Dutch Ministry of Health. The healthcare institutions were then eligible to receive financial support from the government. Since 2008, new legislation on the management of hospital building projects and real estate has come into force. In this new legislation, a permit for hospital building project under the WTZi is no longer obligatory, nor obtainable (Dutch Ministry of Health, Welfare and Sport, 2008). This change allows more freedom from the state-directed policy, and respectively, allocates more responsibilities to the healthcare organisations to deal with the financing and management of their real estate. The new policy implies that the healthcare institutions are fully responsible to manage and finance their building projects and real estate. The government’s support for the costs of healthcare facilities will no longer be given separately, but will be included in the fee for healthcare services. This means that healthcare institutions must earn back their investment on real estate through their services. This new policy intends to stimulate sustainable innovations in the design, procurement and management of healthcare buildings, which will contribute to effective and efficient primary healthcare services.The new strategy for building projects and real estate management endorses an integrated collaboration approach. In order to assure the sustainability during construction, use, and maintenance, the end-users, facility managers, contractors and specialist contractors need to be involved in the planning and design processes. The implications of the new strategy are reflected in the changing roles of the building actors and in the new procurement method.In the traditional procurement method, the design, and its details, are developed by the architect, and design engineers. Then, the client (the healthcare institution) sends an application to the Ministry of Health to obtain an approvalon the building permit and the financial support from the government. Following this, a contractor is selected through a tender process that emphasises the search for the lowest-price bidder. During the construction period, changes often take place due to constructability problems of the design and new requirements from the client. Because of the high level of technical complexity, and moreover, decision-making complexities, the whole process from initiation until delivery of a hospital building project can take up to ten years time. After the delivery, the healthcare institution is fully in charge of the operation of the facilities. Redesigns and changes also take place in the use phase to cope with new functions and developments in the medical world (van Reedt Dortland, 2009).The integrated procurement pictures a new contractual relationship between the parties involved in a building project. Instead of a relationship between the client and architect for design, and the client and contractor for construction, in an integrated procurement the client only holds a contractual relationship with the main party that is responsible for both design and construction ( Joint Contracts Tribunal, 2007). The traditional borders between tasks and occupational groups become blurred since architects, consulting firms, contractors, subcontractors, and suppliers all stand on the supply side in the building process while the client on the demand side. Such configuration puts the architect, engineer and contractor in a very different position that influences not only their roles, but also their responsibilities, tasks and communication with the client, the users, the team and other stakeholders.The transition from traditional to integrated procurement method requires a shift of mindset of the parties on both the demand and supply sides. It is essential for the client and contractor to have a fair and open collaboration in which both can optimally use their competencies. The effectiveness of integrated collaboration is also determined by the client’s capacity an d strategy to organize innovative tendering procedures (Sebastian et al., 2009).A new challenge emerges in case of positioning an architect in a partnership with the contractor instead of with the client. In case of the architect entersa partnership with the contractor, an important issues is how to ensure the realisation of the architectural values as well as innovative engineering through an efficient construction process. In another case, the architect can stand at the client’s side in a strategic advi sory role instead of being the designer. In this case, the architect’s responsibility is translating client’s requirements and wishes into the architectural values to be included in the design specification, and evaluating the contractor’s proposal against this. In any of this new role, the architect holds the responsibilities as stakeholder interest facilitator, custodian of customer value and custodian of design models.The transition from traditional to integrated procurement method also brings consequences in the payment schemes. In the traditional building process, the honorarium for the architect is usually based on a percentage of the project costs; this may simply mean that the more expensive the building is, the higher the honorarium will be. The engineer receives the honorarium based on the complexity of the design and the intensity of the assignment. A highly complex building, which takes a number of redesigns, is usually favourable for the engineers in terms of honorarium. A traditional contractor usually receives the commission based on the tender to construct the building at the lowest price by meeting the minimum specifications given by the client. Extra work due to modifications is charged separately to the client. After the delivery, the contractor is no longer responsible for the long-term use of the building. In the traditional procurement method, all risks are placed with the client.In integrated procurement method, the payment is based on the achieved building performance; thus, the payment is non-adversarial. Since the architect, engineer and contractor have a wider responsibility on the quality of the design and the building, the payment is linked to a measurement system of the functional and technical performance of the building over a certain period of time. The honorarium becomes an incentive to achieve the optimal quality. If the building actors succeed to deliver a higher added-value that exceed the minimum client’s requirements, they will receive a bonus in accordance to the client’s extra gain. The level oftransparency is also improved. Open book accounting is an excellent instrument provided that the stakeholders agree on the information to be shared and to its level of detail (InPro, 2009).Next to the adoption of integrated procurement method, the new real estate strategy for hospital building projects addresses an innovative product development and life-cycle design approaches. A sustainable business case for the investment and exploitation of hospital buildings relies on dynamic life-cycle management that includes considerations and analysis of the market development over time next to the building life-cycle costs (investment/initial cost, operational cost, and logistic cost). Compared to the conventional life-cycle costing method, the dynamic life-cycle management encompasses a shift from focusing only on minimizing the costs to focusing on maximizing the total benefit that can be gained. One of the determining factors for a successful implementation of dynamic life-cycle management is the sustainable design of the building and building components, which means that the design carries sufficient flexibility to accommodate possible changes in the long term (Prins, 1992).Designing based on the principles of life-cycle management affects the role of the architect, as he needs to be well informed about the usage scenarios and related financial arrangements, the changing social and physical environments, and new technologies. Design needs to integrate people activities and business strategies over time. In this context, the architect is required to align the design strategies with the organisational, local and global policies on finance, business operations, health and safety, environment, etc. (Sebastian et al., 2009).The combination of process and product innovation, and the changing roles of the building actors can be accommodated by integrated project delivery or IPD (AIA California Council, 2007). IPD is an approach that integrates people, systems, business structures and practices into a process that collaboratively harnesses the talents and insights of all participants to reduce waste and optimize efficiency through all phases of design, fabrication and construction. IPD principles can be applied to a variety of contractual arrangements. IPD teams will usually includemembers well beyond the basic triad of client, architect, and contractor. At a minimum, though, an Integrated Project should include a tight collaboration between the client, the architect, and the main contractor ultimately responsible for construction of the project, from the early design until the project handover. The key to a successful IPD is assembling a team that is committed to collaborative processes and is capable of working together effectively. IPD is built on collaboration. As a result, it can only be successful if the participants share and apply common values and goals.3. Changing roles through BIM applicationBuilding information model (BIM) comprises ICT frameworks and tools that can support the integrated collaboration based on life-cycle design approach. BIM is a digital representation of physical and functional characteristics of a facility. As such it serves as a shared knowledge resource for information about a facility forming a reliable basis for decisions during its lifecycle from inception onward (National Institute of Building Sciences NIBS, 2007). BIM facilitates time and place independent collaborative working. A basic premise of BIM is collaboration by different stakeholders at different phases of the life cycle of a facility to insert, extract, update or modify information in the BIM to support and reflect the roles of that stakeholder. BIM in its ultimate form, as a shared digital representation founded on open standards for interoperability, can become a virtual information model to be handed from the design team to the contractor and subcontractors and then to the client (Sebastian et al., 2009).BIM is not the same as the earlier known computer aided design (CAD). BIM goes further than an application to generate digital (2D or 3D) drawings (Bratton, 2009). BIM is an integrated model in which all process and product information is combined, stored, elaborated, and interactively distributed to all relevant building actors. As a central model for all involved actors throughout the project lifecycle, BIM develops and evolves as the project progresses. Using BIM, the proposed design and engineering solutions can be measured against the client’s requirements and expected building performance. The functionalities of BIM to support the designprocess extend to multidimensional (nD), including: three-dimensional visualisation and detailing, clash detection, material schedule, planning, cost estimate, production and logistic information, and as-built documents. During the construction process, BIM can support the communication between the building site, the factory and the design office–which is crucial for an effective and efficient prefabrication and assembly processes as well as to prevent or solve problems related to unforeseen errors or modifications. When the building is in use, BIM can be used in combination with the intelligent building systems to provide and maintain up-to-date information of the building performance, including the life-cycle cost.To unleash the full potential of more efficient information exchange in the AEC/FM industry in collaborative working using BIM, both high quality open international standards and high quality implementations of these standards must be in place. The IFC open standard is generally agreed to be of high quality and is widely implemented in software. Unfortunately, the certification process allows poor quality implementations to be certified and essentially renders the certified software useless for any practical usage with IFC. IFC compliant BIM is actually used less than manual drafting for architects and contractors, and show about the same usage for engineers. A recent survey shows that CAD (as a closed-system) is still the major form of technique used in design work (over 60 per cent) while BIM is used in around 20 percent of projects for architects and in around 10 per cent of projects for engineers and contractors (Kiviniemi et al., 2008).The application of BIM to support an optimal cross-disciplinary and cross-phase collaboration opens a new dimension in the roles and relationships between the building actors. Several most relevant issues are: the new role of a model manager; the agreement on the access right and Intellectual Property Right (IPR); the liability and payment arrangement according to the type of contract and in relation to the integrated procurement; and the use of open international standards.Collaborative working using BIM demands a new expert role of a model manager who possesses ICT as well as construction process know-how (InPro, 2009). The modelmanager deals with the system as well as with the actors. He provides and maintains technological solutions required for BIM functionalities, manages the information flow, and improves the ICT skills of the stakeholders. The model manager does not take decisions on design and engineering solutions, nor the organisational processes, but his roles in the chain of decision making are focused on:●the development of BIM, the definition of the structure and detail level ofthe model, and the deployment of relevant BIM tools, such as for models checking, merging, and clash detections;●the contribution to collaboration methods, especially decision making andcommunication protocols, task planning, and risk management;●and the management of information, in terms of data flow and storage,identification of communication errors, and decision or process (re-)tracking.Regarding the legal and organisational issues, one of the actual questions is: “In what way does the intellectual property right (IPR) in collaborative working using BIM differ from the IPR in a traditional teamwork?”. In terms of combined work, the IPR of each element is attached to its creator. Although it seems to be a fully integrated design, BIM actually resulted from a combination of works/elements; for instance: the outline of the building design, is created by the architect, the design for the electrical system, is created by the electrical contractor, etc. Thus, in case of BIM as a combined work, the IPR is similar to traditional teamwork. Working with BIM with authorship registration functionalities may actually make it easier to keep track of the IPR(Chao-Duivis, 2009).How does collaborative working, using BIM, effect the contractual relationship? On the one hand, collaborative working using BIM does not necessarily change the liability position in the contract nor does it obligate an alliance contract. The General Principles of BIM Addendum confirms: ‘This does not effectuate or re quire a restructuring of contractual relationships or shifting of risks between or among the Project Participants other than as specifically required per the Protocol Addendum and its Attachments’ (ConsensusDOCS, 2008). On the other hand, changesin terms of payment schemes can be anticipated. Collaborative processes using BIM will lead to the shifting of activities from to the early design phase. Much, if not all, activities in the detailed engineering and specification phase will be done in the earlier phases. It means that significant payment for the engineering phase, which may count up to 40 per cent of the design cost, can no longer be expected. As engineering work is done concurrently with the design, a new proportion of the payment in the early design phase is necessary(Chao-Duivis, 2009).4. Review of ongoing hospital building projects using BIMIn The Netherlands, the changing roles in hospital building projects are part of the strategy, which aims at achieving a sustainable real estate in response to the changing healthcare policy. Referring to literature and previous research, the main factors that influence the success of the changing roles can be concluded as: the implementation of an integrated procurement method and a life-cycle design approach for a sustainable collaborative process; the agreement on the BIM structure and the intellectual rights; and the integration of the role of a model manager. The preceding sections have discussed the conceptual thinking on how to deal with these factors effectively. This current section observes two actual projects and compares the actual practice with the conceptual view respectively.The main issues, which are observed in the case studies, are:●the selected procurement method and the roles of the involved parties withinthis method;●the implementation of the life-cycle design approach;●the type, structure, and functionalities of BIM used in the project;●the openness in data sharing and transfer of the model, and the intended useof BIM in the future; and●the roles and tasks of the model manager.The pilot experience of hospital building projects using BIM in the Netherlands can be observed at University Medical Centre St Radboud (further referred as UMC) and Maxima Medical Centre (further referred as MMC). At UMC, the new building project for the Faculty of Dentistry in the city of Nijmegen has been dedicatedas a BIM pilot project. At MMC, BIM is used in designing new buildings for Medical Simulation and Mother-and-Child Centre in the city of Veldhoven.The first case is a project at the University Medical Centre (UMC) St Radboud. UMC is more than just a hospital. UMC combines medical services, education and research. More than 8500 staff and 3000 students work at UMC. As a part of the innovative real estate strategy, UMC has considered to use BIM for its building projects. The new development of the Faculty of Dentistry and the surrounding buildings on the Kapittelweg in Nijmegen has been chosen as a pilot project to gather practical knowledge and experience on collaborative processes with BIM support.The main ambition to be achieved through the use of BIM in the building projects at UMC can be summarised as follows:●using 3D visualisation to enhance the coordination and communication among thebuilding actors, and the user participation in design;●facilitating optimal information accessibility and exchange for a high●consistency of the drawings and documents across disciplines and phases;●integrating the architectural design with structural analysis, energy analysis,cost estimation, and planning;●interactively evaluating the design solutions against the programme ofrequirements and specifications;●reducing redesign/remake costs through clash detection during the designprocess; and●optimising the management of the facility through the registration of medicalinstallations and equipments, fixed and flexible furniture, product and output specifications, and operational data.The second case is a project at the Maxima Medical Centre (MMC). MMC is a large hospital resulted from a merger between the Diaconessenhuis in Eindhoven and St Joseph Hospital in Veldhoven. Annually the 3,400 staff of MMC provides medical services to more than 450,000 visitors and patients. A large-scaled extension project of the hospital in Veldhoven is a part of its real estate strategy. A medical simulation centre and a women-and-children medical centre are among the mostimportant new facilities within this extension project. The design has been developed using 3D modelling with several functionalities of BIM.The findings from both cases and the analysis are as follows. Both UMC and MMC opted for a traditional procurement method in which the client directly contracted an architect, a structural engineer, and a mechanical, electrical and plumbing (MEP) consultant in the design team. Once the design and detailed specifications are finished, a tender procedure will follow to select a contractor. Despite the choice for this traditional method, many attempts have been made for a closer and more effective multidisciplinary collaboration. UMC dedicated a relatively long preparation phase with the architect, structural engineer and MEP consultant before the design commenced. This preparation phase was aimed at creating a common vision on the optimal way for collaboration using BIM as an ICT support. Some results of this preparation phase are: a document that defines the common ambition for the project and the collaborative working process and a semi-formal agreement that states the commitment of the building actors for collaboration. Other than UMC, MMC selected an architecture firm with an in-house engineering department. Thus, the collaboration between the architect and structural engineer can take place within the same firm using the same software application.Regarding the life-cycle design approach, the main attention is given on life-cycle costs, maintenance needs, and facility management. Using BIM, both hospitals intend to get a much better insight in these aspects over the life-cycle period. The life-cycle sustainability criteria are included in the assignments for the design teams. Multidisciplinary designers and engineers are asked to collaborate more closely and to interact with the end-users to address life-cycle requirements. However, ensuring the building actors to engage in an integrated collaboration to generate sustainable design solutions that meet the life-cycle performance expectations is still difficult. These actors are contracted through a traditional procurement method. Their tasks are specific, their involvement is rather short-term in a certain project phase, their responsibilities and liabilities are limited, and there is no tangible incentive for integrated。

工程管理外文文献翻译---项目组合管理——远非现今管理所制定的方案

工程管理外文文献翻译---项目组合管理——远非现今管理所制定的方案

外文文献:Project portfolio management –There’s more to it thanwhat management enactsAbstractAlthough companies manage project portfolios concordantly with project portfolio theory, they may experience problems in the form of delayed projects, resource struggles, stress, and a lack of overview. Based on a research project compromised of 128 in-depth interviews in 30 companies, we propose that a key reason why companies do not do well in relation to project portfolio management (PPM) is that PPM often only covers a subset of on-going projects, while projects that are not subject to PPM tie up resources that initially were dedicated to PPM projects. We address and discuss the dilemma of wanting to include all projects in PPM, and aiming at keeping the resource and cognitive burden of doing PPM at a reasonable level.Keywords:Managing programmes,Managing projects,Organisation resources,Strategy1.IntroductionAt any given point in time, most companies engage in many projects. Some of these projects may relate to product development and marketing, others relate to changes in work processes and production flows, while yet others relate to competency development, strategic turns, the implementation of new IT systems, environmental issues etc.A key managerial task is to dedicate resources across all of these projects (as well as do daily work) and consequently,management across projects (project portfolio management (PPM)) is critical to company performance.This paper is based on a large-scale qualitative study,which shows that many project-oriented companies do not perform well when it comes to PPM. This relates to the inability to accomplish projects that are initiated. In particular, we identify the following problems:(1) Projects are not completed according to plan (or they even peter out during their project life cycle);(2) Management and employees feel they lack a broad overview of on-going projects (especially when the number of on-going projects increases as more and more projects are not completedaccording to plan);(3)People experience stress as resources are continuously reallocated across projects in order to make ends meet.These observations are especially interesting because the companies were included in the research project because they were supposed to be especially,experienced in PPM, and because they actually engage in PPM according to the extant body of literature on PPM. For example, part of the companies‘ PPM included an effort to pick the best projects on the basis of explicit or implicit criteria, and an effort to allocate sufficient resources to these projects.However, despite efforts,to practice ‗good‘ PPM, these companies experience severe problems in relation to PPM – especially in letting enough resources go into the ‗right‘ pr ojects. The purpose of this paper is to confront PPM as advocated by normative theories with actual PPM practices. Hence, the purpose is to confront PPM theories with PPM as perceived by managers and other employees for whom PPM is part of, or affects, their work conditions.However, in this paper, we are more interested in PPM as enacted by companies than in universally true perceptions. Hence, we adhere to Weick‘s [1–3] notion of enactment as the preconceptions that are used to set aside a portion of the field of experience for further attention. In regard to PPM, enacted projects are thus the ones management sets aside for further attention (i.e. PPM). As such, we focus especially on ways actors define or enact projects [4] and make sense of how to manage the sum of the projects. Drawing on this perspective, we account for findings that suggest why companies that do engage in PPM still experience problems.2. Project portfolio theoryThis paper draws on Archer and Ghasemzadeh‘s [5, p.208] definition of p roject portfolios as ‗‗a group of projects that are carried out under the sponsorship and/or management of a particular organization‘‘. Henceforth, we define PPM as the managerial activities that relate to(1) the initial screening, selection and prioritisation of project proposals,(2) the concurrent reprioritisation of projects in the portfolio,(3) the allocation and reallocation of resources to projects according to priority.For quite some time researchers have suggested that low completion rates for new product development (NPD) projects and new product failure relate to resource deficiencies in key areas [6,7]. Furthermore, while a host of researchers [8–10] have focused on the dimension of PPM that concernsprocesses relating to selection of projects to be included in the portfolio, research e.g. [11] also increasingly focuses on the day-today management of the project portfolio.3. MethodologyOver a period of two years, we did empirical research on how companies manage their entire range of projects, e.g. renewal projects, strategic projects, IT projects, departmentally specific projects, and production based projects. In relation to the selection of companies to be included in the empirical study, a key criterion was that the study should cover a wide variety of industries. As a result, the empirical study covers 30 companies from industries as diverse as, e.g. mobile telephone communications, finances, energy, pharmaceuticals, toys, software, and foods.However, due to the fact that we were looking for companies, where the amount of on-going projects suggested they were engaged in PPM, the study is biased towards larger companies as well as companies that define at least a substantial part of their activities as projects. The degree to which the companies participated in the study varies. Hence, half of the companies are labelled ‗inner circle‘ companies due to the fact that we drew extensively on these 15 companies. For example, in these companies more interviews were conducted at various points in time and at various organizational levels. Hence, a longitudinal perspective characterizes the involvement of these companies.The remaining half of the companies are labelled ‗outer circle‘ companies because their participation in the study has included fewer top-management interviews, the purpose of which was to gain insight into ways in which (top) management defines the content of their project portfolios and manages them.4. Managerial implicationsA key finding is that the gap between required and available resources is very much attributable to the existence of a host of smaller projects that never become part of enacted project portfolios. Thus, at an aggregated level, the empirical study suggests smaller, un-enacted projects qualify as resources crunchers in so far they are not considered to be a part of enacted project portfolios. In order to overcome this crunch in resources, two solutions seem obvious:(1) Enacting more, i.e. having PPM embrace all projects.(2) Allocating more resources to a pool of loosely-controlled resources for the un-enacted projects to draw on.5. Research implicationsThe empirical study elaborates on the ‗‗significant shortage of resources devoted to NPD‘‘ that Cooper and Edgett argue is the fundamental problem ‗‗that p lagues most firms‘ product development efforts‘‘.Our work especially suggests that the shortage of resources devoted to enacted projects is not a problem that primarily arises in relation to top management‘s PPM. On the contrary, in-good-faith top management dedicates resources to enacted projects on the basis of sound PPM. However, what top managers do not do is take into account the host of smaller projects that individuals initiate and – more importantly – top managers ignore (or at least heavily under-estimate) the amount of resources that these smaller projects tie up. Hence, we argue that especially the crunch in resources may be attributable to the un-enacted competition for resources that smaller projects subject enacted projects to.Consequently, the key contribution of our empirical work to research is that it emphasises that if we wish to study PPM (and especially if we wish to relate PPM to project performance), we might be better off taking into account the entire range of projects that actual (not enacted) portfolios are comprised of. Thus, if we as researchers only enact the projects that are neatly listed by top management, then our research will neglect the host of projects that are not subject to PPM, projects that nonetheless take up valuable, and scarce, resources.The fact that the empirical study includes interviews with managers, i.e. those who do PPM, and interviews with personnel at lower organisational levels, i.e. those whose work is subject to PPM, is the reason why we were able to identify un-enacted projects. Thus, researchers interested in PPM should be careful not to rely too heavily on a management perspective.6. Conclusion and limitationsThe main conclusion is that as long as some projects are un-enacted, companies may experience a drain on resources that reduces the time and resources actually devoted to projects subject to PPM. Hence, each individual company should decide whether or not all projects should be part of PPM and if the end result of such a decision is not to make comprehensive project lists (i.e. lists that include all minor projects), then management should decide how many resources should be set aside for the plethora of small projects that do not appear on the project list.One way in which the crunch in resources can be reduced is by ensuring that smaller projects do not take up a critical portion of the resources that are – officially – set aside for the completion ofprojects subject to PPM. However, due to the exploratory nature of the study accounted for in this paper, our findings relate far more to what companies actually do (positive theory in Hunt‘s terms), rather than to what they ought to do (normative theory in Hunt‘s terms). Although generating positive theory is indeed a crucial first step – especially in relation to the future of PPM theory –positive theory cannot, and should not, stand alone. Hence, the key challenges for PPM theory in the future are to produce normative theory that offers sound suggestions as to how companies can improve their PPM.Another limitation of our study is that the empirical part was carried out in a Danish context as the 30 companies involved are located in Denmark, which may not be sufficiently representative for companies worldwide because Denmark has, to a larger extent, a bottom-up culture. Therefore, the portion of smaller un-enacted projects may be bigger here than in companies in other countries. We hope that our study will inspire other researchers to carry our similar studies in other countries.References[1] Aboloafia MY, Killduff D. Enacting market crisis: the social construction of a speculative bubble.Admin Sci Quart 1988;33(1): 177–93.[2] Archer NP, Ghasemzadeh F. An integrated framework for project portfolio selection.Int J Project Manage 1999;17(4):207–16.[3] Cooper RG. Benchmarking new product performance: results of the best practices study.Eur Manage J 1998;16(1):1–7.[4] Cooper RG, Edgett SJ. Overcoming the crunch in resources for new product development.Res Technol Manage 2003;46:48–58.[5] Cooper RG, Edgett SJ, Kleinschmidt EJ. Best practices for managingR&D portfolios. Res Technol Manage 1998;41:20–33.[6] Cooper RG, Edgett SJ, Kleinschmidt EJ. New product portfolio management: practices and performance.J Prod Innovat Manage[7] Cooper RG, Edgett SJ, Kleinschmidt EJ. New problems, new solutions: making portfolio management more effective. Res Technol Manage 2000;43:18–33. 1999;16(3):333–51.[8] Cooper RG, Edgett SJ, Kleinschmidt EJ. Portfolio management for new products.Cambridge MA: Perseus Publishing; 2001.[9] Cooper RG, Edgett SJ, Kleinschmidt EJ. Portfolio management in new product development: lessons from the leaders – I. Res Technol Manage 1997;40:16–28.[10] Cooper RG, Edgett SJ, Kleinschmidt EJ. Portfolio management in new product development: lessons from the leaders – II. Res Technol Manage 1997;40:43–52.[11] Cooper RG, Edgett SJ, Kleinschmidt EJ. Portfolio management for new product development: results of an industry practices study. R&D Manage 2001;31(4):361–80.中文译文:项目组合管理——远非现今管理所制定的方案摘要尽管公司一向致力于处理项目股份单与项目股份单理论,他们也许会经历在工程延迟,资源短缺,压力,缺乏整体概要的形式上遇到问题。

工程管理专业毕业设计外文翻译(外文+翻译)

工程管理专业毕业设计外文翻译(外文+翻译)

Study on Project Cost Control of Construction EnterprisesBy: R. Max WidemanAbstract With the increasing maturity of construction market, the competition between construction enterprises is becoming fierce. The project profit is gradually decreasing. It demands that all construction enterprises enhance their cost control, lower costs, improve management efficiency and gain maximal profits. This paper analyses the existing problems on project cost control of Chinese construction enterprises, and proposes some suggestions to improve project cost control system.Key Words :Construction enterprises, Project management, Cost controlAfter joining the WTO, with Chinese construction market becoming integrated, the competition among architectural enterprises is turning more intense. Construction enterprises must continually enhance the overall competitiveness if they want to develop further at home and abroad construction market. Construction Enterprises basically adopt the "project management-centered" model, therefore, it is particularly important to strengthen project cost control.1.The Current Domestic Project Cost Classification and Control MethodsCost refers to the consumption from producing and selling of certain products, with the performance of various monetary standing for materialized labor and labor-consuming. Direct and indirect costs constitute the total cost, also known as production cost or manufacturing cost. Enterprise product cost is the comprehensive indicator to measure enterprise quality of all aspects. It is not only the fund compensation scale, but also the basis to examine the implementation of cost plan. Besides, it can provide reference for product pricing According to the above-mentioned definition and current domestic cost classification, construction project cost can be divided into direct costs and indirect costs. Direct costs include material cost, personnel cost, construction machinery cost, material transportation cost, temporarily facility cost, engineering cost and other direct cost. Indirect costs mainly result from project management and company's cost-sharing, covering project operating costs (covering the commission of foreign projects), project's management costs (including exchange losses of foreign projects)and company's cost-sharing.At present the main method for domestic construction enterprises to control project cost is to analyze cost, naming economic accounting, which is the major components of cost management and the analysis of economic activities. In accordance with its scope of target and deep-level of content, GM project cost analysis method can be divided into two categories, namely, comprehensive analysis of project cost and cost analysis of unit project Comprehensive analysis of project cost. It is carried in terms of budget and final accounts, cost reduction programs and construction installation costs. The methods used are as follows: (1) comparing the estimated cost and actual cost. Check the result to reduce cost, lower cost index and budget status. (2) comparing actual cost and project cost. Check cost reduction programs as well as the windage between the actual cost and plan cost. Inspect the rationality and implementation of techniques organizational measures and management plans.(3) comparing lower cost of the same period last year. Aanalyze causes and propose the improving direction. (4) Comparison between engineering units in cost-cutting. Identify the units cost-reducing, which finishes projects, with a view to further cost analysis.Cost analysis of unit project. Comprehensive analysis only understand project cost overruns or lower. If we want to get more detailed information, each cost item analysis of unit project is needed. Analysis mainly from the following aspects:(1) Materials cost analysis. From the view of material stock, production, transportation, inventory and management, we can analyze the discrepancy impact of material price and quantity, the cost-reducing effectiveness resulting from various technical measures, the loss from poor management.(2) Labor cost analysis . From the number of employment, hours of use, ergonomics, as well as wage situation, we can identify the savings and waste during labor use and fixed management.(3) Construction machinery cost analysis. From the construction options, mechanization degree, mechanical efficiency, fuel consumption, mechanical maintenance, good rates and utilization, we can analyze the yield and cost discrepancy of fixed-class ergonomics, the cost of poor classes, focused on improving mechanical utilization efficiency and waste caused by poor management.(4) Management cost analysis. From construction task and organizational staffing changes,non-production personnel changes, as well as other expenditure savings and waste, we can analyze management fees and justify the rationality of expenditure.(5) Technology organization measures implementing analysis. It can increase experience for future establishment and implementation of technical organization projects.(6) Other direct costs analysis. Focus on the analysis of second removal and water, electricity, wind, gas and other expenses situation during construction.2. The shortcomings of cost-control methodsAt present, domestic construction projects cost-control methods have played a significant role for Chinese construction industry and construction enterprises to reduce cost and gain sustainable development. However, we should be aware that these methods exist some shortcomings as follows:2.1 Lack of systemization.Presently, the cost control of construction enterprises is a simple control on cost. In fact, project cost control is closely related with project plans and progress, quality and safety. Therefore, cost control should include above-mentioned elements.2.2 Lack of real timeModern project management is increasingly tending real-time management and forward-looking management, paying more attention to "promptly identify and solve problems", emphasizing as much as possible to identify and solve problems before problems occur. The current control system is to control after problems occur, which can't avoid loss.In addition, current cost-control method is static. It can't monitor and reflect timely costs change, therefore, this method can't provide the support of decision-making for projects management under construction.2.3 Lack of error-checking and error-correcting mechanismThe current cost-control method is the single-class without error-checking and error-correcting mechanism. If mistakes occur in the future, we can't discover timely, or even impossible found. 2.4 Lack of compatibilityThere is lack of compatibility between project cost-control and project finance and corporate management system. The project budget is built on ration, but project financial item subjects are based on current financial general regulation. This is not consistent betweenmethods. Specific to the software, financial sector of domestic construction enterprises is generally adopting some general financial software, such as UF, IBM. The software is not specifically for the development of construction enterprise, not reflecting the special nature of construction enterprises. However, the budget software is also not considered financial aspect. The lack of compatibility leads to void labor and low management efficiency. At the same time, it increases the probability of error information and error decision2.5 Limitation on notions and quality of personnelThese days, most of construction enterprises are faced with the shortage of qualified personnel during improving cost-control system. It is difficult to find a suitable person with budget and financial knowledge and practical experience in project management.3. Suggestions for improving domestic cost-control methodsFrom the view of enterprises and projects, project cost control is a system engineering. It needs standardization and systematization, closely related to many factors. If current domestic construction enterprises want to establish a practical and efficient cost control systems, the cost-control methods must be improved as follows:3.1 Establish systemic cost-control systemAccording to the specific situation of enterprises, company's cost-control guiding documents should be developed. Based on current fixed budget, enterprises develop work breakdown structure of specific conditions. And on these base, along with progress, quality and safety factors, cost control system will be established ultimately, including the establishment of project cost real-time control (the first class by full-time staff in the execution of project cost control, reporting cycle for one week or fortnight), project cost integrated control (the second class, by financial officers in the execution of projects, reporting cycle for fortnight or a month) and corporate cost control (the third class, by company's financial sector, reporting cycle for a month or a quarter). Such three class cost control system resolve the problems of real-time and error-correcting mechanism.3.2 Develop specific control processesAccording to enterprises' specific circumstances, we should formulate specific control processes, identify levels for controlling reporting periods, and arrange specific persons to monitor. Throughout reporting period, two kinds of data or information need to be collected: (1)the actual execution of data, including the actual time for beginning or end, and the actual cost.(2) the project scope, progress plan and budget change information. These changes may result from the clients or project teams, or from some unforeseen things such as natural disasters, labor strikes or key project team members to resign. These changes should be included in project plan and obtained the consent of customers, then new baseline plan need to establish. The scope, progress and budget of new plan may be different from initial plan.Above-discussed data or information must be timely collected, so that it can become the base to update project progress and budget. For example, if the project reporting period is a month, data and information should be collected at the end of month as far as possible, which can guarantee progress in the updated plan and budget.3.3 Improve project financial subjectBased on work breakdown structure, enpterpries should improve project financial subjects so that projects match with real-time cost control, company's financial and cost control systems, which can solve the compatibility between cost control and finance. At the same time, financial system and cost control system using the same data format, similar forms and data-sharing can improve effectively. In the short term, construction enterprise can transform the existing software and statements to achieve cost savings and reduce the impact of system transformation. In the long-term, enterprises can adopt suitable management software and build company's integrated management system.3.4 Balance precision control and cost controlWhen improving project control system, we should pay attention to balance precision control and cost control. Cost control is through the whole process of project. Under normal circumstances, enterprises can take a fixed period report. If new problems will be detected, then enterprises should increase the reporting frequency until problems are resolved.3.5 Train current staffEnterprises should gradually train the existing staff for the future reserves. In any system, human element is always the first one. No matter how perfect and advanced a management system is, and it ultimately relies on people.3.6 Identify core contentsThe core contents for cost control are team spirit, technology and work process consistency,standard management methods, foreseeing difficulties and contradictions, fostering a challenging work environment and continuing improvement.研究建筑施工企业的项目成本控制马克斯.怀德曼摘要:随着建筑市场的日趋成熟,建筑施工企业之间的竞争变得激烈。

工程管理外文文献翻译---项目组合管理——远非现今管理所制定的方案

工程管理外文文献翻译---项目组合管理——远非现今管理所制定的方案

外文文献:Project portfolio management –There’s more to it thanwhat management enactsAbstractAlthough companies manage project portfolios concordantly with project portfolio theory, they may experience problems in the form of delayed projects, resource struggles, stress, and a lack of overview. Based on a research project compromised of 128 in-depth interviews in 30 companies, we propose that a key reason why companies do not do well in relation to project portfolio management (PPM) is that PPM often only covers a subset of on-going projects, while projects that are not subject to PPM tie up resources that initially were dedicated to PPM projects. We address and discuss the dilemma of wanting to include all projects in PPM, and aiming at keeping the resource and cognitive burden of doing PPM at a reasonable level.Keywords:Managing programmes,Managing projects,Organisation resources,Strategy1.IntroductionAt any given point in time, most companies engage in many projects. Some of these projects may relate to product development and marketing, others relate to changes in work processes and production flows, while yet others relate to competency development, strategic turns, the implementation of new IT systems, environmental issues etc.A key managerial task is to dedicate resources across all of these projects (as well as do daily work) and consequently,management across projects (project portfolio management (PPM)) is critical to company performance.This paper is based on a large-scale qualitative study,which shows that many project-oriented companies do not perform well when it comes to PPM. This relates to the inability to accomplish projects that are initiated. In particular, we identify the following problems:(1) Projects are not completed according to plan (or they even peter out during their project life cycle);(2) Management and employees feel they lack a broad overview of on-going projects (especially when the number of on-going projects increases as more and more projects are not completedaccording to plan);(3)People experience stress as resources are continuously reallocated across projects in order to make ends meet.These observations are especially interesting because the companies were included in the research project because they were supposed to be especially,experienced in PPM, and because they actually engage in PPM according to the extant body of literature on PPM. For example, part of the companies‘ PPM included an effort to pick the best projects on the basis of explicit or implicit criteria, and an effort to allocate sufficient resources to these projects.However, despite efforts,to practice ‗good‘ PPM, these companies experience severe problems in relation to PPM – especially in letting enough resources go into the ‗right‘ pr ojects. The purpose of this paper is to confront PPM as advocated by normative theories with actual PPM practices. Hence, the purpose is to confront PPM theories with PPM as perceived by managers and other employees for whom PPM is part of, or affects, their work conditions.However, in this paper, we are more interested in PPM as enacted by companies than in universally true perceptions. Hence, we adhere to Weick‘s [1–3] notion of enactment as the preconceptions that are used to set aside a portion of the field of experience for further attention. In regard to PPM, enacted projects are thus the ones management sets aside for further attention (i.e. PPM). As such, we focus especially on ways actors define or enact projects [4] and make sense of how to manage the sum of the projects. Drawing on this perspective, we account for findings that suggest why companies that do engage in PPM still experience problems.2. Project portfolio theoryThis paper draws on Archer and Ghasemzadeh‘s [5, p.208] definition of p roject portfolios as ‗‗a group of projects that are carried out under the sponsorship and/or management of a particular organization‘‘. Henceforth, we define PPM as the managerial activities that relate to(1) the initial screening, selection and prioritisation of project proposals,(2) the concurrent reprioritisation of projects in the portfolio,(3) the allocation and reallocation of resources to projects according to priority.For quite some time researchers have suggested that low completion rates for new product development (NPD) projects and new product failure relate to resource deficiencies in key areas [6,7]. Furthermore, while a host of researchers [8–10] have focused on the dimension of PPM that concernsprocesses relating to selection of projects to be included in the portfolio, research e.g. [11] also increasingly focuses on the day-today management of the project portfolio.3. MethodologyOver a period of two years, we did empirical research on how companies manage their entire range of projects, e.g. renewal projects, strategic projects, IT projects, departmentally specific projects, and production based projects. In relation to the selection of companies to be included in the empirical study, a key criterion was that the study should cover a wide variety of industries. As a result, the empirical study covers 30 companies from industries as diverse as, e.g. mobile telephone communications, finances, energy, pharmaceuticals, toys, software, and foods.However, due to the fact that we were looking for companies, where the amount of on-going projects suggested they were engaged in PPM, the study is biased towards larger companies as well as companies that define at least a substantial part of their activities as projects. The degree to which the companies participated in the study varies. Hence, half of the companies are labelled ‗inner circle‘ companies due to the fact that we drew extensively on these 15 companies. For example, in these companies more interviews were conducted at various points in time and at various organizational levels. Hence, a longitudinal perspective characterizes the involvement of these companies.The remaining half of the companies are labelled ‗outer circle‘ companies because their participation in the study has included fewer top-management interviews, the purpose of which was to gain insight into ways in which (top) management defines the content of their project portfolios and manages them.4. Managerial implicationsA key finding is that the gap between required and available resources is very much attributable to the existence of a host of smaller projects that never become part of enacted project portfolios. Thus, at an aggregated level, the empirical study suggests smaller, un-enacted projects qualify as resources crunchers in so far they are not considered to be a part of enacted project portfolios. In order to overcome this crunch in resources, two solutions seem obvious:(1) Enacting more, i.e. having PPM embrace all projects.(2) Allocating more resources to a pool of loosely-controlled resources for the un-enacted projects to draw on.5. Research implicationsThe empirical study elaborates on the ‗‗significant shortage of resources devoted to NPD‘‘ that Cooper and Edgett argue is the fundamental problem ‗‗that p lagues most firms‘ product development efforts‘‘.Our work especially suggests that the shortage of resources devoted to enacted projects is not a problem that primarily arises in relation to top management‘s PPM. On the contrary, in-good-faith top management dedicates resources to enacted projects on the basis of sound PPM. However, what top managers do not do is take into account the host of smaller projects that individuals initiate and – more importantly – top managers ignore (or at least heavily under-estimate) the amount of resources that these smaller projects tie up. Hence, we argue that especially the crunch in resources may be attributable to the un-enacted competition for resources that smaller projects subject enacted projects to.Consequently, the key contribution of our empirical work to research is that it emphasises that if we wish to study PPM (and especially if we wish to relate PPM to project performance), we might be better off taking into account the entire range of projects that actual (not enacted) portfolios are comprised of. Thus, if we as researchers only enact the projects that are neatly listed by top management, then our research will neglect the host of projects that are not subject to PPM, projects that nonetheless take up valuable, and scarce, resources.The fact that the empirical study includes interviews with managers, i.e. those who do PPM, and interviews with personnel at lower organisational levels, i.e. those whose work is subject to PPM, is the reason why we were able to identify un-enacted projects. Thus, researchers interested in PPM should be careful not to rely too heavily on a management perspective.6. Conclusion and limitationsThe main conclusion is that as long as some projects are un-enacted, companies may experience a drain on resources that reduces the time and resources actually devoted to projects subject to PPM. Hence, each individual company should decide whether or not all projects should be part of PPM and if the end result of such a decision is not to make comprehensive project lists (i.e. lists that include all minor projects), then management should decide how many resources should be set aside for the plethora of small projects that do not appear on the project list.One way in which the crunch in resources can be reduced is by ensuring that smaller projects do not take up a critical portion of the resources that are – officially – set aside for the completion ofprojects subject to PPM. However, due to the exploratory nature of the study accounted for in this paper, our findings relate far more to what companies actually do (positive theory in Hunt‘s terms), rather than to what they ought to do (normative theory in Hunt‘s terms). Although generating positive theory is indeed a crucial first step – especially in relation to the future of PPM theory –positive theory cannot, and should not, stand alone. Hence, the key challenges for PPM theory in the future are to produce normative theory that offers sound suggestions as to how companies can improve their PPM.Another limitation of our study is that the empirical part was carried out in a Danish context as the 30 companies involved are located in Denmark, which may not be sufficiently representative for companies worldwide because Denmark has, to a larger extent, a bottom-up culture. Therefore, the portion of smaller un-enacted projects may be bigger here than in companies in other countries. We hope that our study will inspire other researchers to carry our similar studies in other countries.References[1] Aboloafia MY, Killduff D. Enacting market crisis: the social construction of a speculative bubble.Admin Sci Quart 1988;33(1): 177–93.[2] Archer NP, Ghasemzadeh F. An integrated framework for project portfolio selection.Int J Project Manage 1999;17(4):207–16.[3] Cooper RG. Benchmarking new product performance: results of the best practices study.Eur Manage J 1998;16(1):1–7.[4] Cooper RG, Edgett SJ. Overcoming the crunch in resources for new product development.Res Technol Manage 2003;46:48–58.[5] Cooper RG, Edgett SJ, Kleinschmidt EJ. Best practices for managingR&D portfolios. Res Technol Manage 1998;41:20–33.[6] Cooper RG, Edgett SJ, Kleinschmidt EJ. New product portfolio management: practices and performance.J Prod Innovat Manage[7] Cooper RG, Edgett SJ, Kleinschmidt EJ. New problems, new solutions: making portfolio management more effective. Res Technol Manage 2000;43:18–33. 1999;16(3):333–51.[8] Cooper RG, Edgett SJ, Kleinschmidt EJ. Portfolio management for new products.Cambridge MA: Perseus Publishing; 2001.[9] Cooper RG, Edgett SJ, Kleinschmidt EJ. Portfolio management in new product development: lessons from the leaders – I. Res Technol Manage 1997;40:16–28.[10] Cooper RG, Edgett SJ, Kleinschmidt EJ. Portfolio management in new product development: lessons from the leaders – II. Res Technol Manage 1997;40:43–52.[11] Cooper RG, Edgett SJ, Kleinschmidt EJ. Portfolio management for new product development: results of an industry practices study. R&D Manage 2001;31(4):361–80.中文译文:项目组合管理——远非现今管理所制定的方案摘要尽管公司一向致力于处理项目股份单与项目股份单理论,他们也许会经历在工程延迟,资源短缺,压力,缺乏整体概要的形式上遇到问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xxxxxx 大学本科毕业设计外文翻译Project Cost Control: the Way it Works项目成本控制:它的工作方式学院(系): xxxxxxxxxxxx专业: xxxxxxxx学生姓名: xxxxx学号: xxxxxxxxxx指导教师: xxxxxx评阅教师:完成日期:xxxx大学项目成本控制:它的工作方式在最近的一次咨询任务中,我们意识到对于整个项目成本控制体系是如何设置和应用的,仍有一些缺乏理解。

所以我们决定描述它是如何工作的。

理论上,项目成本控制不是很难跟随。

首先,建立一组参考基线。

然后,随着工作的深入,监控工作,分析研究结果,预测最终结果并比较参考基准。

如果最终的结果不令人满意,那么你要对正在进行的工作进行必要的调整,并在合适的时间间隔重复。

如果最终的结果确实不符合基线计划,你可能不得不改变计划。

更有可能的是,会 (或已经) 有范围变更来改变参考基线,这意味着每次出现这种情况你必须改变基线计划。

但在实践中,项目成本控制要困难得多,通过项目数量无法控制成本也证明了这一点。

正如我们将看到的,它还需要大量的工作,我们不妨从一开始启用它。

所以,要跟随项目成本控制在整个项目的生命周期。

同时,我们会利用这一机会来指出几个重要文件的适当的地方。

其中包括商业案例,请求(资本)拨款(执行),工作包和工作分解结构,项目章程(或摘要),项目预算或成本计划、挣值和成本基线。

所有这些有助于提高这个组织的有效地控制项目成本的能力。

业务用例和应用程序(执行)的资金重要的是要注意,当负责的管理者对于项目应如何通过项目生命周期展开有很好的理解时,项目成本控制才是最有效的。

这意味着他们在主要阶段的关键决策点之间行使职责。

他们还必须识别项目风险管理的重要性,至少可以确定并计划阻止最明显的潜在风险事件。

在项目的概念阶段•每个项目始于确定的机会或需要的人。

通常是有着重要性和影响力的人,如果项目继续,这个人往往成为项目的赞助。

•确定潜在项目的适用性,大多数组织呼吁编制“商业案例”和“量级”成本,用来证明项目的价值,以便使其可以与其他所有的项目竞争。

这项工作是在项目的概念阶段进行,并且作为组织管理整个项目管理的投资组合的一部分被完成。

•准备商业案例的工作的成本通常包括企业管理开销,但是它可以作为最终项目的一个会计成本来结转。

毫无疑问,因为这将为该组织提供一个税收优惠。

问题是,那么你如何占有所有不结转的项目?•如果业务有足够的价值,将批准继续发展和定义阶段。

在项目的发展或定义阶段•开发阶段的目标是建立一个涉及到生产所需的产品,估计成本和为该项目的实际执行寻求资本融资的良好的工作的理解。

•在正式的场合,特别是在大型项目,这个拨款申请通常被称为请求(资本)拨款(RFA)或资本拨款请求(CAR)。

•这需要更详细的要求和数据的收集,建立工作所需要完成的来生产所需产品或“可交付成果”。

从这个信息来看,一个准备了足够细节的计划在一美元价格的请求上给予足够的信心。

•在一个不太正式的环境中,每个人都试图蒙混过关。

工作包和WBS项目管理计划,项目简介或项目章程•如果可交付的成果由许多不同的元素组成,这些被识别并组合成工作包(WPs),用工作分解结构(WBS) 的方式提交。

•每个WP包括一系列的活动,“工作”被计划和安排为项目管理计划的一部分。

但是请注意,该计划仍将处于相对较高的水平,在执行期间如果项目获得批准,更详细的规划将是必须的。

•顺便说一下,这个项目管理计划应该成为项执行阶段目的“圣经”,有时它被称为“项目简介”或“项目章程”。

•然后估计各种活动的成本,这些估算成本汇总以确定WP的估计成本。

这种方法被称为“详细估算”或“自底向上的估算”。

还有其他的方法来估计,我们将在一分钟内。

不管怎样,结果是该项目的总工作的估计费用。

注:该项目风险管理规划是这次演戏的一个重要组成部分。

这应该检查项目的假设和环境条件来确定该计划中到目前为止的任何弱点,并确定值得注意缓解的这些潜在风险事件。

这可能需要特定的应急计划的形式和/或留出谨慎的资金储备。

资本要求转换估计•不过,单独的工作的估计是不能满足资本要求的。

为了达到一个资本的要求,一些转换是必要的,例如,通过添加谨慎津贴等,如开销,应急准备金来支付正常的项目风险和管理外汇储备来应付未知和可能的变化范围。

•另外,估算数据转换成财务会计的满足企业或赞助商的格式是必要的,目的是比较与其他项目和后续资金的批准。

刚才所描述的方法中,所有的数据类型为“自下而上”,在实践中可能无法使用。

在这种情况下,替代的估算方法是在时尚中通过提供不同程度的“自上而下”的可靠性。

例如:数量级估计——“球公园”估计,通常只留给概念阶段类似的估计——基于先前的类似项目的估算参数估计——基于历史数据的统计关系的估算•无论采用哪种方法,希望因此抵达总和将全额批准并被证明是令人满意的!这是触发启动项目的执行阶段注意:一些管理层将批准一些较小的总和,错误地认为这将帮助每个人“削铅笔”和“更聪明地工作”的利益组织。

这是一个错误的观念,因为管理层未能了解项目工作的不确定性和风险的性质。

因此,效果更有可能导致“切角”对产品质量产生不利影响,或减少产品范围或功能。

这通常会导致一个“游戏”的估计被放大,管理可以向下调整它们。

但公平地说,管理也清楚地意识到,如果超过分配资金,无论如何它会得到花费。

明智的管理要做的就是留出应急储备基金、不同项目的风险,并保持这些钱小心的控制之下。

核准资本的所有权•如果高级管理层批准的RFA,总和的问题变成了指定的项目发起人的责任。

然而,如果批准资本要求包括津贴如“管理储备”,这可能会或可能不会被传递给项目的赞助商,这取决于本组织的政策。

•RFA批准,项目发起人,反过来,进一步将支出权力委托给项目的项目经理,将不包括任何补贴。

一种异常可能涵盖工作表现正常变化的应急准备。

•净金额从而到达构成了项目经理的批准的项目预算。

注意:如果管理层不批准RFA,你不应该考虑这个项目的失败。

或是这个目标的目的,而规划需要重新考虑,以增加交付项目的价值。

项目的执行阶段项目经理的项目预算责任•此项目预算批准后发布的项目经理,一个逆过程必须将它转换成一个工作控制文档。

即资金必须划分在不同的WBS,顺便问一下,现在可能已经被升级。

这个结果作用于项目执行控制预算或项目基线预算,或简单地说,项目预算。

在一些项目管理的应用领域,它被称为一个项目成本计划。

•在一个大的项目中,不同的公司生产部门,可能会有进一步的中间步骤为单独的部门,创建“控制账户”,每个部门将细分他们分配资金投入自己的WBS WPS。

•观察到,因为总项目预算得到高级管理层的正式批准,你,作为项目经理,同样也必须寻求并获得执行管理,通过该项目的赞助商,正式批准任何更改总项目预算。

通常这只是合理的和接受的基础上要求的产品范围变化。

•在这种情况下项目的赞助商要么减少管理储备在他的财产,或提交补充RFA高层管理。

•现在我们项目预算资金分配给工作包,我们可以进一步分配在每个WP的各种活动,以便我们知道我们有多少钱作为“基线”为每个活动的成本。

•这为我们提供了参考的基础成本控制功能。

当然,根据情况做同样的事情可能在WP级别,但控制然后在更高的能力和粗水平。

使用挣值技术•如果我们有必要的细节另一个控制工具,我们可以采用监控正在进行的工作是“挣值”(EV)技术。

这是一个相当大的艺术和科学,你必须了解文本的主题。

•但基本上,你掌管日程安排活动的费用,并在适当的时候绘制他们作为累计。

再次,你可以做的活动水平,或整个项目的水平越低,您可用的控制信息就越多。

成本基线•这个计划参考S-曲线有时被称为“成本基线”,通常在EV的说法。

也就是说,它是“预算成本工作计划”(BCWS),或更简单“计划价值”(PV)。

•注意到,你需要修改这个成本基线每次有一个批准范围变化,成本和/或进度影响,从而改变了该项目的核准项目预算。

•现在,随着工作的深入,你可以绘制“执行工作的实际成本”(ACWP或简单的“实际成本”-交流)。

•你可以绘制其他东西,如上面提到的图,如果你不喜欢你所看到的,你需要“纠正措施”。

注意:整个过程是一个循环,态势操作,这可能是普遍名不副实“项目的生命周期”中“循环”一词的来源”。

顺便说一句,挣值权威人士提供的EV过程中的各种其他技术设计能帮助预测最后的结果,也就是说,“估计在完成”(“选管会”)。

选管会是你真正应该感兴趣的,因为在运动项目中,它是唯一不变的。

因此,必须考虑这些延长EV技术在同一领域的自上而下的估算精度。

他们是有用的,但前提是你认识到了其局限性和知道你在做什么!但是,正如我们在开始时说的,它在实践中困难得多,需要大量的工作。

但是,让我们面对现实吧,这就是项目经理被雇佣的原因,不是吗?Project Cost Control: the Way it WorksIn a recent consulting assignment we realized that there was some lack of understanding of the whole system of project cost control, how it is setup and applied. So we decided to write up a description of how it works. Project cost control is not that difficult to follow in theory.First you establish a set of reference baselines. Then, as work progresses, you monitor the work, analyze the findings, forecast the end results and compare those with the reference baselines. If the end results are not satisfactory then you make adjustments as necessary to the work in progress, and repeat the cycle at suitable intervals. If the end results get really out of line with the baseline plan, you may have to change the plan. More likely, there will be (or have been) scope changes that change the reference baselines which means that every time that happens you have to change the baseline plan anyway.But project cost control is a lot more difficult to do in practice, as is evidenced by the number of projects that fail to contain costs. It also involves a significant amount of work, as we shall see, and we might as well start at the beginning. So let us follow the thread of project cost control through the entire project life span.And, while we are at it, we will take the opportunity to point out the proper places for several significant documents. These include the Business Case, the Request for (a capital) Appropriation (for execution), Work Packages and the Work Breakdown Structure, the Project Charter (or Brief), the Project Budget or Cost Plan, Earned Value and the Cost Baseline. All of these contribute to the organization's ability to effectively control project costs.The Business Case and Application for (execution) FundingIt is important to note that project cost control is most effective when the executive management responsible has a good understanding of how projects should unfold through the project life span. This means that they exercise their responsibilities at the key decision points between the major phases. They must also recognize the importance of project riskmanagement for identifying and planning to head off at least the most obvious potential risk events.In the project's Concept Phase• Every project starts with someone ide ntifying an opportunity or need. That is usually someone of importance or influence, if the project is to proceed, and that person often becomes the project's sponsor.• To determine the suitability of the potential project, most organizations call for the preparation of a "Business Case" and its "Order of Magnitude" cost to justify the value of the project so that it Can be compared with all the other competing projects. This effort is conducted in the Concept Phase of the project and is done as a part of the organization's management of the entire project portfolio.• The cost of the work of preparing the Business Case is usually covered by corporate management overhead, but it may be carried forward as an accounting cost to the eventual project. No doubt because this will provide a tax benefit to the organization. The problem is, how do you then account for all the projects that are not so carried forward?• If the Business case has sufficient merit, approval will be given to proceed to a Development and Definition phase.In the project's Development or Definition Phase• The objective of the Development Phase is to establish a good understanding of the work involved to produce the required product, estimate the cost and seek capital funding for the actual execution of the project.• In a formalized setting, especially where big projects are involved, this application for funding is often referred to as a Request for (a capital) Appropriation (RFA) or Capital Appropriation Request (CAR).• This requires the collection of more detailed requirements and data to establish what work needsTo be done to produce the required product or "deliverable". From this information, a plan is prepared in sufficient detail to give adequate confidence in a dollar figure to be included in the request.• In a less formalized setting, everyone just tries to muddle through. Work Packages and the WBSThe Project Management Plan, Project Brief or Project Charter • If the deliverable consists of a number of different elements, these are identified and assembled into Work Packages (WPs) and presented in the form of a Work Breakdown Structure (WBS).• Each WP involves a set of activities, the "work" that is planned and scheduled as a part of the Project Management Plan. Note, however, that the planning will still be at a relatively high level,And more detailed planning will be necessary during execution if the project is given the go ahead.• This Project Management Plan, by the way, should become the "bible" for the execution phase of the project and is sometimes referred to as the "Project Brief" or the "Project Charter".• The cost of doing the various activities is then estimated and these estimated costs are aggregated to determine the estimated cost of the WP. This approach is known as "detailed estimating" or "bottom up estimating". There are other approaches to estimating that we'll come to in a minute. Either way, the result is an estimated cost of the total work of the project.Note: that project risk management planning is an important part ofthis exercise. This should examine the project's assumptions and environmental conditions to identify any weaknesses in the plan thus far, and identify those potential risk events that warrant attention for mitigation. This might take the form of specific contingency planning,and/or the setting aside of prudent funding reserves.Request for capitalConverting the estimate• However, an estimate of the work alone is not sufficient for acapital request. To arrive at a capital request some conversion is necessary, for example, by adding prudent allowances such asOverheads, a contingency allowance to cover normal project risks and management reserves to cover unknowns and possible scope changes.• In addition, it may be necessary to convert th e estimating data into a financial accounting formatThat satisfies the corporate or sponsor's format for purposes of comparison with other projects and consequent funding approval.• In practice all the data for the type of "bottom up" approach just described may not be available.In this case alternative estimating approaches are adopted that provide various degrees of reliability in a "top down" fashion. For example: Order of Magnitude estimate – a "ball park" estimate, usually reserved for the concept phase onlyAnalogous estimate – an estimate based on previous similar projectsParametric estimate – an estimate based on statistical relationships in historical data• Whichever approach is adopted, hopefully the sum thus arrived at will be approved in full and proves to be satisfactory! This is the trigger to start the Execution Phase of the projectNote: Some managements will approve some lesser sum in the mistaken belief that this will help everyone to "sharpen their pencils" and "work smarter" for the benefit of the organization. This is a mistaken belief because management has failed to understand the nature of uncertainty and risk in project work. Consequently, the effect is more likely to result in "corner cutting" with an adverse effect on product quality, or reduced product scope or functionality. This often leads to a "game" in which estimates are inflated so that management can adjust them downwards. But to be fair, management is also well aware that if money is over allocated, it will get spent anyway. The smart thing for managements to do is to set aside contingent reserve funds, varying with the riskiness of the project, and keep that money under careful control.Ownership of approved capital• If senior management approves the RFA as presented, the sum in question becomes the responsibility of the designated project sponsor.However, if the approved capital request includes allowances such as a "Management Reserve", this may or may not be passed on to the project's sponsor, depending on the policies of the organization.• For the approved RFA, the project sponsor will, in turn, further delegate expenditure authority to the project's project manager and will likely not include any of the allowances. An exception might be the contingency allowances to cover the normal variations in work performance.• The net sum thus arrived at constitutes the project manager's Approved Project Budget.Note: If management does not approve the RFA, you should not consider this a project failure. Either the goals, objectives, justification and planning need rethinking to increase the value of the project's deliverables, or senior management simply has higher priorities elsewherefor the available resources and funding.The Project's Execution PhaseThe project manager's Project Budget responsibility• Once this Approved Project Budget is released to the project manager, a reverse process must take place to convert it into a working control document. That is, the money available must be divided amongst the various WBS WPs that, by the way, have probably by now been upgraded! This resultsin a project execution Control Budget or Project Baseline Budget, or simply, the Project Budget. In some areas of project management application it is referred to as a Project Cost Plan.• On a large project where different corporate production divisions are involved, there may be a further intermediate step of creating "Control Accounts" for the separate divisions, so that each division subdividestheir allocated money into their own WBS WPs.• Observe that, since the total Project Budget received formal approval from Executive Management, you, as project manager, must likewise seek and obtain from Executive Management, via the project's sponsor, formalapproval for any changes to the total project budget. Often this is only justified and accepted on the basis of a requested Product Scope Change.• In such a case the project's sponsor will either draw down on the management reserve in his or her possession, or submit a supplementary RFA to upper management.• Now that we have the Project Budget money allocated to Work Packages we can further distribute it amongst the various activities of each WP so that we know how much money we have as a "Baseline" cost for each activity.• This provides us with the base of reference for the cost control function. Of course, depending on the circumstances the same thing may be done at the WP level but the ability to control is then at a higher and coarser level.Use of the Earned Value technique• If we ha ve the necessary details another control tool that we can adopt for monitoring ongoing work is the "Earned Value" (EV) technique. This is a considerable art and science that you must learn about from texts dedicated to the subject.• But essentially, you t ake the costs of the schedule activities and plot them as a cumulative total on the appropriate time base. Again you can do this at the activity level, WP level or the whole project level. The lower the level the more control information you have available but the more work you get involved in.The Cost Baseline• This planned reference S-curve is sometimes referred to as the "Cost Baseline", typically in EVParlance. That is, it is the "Budgeted Cost of Work Scheduled" (BCWS), or more simply the "Planned Value" (PV).• Observe that you need to modify this Cost Baseline every time there is an approved scope change that has cost and/or schedule implications and consequently changes the project's Approved Project Budget.• Now, as the work progresses, you can plot the "Actual Cost of Work Performed" (ACWP or simply "Actual Cost" - AC).• You can plot other things as well, see diagram referred to above, and if you don't like what you see then you need to take "Corrective Action".CommentaryThis whole process is a cyclic, situational operation and is probably the source of the term "cycle" in the popularly misnamed "project life cycle".As an aside, the Earned Value pundits offer various other techniques within the EV process designed to aid in forecasting the final result, that is, the "Estimate At Completion" (EAC). EAC is what you should really be interested in because it is the only constant in a moving project. Therefore, these extended EV techniques must be considered in the same realm of accuracy as top-down estimating. They are useful, but only if you recognize the limitations and know what you are doing!But, as we said at the beginning, it is a lot more difficult to do in practice – and involves a significant amount of work. But, let's face it, that's what project managers are hired for, right?。

相关文档
最新文档