限制性内切酶原理

合集下载

实验六-酶切

实验六-酶切

五、利用限制性内切酶克隆
克隆PCR产物的方法之一,是在PCR产物两端设
计一定的限制酶切位点,经酶切后克隆至用相同 酶切的载体中。但实验证明,大多数限制酶对裸 露的酶切位点不能切断。必须在酶切位点旁边加 上一个至几个保护碱基,才能使所定的限制酶对 其识别位点进行有效切断。 酶切位点(内切酶的识别序列)要加在引物的 5‘端 具体为:5'-保护碱基+酶切位点+引物序列-3'
四、使用限制酶注意事项
当微量的污染物进入限制性内切酶贮存液中时,会影响其进
一步使用,因此在吸取限制性内切酶时,每次都要用新的吸 管头。如果采用两种限制性内切酶,必须要注意分别提供各 自的最适盐浓度。 若两者可用同一缓冲液,则可同时水解。 若需要不同的盐浓度,则低盐浓度的限制性内切酶必须首先 使用,随后调节盐浓度,再用高盐浓度的限制性内切酶水解。 也可在第一个酶切反应完成后,用等体积酚/氯仿抽提,加0.1 倍体积3mol/L NaAc和2倍体积无水乙醇,混匀后臵-70℃低温 冰箱30分钟,离心、干燥并重新溶于缓冲液后进行第二个酶 切反应。
割双链。但这几个核苷酸对则是任意的。
第二类内切酶
酶识别的专一核苷酸顺序最常见的是4个或6个核苷酸
识别顺序是一个回文对称顺序,即有一个中心对称轴
同尾酶;切割不同的DNA片段但产生相同的粘性末端的 一类限制性内切酶。
这一类的限制酶来源各异,识别的靶序列也不相同,但产生相
同的粘性末端。 由同尾酶产生的DNA片段,是能够通过其粘性末端之间的互补 作用彼此连接起来的。当把同尾酶切割的DNA片断与原来的限 制性内切酶切割的DNA片段连接后,原来的酶切位点将不存在, 不能被原来的限制性内切酶所识别。

酶切验证的原理

酶切验证的原理

酶切验证的原理酶切验证是一种常用的分子生物学技术,主要用于确认DNA序列是否正确。

其原理基于酶切作用和凝胶电泳技术,通过对DNA进行限制性内切酶切割并在凝胶中进行电泳分离,最终可以得到所需的DNA片段。

以下将详细介绍酶切验证的原理。

一、限制性内切酶的作用原理限制性内切酶是一类特殊的酶,它能够识别并切割特定的DNA序列,从而产生具有特定长度的DNA片段。

这些限制性内切酶通常由细菌产生,并且被广泛应用于分子生物学领域。

限制性内切酶的作用基于其与DNA序列之间的互作。

具体来说,当一个限制性内切酶遇到其所识别的特定DNA序列时,它会在该序列上结合并发生水解反应,将该DNA序列剪断成两个互补的单链DNA片段。

这种水解反应通常发生在两个特定碱基之间,并且遵循着不同种类限制性内切酶所具有不同的识别和剪断规律。

二、凝胶电泳的作用原理凝胶电泳是一种常用的分离和检测DNA片段的技术,其基本原理是将DNA片段在电场作用下沿着凝胶中的孔隙移动,从而实现对DNA片段的分离和检测。

凝胶电泳通常使用聚丙烯酰胺凝胶作为分离介质。

这种凝胶具有一定的孔隙大小和形状,可以让不同大小的DNA片段通过,并且能够阻止大分子物质通过。

在进行凝胶电泳实验时,将待检测的DNA样品加入到含有缓冲液和染料的孔隙中,在加上电场后,DNA片段会沿着电场方向移动,并逐渐被分离出来。

最终,通过染色或其他方法可以显示出不同长度的DNA片段,并进行定量或比较分析。

三、酶切验证实验步骤1. DNA提取:从细菌、植物或动物组织中提取所需的DNA样品。

2. 限制性内切酶切割:选择合适的限制性内切酶并按照其所需条件进行反应,在反应结束后通过电泳检测是否得到所需的DNA片段。

3. 凝胶电泳:将切割后的DNA样品加入到凝胶中,并在加上适当的电场后进行分离和检测。

4. 染色和可视化:使用染料或其他方法将分离出来的DNA片段染色,并通过紫外线照射或其他方法进行可视化。

5. 分析和确认:根据实验结果进行分析和确认,确定所需的DNA序列是否正确。

质粒DNA的酶切鉴定原理

质粒DNA的酶切鉴定原理

质粒DNA的酶切鉴定原理质粒DNA的酶切鉴定是一种常用的实验方法,用于确定质粒DNA的大小和纯度。

酶切鉴定是通过用特定的限制性内切酶切割质粒DNA,然后利用琼脂糖凝胶电泳分离DNA片段,并通过染色或脱染观察分离结果。

限制性内切酶是一类特殊的酶,它们能够识别DNA的特定序列,并在该序列上切割DNA分子,产生特定的DNA片段。

酶切鉴定的原理主要包括限制性内切酶的选择、质粒DNA酶切、琼脂糖凝胶电泳和染色观察。

首先,选择适当的限制性内切酶。

限制性内切酶是依据其能够识别的特定DNA 序列而命名的。

在酶切鉴定中,通常使用两个不同的限制性内切酶,因为单个限制性内切酶的选择性有限。

选择限制性内切酶时需考虑酶切位点的位置和数量,以及酶切位点的特异性和完整性。

其次,进行质粒酶切。

通常将质粒DNA与适当的缓冲液和限制性内切酶混合,反应一段时间。

反应结束后,通过热灭活限制性内切酶,停止酶切反应。

酶切反应完成后,会得到经限制性内切酶切割的DNA片段。

然后,进行琼脂糖凝胶电泳分离。

琼脂糖凝胶电泳是一种常用的DNA分子量测定方法。

它通过将DNA样品加入琼脂糖凝胶槽中,在电场作用下,DNA片段按照大小被分离。

较小的DNA片段在电场中移动更快,较大的DNA片段移动较慢。

通过检测琼脂糖凝胶上的DNA迁移距离,可以获得质粒DNA的分子量信息。

最后,通过染色观察和图像分析来确定质粒DNA的大小和纯度。

琼脂糖凝胶电泳结束后,通常需要染色来显示DNA片段。

常见的染色剂有溴化乙锭和SYBR Green等。

经过染色的琼脂糖凝胶可以进行观察和记录,并通过分析软件对分离的DNA片段进行测量和分析,得到质粒DNA的大小和纯度信息。

总之,质粒DNA酶切鉴定是通过限制性内切酶切割质粒DNA,然后通过琼脂糖凝胶电泳分离和染色观察来确定质粒DNA的大小和纯度。

这种方法简便易行,可用于快速鉴定质粒DNA的酶切效果和测定其分子量。

限制性核酸内切酶切割原理方法结果分析及应用

限制性核酸内切酶切割原理方法结果分析及应用

5.DNA 酶 切 位 点 没 有 甲 基 化
( 如 Dpn1) 6.DNA 位点上存在其它修饰 7.DNA 不存在该酶识别顺序
验证
二 . 如果 DNA 切割不完全? 1. 内切酶活性下降 2. 内切酶稀释方法不正确 3.DNA 不纯,反应条件不佳 4. 内 切 酶 识 别 的 DNA 位 点 上 的 碱 基 被 甲 基 化 或 存 在其它修饰 5. 部分 DNA 溶液粘在管壁上 6. 内切酶溶液粘度大,取样不准 7. 酶切后 DNA 粘性末端退火 8. 由于反应溶液、温度使内切酶变性 9. 过度稀释使酶活性降低

应用二
利用pBR322作为载体重组人体的抑生长激素也是一 个经常提到的应用例子。其过程和水稻叶绿体基因重组 大同小异,只是除了在质粒载体上插入抑生长激素基因 外,还将含有lac操纵子起始部分的片段(包括启动子, 操作区,核糖体集合位点和β-半乳糖苷酶的主要部分) 插在抑生长激素基因的旁边。由于有了lac操作子的控 制,重组基因产生的蛋白质的调节就变得比较容易了
限制性核酸内切酶切割原理、
方法、结果分析及应用
PPT制作:杜雨濛、张佳佳、陈靓
课堂内容回顾:
1、定义: 1、定义:限制性核酸内切酶是可以识别特 定的核苷酸序列,并在每条链中特定部位的 两个核苷酸之间的磷酸二酯键进行切割的一 类酶,简称限制酶。 2、分类:
(根据酶的基因、蛋 白质结果、依赖的辅 助因子及DNA裂解的 特异性,将限制性内 切酶分为三种类型)
解决方法 1. 用 5-10 倍量过量消化 2. 用酶贮藏液或反应缓冲液稀释酶 3. 同上 4. 同上
5. 反应前离心数秒
6. 将内切酶稀释,增大取样体积 7. 电泳前将样品置 65 ℃保温 5-10 分钟,取出 后置冰浴骤冷 8. 使用标准反应缓冲液及温度 9. 适当稀释酶液,反应液稀释的酶不能贮藏 10. 使用最佳反应体系

限制性内切酶

限制性内切酶

限制性内切酶限制性内切酶(又称限制酶)首先是在细菌体内发现的,但后来在部分古细菌中也发现了这种成分。

通常,限制性内切酶会切割双链DNA,每个限制性内切酶会识别特定的DNA序列,根据不同的内切酶类型,可在识别序列内或距识别序列不远的位置处切割DNA,识别序列长度通常为4-8bp,酶切之后会形成粘性末端和平末端。

上世纪50年代初期,许多研究团队观测到了噬菌体对于同一物种的不同细菌宿主菌株存在感染效率差异[1,2],即:使用在一种细菌菌株(例如,大肠杆菌C)内繁殖的噬菌体λ感染同一种类的灵异菌株(例如大肠杆菌K),结果发现,相比于重新感染宿主菌株(大肠杆菌C),大肠杆菌K的感染率出现明显下降。

新的宿主(大肠杆菌K)似乎可以选择性抵御或“耐受”侵入的噬菌体。

研究人员还发现,这一现象并没有遗传性,因为经过一轮感染后,在新菌株中生长的噬菌体还可以以正常的感染率感染该菌株。

这种现象被称为“宿主控制变异”,有关其背后的机制也成为了频繁研究的领域[3]。

直到上世纪60年代,人们才发现宿主变异的机制,其与噬菌体DNA的酶切有关,进而发现并分理出了限制性内切酶。

上世纪60年代初Werner Arber观测发现,宿主范围内的决定性遗传物质都存在于噬菌体DNA中,而后续实验证明甲硫氨酸参与宿主的自我保护[4]。

这些发现最终催生了限制性修饰(R-M)体系的概念,通过该体系,来自于宿主的限制性内切酶和甲基化酶共同作用,切割外来病毒(非甲基化)DNA,同时保护宿主的DNA不受甲基化[5]。

随着DNA连接酶的发现以及位点特异性限制性内切酶的家族不断壮大,重组DNA 技术应运而生。

限制性内切酶的命名规则,考虑到内切酶来源的三种特性——属名、种名和菌株或血清型——组成了一个简短的名称,后面加上罗马数字,代表来自同一菌株的多个限制性内切酶[6]。

例如,以HindⅢ酶为代表:“H”代表Haemophilus“in”代表influenzae“d”代表血清型d“Ⅲ”用于区分来自于Haemophilusinfluenza血清型d的其它限制性内切酶限制性内切酶的分类,根据结构的复杂程度、识别序列、切割位点位置以及辅助因子要求,限制性内切酶分为四类:TypeⅠ:同时具有限制性和甲基化活性的多亚基蛋白需要ATP切割位点与识别位点间的间距不定TypeⅡ:特异性的识别序列切割位点位于识别序列内或邻近识别序列在切割位点生成5'磷酸基和3'羟基末端需要M2+TypeⅢ:由两个相反的识别序列组成切割位点与其中一个识别序列的间距恒定需要ATPTypeⅣ:仅切割甲基化的DNA切割位点大约距离识别位点30bp由于自身特殊的特点,TypeⅡ限制性内切酶已经成为分子克隆、法医学DNA分析等许多研究应用最常用的限制性内切酶。

基因工程基因工程工具酶

基因工程基因工程工具酶

基因工程工具酶引言基因工程是一门利用重组DNA技术来改变生物体遗传性状的学科。

在基因工程的过程中,基因工程工具酶发挥着关键的作用。

本文将介绍几种常用的基因工程工具酶,包括限制性内切酶、连接酶和修饰酶。

一、限制性内切酶1.1 定义限制性内切酶(Restriction Enzyme)是一类具有特异性切割DNA双链的酶。

它可以识别并切割DNA的特定序列,通常这个序列是对称的,在切割后会产生特定的片段。

1.2 工作原理限制性内切酶能够通过识别和结合DNA的特定序列来进行切割。

它们通常识别的序列是4到8个碱基对长,具有一定的对称性。

一旦内切酶与特定序列结合,它会切断DNA的链,在特定的位置形成断裂,从而将DNA切割成特定的片段。

1.3 应用限制性内切酶在基因工程中有着广泛的应用。

它们可以用于构建基因工程载体、进行DNA片段的精确克隆等。

通过选择适当的限制性内切酶,可以对DNA进行特定的切割和连接,从而实现对目标基因的定向操作。

二、连接酶2.1 定义连接酶(Ligase)是一种酶类,能够将两条DNA片段连接起来。

在基因工程中,连接酶通常被用于连接目标基因和载体。

2.2 工作原理连接酶通过催化两条DNA片段之间的磷酸二酯键的形成来连接DNA。

它可以将两条具有互补末端的DNA片段连接在一起,形成一个新的DNA分子。

2.3 应用连接酶在基因工程中的应用非常广泛。

它们可以用于构建重组DNA分子、进行目标基因的插入等。

通过连接酶的作用,可以将多个DNA片段连接起来,构建出符合需要的重组DNA分子。

三、修饰酶3.1 定义修饰酶是指能够修饰DNA分子的酶类。

在基因工程中,修饰酶通常被用于添加或去除特定的DNA序列。

3.2 工作原理修饰酶可以通过催化酸解或碱解反应来改变DNA分子的结构。

它们可以添加或去除DNA上的甲基基团、酶解酶切位点等。

3.3 应用修饰酶在基因工程中起着重要的作用。

它们可以用于DNA甲基化的分析、目标基因的修饰等。

bamhi和ecori双酶切原理

bamhi和ecori双酶切原理

bamhi和ecori双酶切原理
双酶切技术是一种分子生物学技术,用于从DNA分子中特异性地剪切出目标DNA片段。

它的原理基于两个限制性内切酶的特异性切割作用,以及DNA的双链结构。

限制性内切酶是一类能够识别DNA特定序列并在该序列上切割DNA双链的酶。

不同的限制性内切酶具有不同的切割位点和切割方式。

双酶切技术利用两个限制性内切酶,分别在目标DNA序列的两侧切割,从而将目标DNA片段从DNA分子中剪切出来。

在双酶切实验中,首先将DNA与两种酶一起孵育,然后酶在特定序列上切割DNA,形成切割产物。

具体来说,双酶切技术的步骤如下:选择两个限制性内切酶,使它们能够在目标DNA序列的两侧切割,并且它们的切割位点不重叠。

将DNA分子与两个限制性内切酶一起反应,使它们在目标DNA序列的两侧切割。

切割后的DNA分子形成两个断裂端,其中一个断裂端是粘性的,另一个是平滑的。

将DNA分子与质粒或其他DNA分子连接,使粘性断裂端与另一个DNA分子的粘性断裂端连接,形成重组DNA 分子。

将重组DNA分子转化到宿主细胞中,使其复制和表达。

通过双酶切技术,可以将目标DNA片段插入到质粒或其他DNA分子中,用于基因克隆、基因工程、基因组编辑等研究领域。

至于BamHI和EcoRI双酶切原理可以查阅相关书籍或文献了解更多相关信息。

酶切反应原理

酶切反应原理

酶切反应原理酶切反应原理酶切反应是一种广泛应用于生物学、分子生物学、基因工程等领域的技术。

它是利用特定的酶对DNA分子进行切割,从而实现DNA分子的特定序列分离和提取的方法。

本文将详细阐述酶切反应的原理。

一、DNA结构为了更好地理解酶切反应的原理,首先需要了解DNA结构。

DNA是双链螺旋结构,由四种碱基(腺嘌呤A、胸腺嘧啶T、鸟嘌呤G和胞嘧啶C)组成。

两条链通过氢键相互配对,A与T形成两个氢键,G 与C形成三个氢键。

这种稳定的配对方式保证了DNA分子在遗传信息传递中的准确性。

二、限制性内切酶限制性内切酶是一类能够识别和切割DNA特定序列的酶。

它们广泛存在于细菌和古菌中,并且具有高度的特异性和高效率。

目前已经发现了数百种限制性内切酶,并且不同种类之间具有不同的切割位点和切割方式。

三、酶切反应酶切反应是一种利用限制性内切酶对DNA分子进行特异性切割的方法。

在酶切反应中,首先需要选择一种合适的限制性内切酶,并确定其特定的切割位点。

然后将待处理的DNA分子与该限制性内切酶一起加入反应体系中,经过一定时间后,DNA分子会被该限制性内切酶在特定位点上进行断裂。

四、DNA片段在酶切反应中,被限制性内切酶识别和断裂的DNA分子称为DNA片段。

根据不同的限制性内切酶和不同的DNA分子,可以得到不同大小和不同序列的DNA片段。

这些DNA片段可以通过电泳等方法进行分离和提取,从而实现对特定序列的精确检测和分析。

五、应用由于其高度的特异性和高效率,酶切反应已经成为现代生物学、分子生物学、基因工程等领域中最为重要和常用的技术之一。

它被广泛应用于基因克隆、基因组测序、PCR扩增、DNA指纹鉴定等方面,为人类认识生命、治疗疾病和改善人类生存环境做出了巨大贡献。

六、总结酶切反应是一种利用限制性内切酶对DNA分子进行特异性切割的方法。

它通过选择不同的限制性内切酶和不同的DNA分子,可以得到不同大小和不同序列的DNA片段,从而实现对特定序列的精确检测和分析。

载体酶切实验报告

载体酶切实验报告

一、实验目的1. 掌握限制性内切酶的酶切原理和操作步骤。

2. 学习通过酶切鉴定载体DNA的酶切位点。

3. 熟悉琼脂糖凝胶电泳技术,观察和分析酶切结果。

二、实验原理限制性内切酶是一种能够识别特定的核苷酸序列并在该序列处切割双链DNA的酶。

酶切位点通常为4-6个核苷酸的回文对称序列。

通过酶切,可以将DNA分子切割成具有特定粘性末端或平末端的片段。

琼脂糖凝胶电泳是一种分离和分析DNA片段的技术,可以根据DNA片段的长度对其进行鉴定。

三、实验材料1. 载体DNA:pUC19质粒2. 限制性内切酶:EcoR13. 酶切缓冲液4. 琼脂糖凝胶5. DNA分子量标准6. 电泳缓冲液7. DNA电泳仪8. 紫外灯9. 显影液四、实验步骤1. 酶切反应:将载体DNA和EcoR1限制性内切酶按照1:1的比例混合,加入酶切缓冲液,置于37℃水浴中反应2小时。

2. 琼脂糖凝胶制备:按照琼脂糖凝胶电泳试剂盒的说明,制备琼脂糖凝胶。

3. 加样:将酶切后的载体DNA和DNA分子量标准分别加入琼脂糖凝胶孔中。

4. 电泳:将琼脂糖凝胶放入DNA电泳仪中,加入电泳缓冲液,设置电压为100V,进行电泳。

5. 显影:电泳完成后,关闭电源,取出琼脂糖凝胶,加入显影液,观察DNA条带。

五、实验结果1. 酶切位点:通过观察电泳结果,可以确定载体DNA的酶切位点。

在本实验中,EcoR1限制性内切酶在载体DNA上切割出一个酶切位点,产生两个片段。

2. DNA条带:在琼脂糖凝胶上,可以看到两条DNA条带,分别对应载体DNA的两个片段。

六、实验讨论1. 酶切反应:在本实验中,EcoR1限制性内切酶能够特异地识别载体DNA上的酶切位点,并在该位点处切割DNA分子。

酶切反应的效率和特异性对于后续的分子克隆实验至关重要。

2. 琼脂糖凝胶电泳:琼脂糖凝胶电泳是一种常用的DNA分离和分析技术,可以有效地观察和分析DNA片段。

通过比较实验组和对照组的电泳结果,可以判断酶切反应是否成功。

限制性内切酶原理

限制性内切酶原理

限制性内切酶原理限制性内切酶(Restriction Enzyme)是一种常见的酶类,能够帮助细菌对抗侵入的病毒DNA,通过识别特定的DNA序列并将其切割成特定的片段。

限制性内切酶具有辨识性、切割性和钳制性、修复性四个基本特点。

限制性内切酶启示了分子生物学领域的许多实验技术,如DNA测序、聚合酶链反应(PCR)等,在生命科学研究中得到广泛应用。

限制性内切酶的辨识性是指它们能够识别DNA序列中的特定短序列,并只切割该序列。

每种限制性内切酶具有特定的辨识序列,也称为限制性酶切位点。

这些辨识序列通常是4-8个碱基对长,具有特定的配对规则,如EcoRI的辨识序列是5'-GAATTC-3',其中A和T配对,G和C配对。

在DNA双螺旋结构中,限制性酶通过辨识序列与DNA结合,形成特异性的结合位点。

限制性内切酶的切割性是指它们能够在辨识序列的特定位置切割DNA双螺旋结构。

限制性内切酶通常通过切割特定的磷酸二酯键来断裂DNA链。

它们在辨识序列的特定位点周围创建一个切割位点,通常是辨识序列两侧的不同位置,如EcoRI在辨识序列的前后各切割一个磷酸二酯键,形成两个单链断裂端。

限制性内切酶的钳制性是指它们能够将切割的DNA片段留在切割位点附近,形成特定的断裂端。

例如,EcoRI在切割DNA后会在切割位点的切割位点之间留下两个黏性末端,形成一个单链和一个突出的单链片段。

这种特定的断裂端形式通常有助于进一步的DNA处理和连接。

限制性内切酶的修复性是指它们能够修复被切割的DNA。

在细菌细胞内,限制性内切酶的活性通常伴随着相应的修复酶系统,可以恢复被切割的DNA双链结构。

这种修复过程有助于防止细菌自己的DNA也被限制性内切酶过度切割。

限制性内切酶在分子生物学研究中得到广泛应用。

通过利用限制性内切酶的辨识性,科学家可以在特定的DNA序列上进行定点切割。

切割后的DNA片段可以被进一步用于DNA测序、PCR等实验技术。

限制性内切酶名词解释

限制性内切酶名词解释

限制性内切酶名词解释限制性内切酶(Restriction enzyme)是一类由细菌产生的酶,主要作用是切割DNA分子特定的酶切位点。

限制性内切酶在遗传工程和分子生物学研究中被广泛应用,能够将长的DNA 分子切割成特定大小的片段,从而使得研究者能够更好地研究和操作DNA。

限制性内切酶的发现和研究起源于1970年代。

当时,研究人员发现一些特定的细菌能够产生一种奇特的酶,它对DNA分子具有特异性的切割作用。

这种切割作用通常发生在特定的核苷酸序列上,被称为酶切位点或限制性位点。

每个限制性内切酶所识别和切割的酶切位点都有其独特的序列特征,并且有许多不同类型的限制性内切酶,如EcoRI、BamHI、HindIII等。

限制性内切酶的酶切作用是通过切割DNA分子的磷酸二酯键来实现的。

酶在酶切位点附近结合DNA分子,然后通过水解反应切割两股DNA的骨架,形成切割产物。

限制性内切酶的切割位置对两股DNA是对称的,意味着切割产物的两端都有一小段单链的“黏性末端”。

这种黏性末端的单链序列是由酶切位点的一部分序列决定的,如EcoRI酶切产生的末端序列是5'-GAATTC-3'。

黏性末端可以与其他黏性末端互补配对,形成DNA双链的黏性连接。

这种黏性连接有助于分子生物学研究者将DNA分子重新连在一起,或者将不同的DNA分子连接在一起,从而构建新的DNA分子。

限制性内切酶的应用非常广泛。

一方面,通过限制性内切酶的切割作用,可以将长的DNA分子切割成小片段,从而方便进行测序、克隆和分析。

另一方面,限制性内切酶可以用于DNA重组和基因工程。

研究人员可以利用黏性末端的互补配对原理,将不同的DNA片段连在一起,构建新的DNA分子,例如将外源基因插入到质粒中,形成重组DNA分子。

此外,限制性内切酶还可以用于DNA分子的鉴定和分析,例如通过切割产物的大小和形态来鉴定特定的DNA序列。

总之,限制性内切酶是一种重要的分子工具,广泛应用于分子生物学研究、遗传工程和基因工程等领域。

DNA的限制性内切酶酶切

DNA的限制性内切酶酶切

DNA的限制性内切酶酶切实验目的1.掌握DNA限制性内切酶酶切的原理与实验方法。

2.了解限制性内切酶的特点。

实验原理限制性内切酶是基因工程中剪切DNA分子常用的工具酶,它能识别双链DNA分子内部的特异序列并裂解磷酸二酯键。

根据限制性内切酶的组成、所需因子及裂解DNA的方式不同可分为三类,即Ⅰ型、Ⅱ型和Ⅲ型。

重组DNA技术中所说的限制性内切酶通常指Ⅱ型酶。

绝大多数Ⅱ型酶识别长度为4~6个核苷酸的回文对称特异核苷酸序列(如EcoRⅠ识别六个核苷酸序列5′-G↓AATTC-3′),有少数酶识别更长的序列或简并序列。

实验器材移液器、移液器吸头、1.5ml离心管、离心管架、水浴锅、离心机、制冰机、漂浮板等。

实验试剂(1)DNA样品:质粒pUC19和基因3055。

(2)限制性内切酶、BamH I和EcoR I。

(3)通用型DNA纯化回收试剂盒(试剂盒组成见本篇“实验四DNA片段的纯化与回收”)。

实验操作(1)取2支离心管,在冰上按以下顺序分别配制酶切反应体系(50μl):质粒pUC19/基因3055 43μl限制性内切酶5μlBamH I 1μlEcoR I 1μl(2)加完反应体系后,用手指弹管壁混匀,短暂离心,使反应液甩入离心管底部。

(3)将离心管插入漂浮板上,放置于水浴锅中,37℃水浴15min,然后80℃加热20min终止反应。

(4)使用通用型DNA纯化回收试剂盒回收酶切产物。

注意事项(1)注意要在冰上操作。

(2)加入限制性内切酶时,移液器吸头应贴着离心管壁沿着液面加入。

实验意义限制性内切酶是重组DNA技术中常用的工具酶,在体外构建重组载体时,用于特异性切割载体及目的基因。

思考题如何根据载体和目的基因选取合适的限制性内切酶?。

限制性内切酶的作用及原理

限制性内切酶的作用及原理

限制性内切酶的作用及原理
好的,我来详细解释限制性内切酶的作用及其作用原理:
1. 限制性内切酶(Restriction endonuclease)是一种能识别和切割DNA特定位点的酶。

2. 它能识别双链DNA上的特定短序列(一般为4-8个碱基),并在此处切开双链。

3. 不同的限制性内切酶能识别不同的DNA序列。

例如EcoRI识别GAATTC序列。

4. 限制性内切酶主要来源于细菌,是细菌抵御病毒的免疫机制的一部分。

5. 它们切割入侵病毒的DNA而不切割细菌自己的DNA,因为后者的识别位点通过甲基化反应被保护了。

6. 限制性内切酶的活性需要Mg2+等离子参与。

切割产生的DNA断端带5'或3'的单链突出。

7. 多数限制性内切酶可在室温条件下快速完全切割DNA。

切割产物是较小的线性DNA片段。

8. 在遗传工程中,可用限制性内切酶切割DNA,并利用互补的突出端连接形成重组DNA。

9. 也可以用其生成特定DNA片段用于Southern印记分析、克隆等目的。

10. 通过对DNA切割位点和片段长度分析,限制性内切酶是鉴定基因类型的重要工具。

综上所述,这就是限制性内切酶的作用方式及其生物学功能原理。

它对基因工程研究发挥着重要作用。

DNA的限制性酶切实验原理

DNA的限制性酶切实验原理

学习课程 项目教学 管理 心理学 生
物 计算机多媒体课件
1
一、DNA的限制性酶切实验原理
1. 限制性内切酶的类型
根据限制酶的识别切割特性, 催化条件及是否具有修饰酶活 性可分为Ⅰ、Ⅱ、Ⅲ型三大类。
第一类(I型)限制性内切酶能识别专一的核苷酸顺序,它 们在识别位点很远的地方任意切割DNA链,但是切割的核苷 酸顺序没有专一性,是随机的。这类限制性内切酶在DNA重 组技术或基因工程中用处不大,无法用于分析DNA结构或克
❖ 如果一种特殊的寄主菌株,具有几个不同的限制
与 修 饰 酶 , 则 以 罗 马 数 字 表 示 , 如 HindⅠ, HindⅡ,HindⅢ等。
学习课程 项目教学 管理 心理学 生
物 计算机多媒体课件
7
由 pUC18改造而来,大小为 3162bp 。相当于在 pUC18中增加了带有 M13
噬菌体 DNA 合成的起始与终止以及包装进入噬菌体颗粒所必需的顺式序列。
学习课程 项目教学 管理 心理学 生
物 计算机多媒体课件
8
学习课程 项目教学 管理 心理学 生
物 计算机多媒体课件
9
二、琼脂糖凝胶电泳实验原理
琼脂糖是一种天然聚合长链状分子,可以形成具 有刚性的滤孔,凝胶孔径的大小决定于琼脂糖的浓 度。
DNA分子在碱性缓冲液中带负电荷,在外加电场 作用下向正极泳动。
溴化乙锭(EB)为扁平状分子,在紫外光照射下 发射荧光。EB可与DNA分子形成EB-DNA复合物, 其荧光强度与DNA的含量成正比。据此可粗略估 计样品DNA浓度。
学习课程 项目教学 管理 心理学 生
物 计算机多媒体课件
11
琼脂糖电泳的优点
(1)琼脂糖含液体量大,可达98-99%,近似自由 电泳,但是样品的扩散度比自由电泳小。

限制性内切酶原理

限制性内切酶原理
影响限制性酶活性的因素
限制酶消化DNA底物的反应效率,很大程度上取决于所使用的DNA的纯度。DNA制剂中的含有蛋白质、酚、氯仿、酒精、EDTA、SDS以及高浓度的盐离子等都有可能抑制限制酶的活性。
提高限制酶对低纯度DNA的反应效率,一般采用三种方法: ①增加限制酶的用量。 ②扩大酶催化反应的体积。(以使潜在的抑制因素被相应地稀释) ③延长酶催化反应的保温时间。
30多年前,当人们在对噬菌体的宿主特异性的限制-修饰现象进行研究时,首次发现了限制性内切酶。细菌可以抵御新病毒的入侵,而这种“限制”病毒生存的办法则可归功于细胞内部可摧毁外源DNA的限制性内切酶。首批被发现的限制性内切酶包括来源于大肠杆菌的EcoR I和EcoR II,以及来源于流感嗜血杆菌(Haemophilus influenzae)的Hind II和Hind III。这些酶可在特定位点切开DNA,产生可体外连接的基因片段。
限制酶的种类
I型限制酶 通常其切割位点与识别位点相距千个碱基, 不能准确定位切割位点。例如:EcoB、EcoK。 II型限制酶 所识别的序列多为短的回文序列,切割位点与识别位点一致。是基因工程上,实用性较高的限制酶种类。例如:EcoRI、HindIII。 III型限制酶 切割位点与识别位点相距24-26个碱基,不能准确定位切割位点。例如:EcoPI、HinfIII。
HaeⅠ的识别序列
NotⅠ 的识别序列
5’粘性末端和3’粘性末端
5’NNNGC-OH P-GGCCGC NNN3‘ 3’NNNCGCCGG-P HO-CGNNN5 ‘
5’粘性末端
3’粘性末端
5’NNGGTAC-OH P-CNN3‘ 些限制酶识别的序列不是回文序列。 AccⅠ 的识别切割位点分别是GTAGAC 和 GTCTAC BbvCⅠ 的识别切割位点分别为CCTCAGC和GGAGTCG

生物化学--实验十五DNA的限制性内切酶酶切分析

生物化学--实验十五DNA的限制性内切酶酶切分析

实验十五 DNA的限制性内切酶酶切分析【目的要求】1.掌握限制性核酸内切酶的基本概念、作用特点及作用原理2.熟悉DNA的限制性内切酶酶切分析操作技术及其影响因素3.了解DNA酶解技术生物研究领域的应用【实验原理】限制性内切酶(restriction endonuclease,RE)是一类能识别双链DNA分子中特定核苷酸顺序(一般具有双重对称的回文结构),并以内切方式水解水解双链DNA的核酸水解酶。

它主要分布于细菌体内,目前已发现1800多种。

根据酶的组成、辅助因子及水解DNA的方式不同,可将限制性内切酶分为Ⅰ、Ⅱ、Ⅲ三种类型,而Ⅱ型限制性内切酶是重组DNA技术中常用的限制性内切酶,如Eco RⅠ、BamHⅠ等,它们被誉为分子生物学家的手术刀。

临床上某些遗传病由于基因突变发生在限制性内切酶切割位点,因此当用一定的限制性内切酶切割时,产生的酶切DNA片段大小就会与正常人酶切DNA片段发生差异,因而发生DNA限制性酶切图谱改变,据此可达到基因诊断的目的。

实验选用价格低廉、酶切效果较好的Eco RⅠ(识别位点G↓AATTC)对λDNA进行酶切分析,观察限制性内切酶的特定切割作用及其限制性图谱,理论上可产生21226bp,7421bp,5804bp,5604bp,4878bp和3530bp等不同分子量的DNA片段。

经琼脂糖凝胶电泳后,在紫外扫描仪下摄影即可观察到λDNA的Eco RⅠ限制性酶切图谱。

【实验准备】一、器材1.恒温水浴箱2.电泳仪和电泳槽3.紫外扫描分析仪4.台式高速离心机5.微波炉6.加样枪、EP管及试管架等二、试剂1.DNA底物λDNA或质粒DNA或制备的肝组织DNA。

2.限制性内切酶Eco RⅠ及其缓冲液购自华美生物工程公司,每种限制性内切酶均配有2种缓冲液,在配套的缓冲液中该限制性内切酶均可获得100%酶切活性。

3.10×TAE 电泳缓冲液取Tris24.2g,冰醋酸5.7ml,0.25mol/L EDTA (pH8.0)20ml,加蒸馏水至500ml。

载体双酶切

载体双酶切

载体双酶切载体双酶切引言:遗传工程技术的发展给生物学研究带来了一系列的新方法和新工具,其中双酶切技术就是其中之一。

双酶切技术是利用限制性内切酶的作用原理,将目标DNA分子切割成多个片段,并且每个片段分别由两个酶切位点限制性内切酶切割。

这种技术被广泛应用于DNA分子的结构分析、基因组测序、DNA重组等多个领域。

本文将详细介绍载体双酶切技术的原理、应用及其开展的挑战与前景。

一、双酶切技术的原理1.1 限制性内切酶的作用原理限制性内切酶是一类存在于细菌和古菌中的酶,能够识别DNA分子上特定的序列,并且在这些序列之间切割DNA链。

限制性内切酶的识别序列通常是4-8个碱基对长,且具有对称性,也就是说,在一根链上的序列与另一根链上的序列相同。

限制性内切酶可以将DNA链切割为两个或多个碎片,切割的位点可以是在识别序列之间的特定位置,也可以是识别序列内部的特定位置。

1.2 双酶切技术的原理双酶切技术是利用两个限制性内切酶共同作用于目标DNA分子,将其切割成多个特定的片段。

这两个内切酶在DNA上的切割位点不重叠,从而使目标DNA分子被切割成一个或多个特定长度的片段。

由于两个内切酶切割位点之间的序列具有一定长度,所以双酶切片段的长度是可以控制的。

通过选择不同的限制性内切酶组合,可以得到不同长度的DNA片段,从而达到对目标DNA的准确切割。

二、双酶切技术的应用2.1 DNA分子的结构分析双酶切技术作为一种高效的DNA切割方法,被广泛应用于DNA分子的结构分析中。

通过对目标DNA分子进行双酶切,可以将其切割成多个特定长度的片段。

这些片段可以通过电泳分离,并且可以根据片段的长度顺序排列,从而得到目标DNA分子的结构信息。

此外,双酶切技术还可以用于分析DNA序列中的限制性内切酶位点分布情况,从而揭示DNA序列的特点和功能。

2.2 基因组测序基因组测序是生物学研究的重要手段之一,而双酶切技术在基因组测序中起到了关键作用。

在基因组测序的过程中,需要将基因组DNA分子切割成多个小片段,并且每个小片段都需要标记上特定的序列以便后续的测序反应。

DNA的限制性酶切实验原理

DNA的限制性酶切实验原理
分别加入DNA 5μl, 10×缓冲液2μl,BSA 2ul,EcoRI 1ul, ddH2O 10ul,用微量离心机甩一下,使溶液集中在管底。此步操 作是整个实验成败的关键,要防止错加,漏加。使用限制性内切酶 时应尽量减少其离开冰箱的时间,以免活性降低。
(2)、混匀反应体系后,将eppendorf管置于适当的支持物上 (如插在泡沫塑料板上),37℃水浴保温1小时,使酶切反应完全。
4.酶解温度与时间:
大多数限制酶反应温度为37℃,如EcoRⅠ, HindⅢ, BamHⅠ, PstⅠ等,也有如BclⅠ需在50℃下进行反应, 反应时间根据酶的单位与DNA用量之比来定,原则 是酶:DNA=2-3:1 2小时即可,充分酶解。
学习课程 项目教学 管理 心理学 生
物 计算机多媒体课件
23
Tris·HCl维持反应体系pH值在7.2-7.6之间;
NaCl浓度不同形成3种级别的离子强度:
低盐(10mM NaCl)
中盐(50mM NaCl)
高盐(100mM NaCl)
不同的内切酶选择特定的反应缓冲液。
学习课程 项目教学 管理 心理学 生
物 计算机多媒体课件
22
五、注意事项——限制性内切酶酶切
五、注意事项——DNA凝胶电泳
• 1. 琼脂糖:不同厂家、不同批号的琼脂糖,其 杂质含量不同,影响DNA的迁移及荧光背景的 强度,应有选择地使用。
• 2. 凝胶的制备:凝胶中所加缓冲液应与电泳槽 中的相一致,溶解的凝胶应及时倒入板中,避 免倒入前凝固结块。倒入板中的凝胶应避免出 现气泡,以免影响电泳结果。
Ⅱ型内切酶切割双链DNA产生3种不同的切口--5’端 突出;3’端突出和平末端。
正是得益于限制性的内切酶的发现和应用, 才使得人们能

限制性核酸内切酶

限制性核酸内切酶
限制性核酸内切酶
目 录
• 限制性核酸内切酶的概述 • 限制性核酸内切酶的分类 • 限制性核酸内切酶的工作原理 • 限制性核酸内切酶的应用 • 限制性核酸内切酶的未来发展
01
限制性核酸内切酶的概述
定义和特性
定义
限制性核酸内切酶是一类能识别并附着特定的核苷酸序列,并对每条链中特定 部位的两个脱氧核糖核苷酸之间的磷酸二酯键进行切割的一类酶。
在生物科学领域的应用
基因克隆和DNA重组技 术
限制性核酸内切酶是基因克隆和DNA重组 技术中的关键工具,用于切割和重组DNA 片段。
基因诊断和基因治疗
限制性核酸内切酶可用于检测和纠正基因突变,为 基因诊断和基因治疗提供有效手段。
生物制药和生物技术
限制性核酸内切酶在生物制药和生物技术领 域中用于生产重组蛋白、抗体和治疗性核酸 等生物制品。
双活性酶
02
同时具有切割和磷酸酶活性,如BstAPI。
多活性酶
03
同时具有多种活性,如FokI同时具有切割、磷酸酶和甲基化酶
活性。
03
限制性核酸内切酶的工作原理
识别和切割DNA的过程
识别
限制性核酸内切酶能够识别特定的 DNA序列,通常是4-6个核苷酸组成 的序列。
切割
在识别位点处,限制性核酸内切酶将 DNA链切开,形成两个断开的磷酸二 酯键。
产生黏性末端
限制性核酸内切酶切割DNA后,通常产生具有突出末端的片段,也称为黏性末端 。这种黏性末端可以用于DNA的连接和重组。
04
限制性核酸内切酶的应用
在基因工程中的应用
1 2 3
基因克隆
限制性核酸内切酶能够将DNA分子切割成特定序 列的片段,为基因克隆提供精确的DNA片段。

酶切原理及步骤

酶切原理及步骤

酶切原理及步骤酶切是分子生物学实验中常用的技术手段,用于切割DNA或RNA分子。

酶切的原理是利用特定的限制性内切酶识别特定的DNA序列,然后在该DNA序列的特定位置切割,从而获得特定大小的DNA片段。

以下将详细介绍酶切的原理及步骤。

**酶切的原理**:1. 内切酶的特异性:内切酶是一种酶类蛋白质,具有识别特定DNA序列的特异性。

不同的内切酶可以识别不同长度的DNA序列,例如EcoRI内切酶识别并切割5'G↓AATTC3'序列。

2. 切割方式:内切酶在识别特定DNA序列后,会在特定的酶切位点上切割DNA分子,形成切割后的DNA片段。

3. 切割后的DNA片段:切割后的DNA片段可以被用于分子克隆、DNA测序、PCR等分子生物学实验。

**酶切的步骤**:1. 选择内切酶:根据实验的需要选择合适的内切酶,考虑DNA序列的长度和酶切位点的特异性。

2. 切割DNA:将DNA样品与选择的内切酶一起反应,使酶识别特定的DNA序列并切割DNA分子。

酶切反应通常在特定的温度和时间下进行。

3. 酶切后的处理:酶切后的DNA片段可以通过琼脂糖凝胶电泳进行分离和分析,也可以直接用于后续的实验操作。

4. 实验验证:为了验证酶切反应的成功,可以通过琼脂糖凝胶电泳观察DNA片段的大小和数量,判断酶切的效果。

5. 存储酶切后的DNA片段:酶切后的DNA片段可以在-20℃或更低的温度下保存,避免酶切片段的降解。

酶切技术的应用非常广泛,包括DNA分子的定位、DNA序列的测定、DNA 的连接和修饰等领域。

酶切的原理和步骤的掌握对于分子生物学实验的顺利进行非常重要,希望以上的介绍能够帮助您更好地理解酶切技术的原理及实验操作步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5’粘性末端和3’粘性末端
5’粘性末端
3’粘性末端
5’NNNGC-OH NNN3‘
P-GGCCGC
3’NNNCGCCGG-P ‘
HO-CGNNN5
5’NNGGTAC-OH P-CNN3‘ 3’NNC-P HO-CATGGNN 5 ‘
同尾酶
切割不同的DNA片段但产生相同的粘性末 端的一类限制性内切酶。
II型限制酶 所识别的序列多为短的回文序列,切割位点与识
别位点一致。是基因工程上,实用性较高的限制酶种
类。例如:EcoRI、HindIII。
III型限制酶 切割位点与识别位点相距24-26个碱基,不能准确
定位切割位点。例如:EcoPI、HinfIII。
什么是回文序列?
GAATTAAG C TTAATTC
BamH I
5’-GGATCC-3’ 3’-CCTAGG-5’
Bgl Ⅱ Bcl I Xho Ⅱ
5’-AGATCT-3’ 3’-TCTAGA-5’
5’-TGATCA-3’ 3’-ACTAGT-5’
5’-UGATCY-3’ 3’-YCTAGU-5’
同裂酶
有一些来源不同的限制酶识别的是同样的核苷 酸靶子序列,这类酶称为同裂酶。识别序列和切 割位点都相同的叫同序同切酶,识别序列相同但 切割位点不同的叫同序异切酶。 例如:HpaⅡ和MspI为同序同裂酶(C^CGG)。 XmaI和SmaI为同序异裂酶,都识别CCCGGG,但 Xma I的切点在C^CCGGG,形成带有CCGG的粘 性末端;而Sma I的切点则在CCC^GGG,形成平 末端。
GAATATTC CTTATAAG
II型限制酶 ApaI BamHI BglII EcoRI HindIII KpnI NcoI NdeI NheI NotI SacI SalI SphI XbaI XhoI
识别序列: 5'GGGCC^C 3' 识别序列: 5' G^GATCC 3' 识别序列: 5' A^GATCT 3' 识别序列: 5' G^AATTC 3' 识别序列: 5' A^AGCTT 3' 识别序列: 5' GGTAC^C 3' 识别序列: 5' C^CATGG 3' 识别序列: 5' CA^TATG 3' 识别序列: 5' G^CTAGC 3' 识别序列: 5' GC^GGCCGC 3' 识别序列: 5' GAGCT^C 3' 识别序列: 5' G^TCGAC 3' 识别序列: 5' GCATG^C 3' 识别序列: 5' T^CTAGA 3' 识别序列: 5' C^TCGAG 3'
粘性末端和平末端
II型限制酶切割DNA后形成粘性末端或平末端 分别由错位切和平切形成。能形成粘性末端的酶 在基因工程中应用最多。
5’NNNGTT 3‘NNNCAA
AACNNN3’ TTGNNN5’
HaeⅠ的识别序列
ห้องสมุดไป่ตู้
5’NNNGC NNN3‘
GGCCGC
3’NNNCGCCGG
CGNNN5

NotⅠ 的识别序列
DNA的甲基化程度
识别序列中特定核苷酸的甲基化作用,会 严重影响酶的催化效率。
为避免这样的问题,在基因克隆中使用的质 粒DNA是从失去甲基化酶的大肠杆菌菌株中提 取的。
酶切消化反应的温度
不同的限制酶具有不同的最适反应温度。 大多数核酸内切限制酶的标准反应温度是 37℃,有些核酸内切限制酶的最适反应温度 低于标准的37℃,SmaI是25℃、ApaI是30℃; 有些高于标准的37℃,例如MaeI是45℃、 BclI是50℃、MaelII是55℃。
DNA的纯度
限制酶消化DNA底物的反应效率,很大程 度上取决于所使用的DNA的纯度。DNA制剂 中的含有蛋白质、酚、氯仿、酒精、EDTA、 SDS以及高浓度的盐离子等都有可能抑制限制 酶的活性。
提高限制酶对低纯度DNA的反应效率,一 般采用三种方法:
①增加限制酶的用量。 ②扩大酶催化反应的体积。(以使潜在的抑 制因素被相应地稀释) ③延长酶催化反应的保温时间。
II型限制酶
1
限制酶的定义
限制性核酸内切酶是可以识别DNA的特异序 列,并在识别位点或其周围切割双链DNA的一类
内切酶,简称限制酶。限制酶在基因工程中广为 使用。
限制性核酸内切酶
分布极广,几乎在所有 细菌的属、种中都发现 至少一种限制性内切酶。 细菌通过自身的限制酶, 破坏入侵的外源DNA, 从而保护自身。
限制酶的发现
30多年前,当人们在对噬菌体的宿主特异性 的限制-修饰现象进行研究时,首次发现了限制 性内切酶。细菌可以抵御新病毒的入侵,而这种 “限制”病毒生存的办法则可归功于细胞内部可 摧毁外源DNA的限制性内切酶。首批被发现的限 制性内切酶包括来源于大肠杆菌的EcoR I和EcoR II,以及来源于流感嗜血杆菌(Haemophilus influenzae)的Hind II和Hind III。这些酶可 在特定位点切开DNA,产生可体外连接的基因片 段。
命名
Escherichia Coli Ry13
EcoR I
属名 种名 株系 编号
切割频率
切割频率是指某限制性核酸内切酶在DNA 分子中预期的切割概率。可以估算该限制性 核酸内切酶在某种DNA分子中的切点数。
前提是:假定DNA的碱基组成是均一的、 碱基排列在DNA分子上是随机分布的。这样每 个位点上,每一种碱基出现的概率即为1/4 。
特殊的II型限制酶
有些限制酶识别的序列不是回文序列。
AccⅠ 的识别切割位点分别是GTAGAC 和 GTCTAC
GT↓ATCGAC CATAGC↑TG
BbvCⅠ 的识别切割位点分别为CCTCAGC和GGAGTCG
CC↓TCAGC GGAGT↑CG
影响限制性酶活性的因素
1) DNA的纯度 2) DNA的甲基化程度 3) 酶切消化反应的温度 4) DNA的分子结构 5) 限制性核酸内切酶的缓冲液 6) Star活性(星活性)
如果某限制性核酸内切酶的识别序列是6 bp,则其切割频率为(1/4)6 =1/4096,即每 隔4.1kb就可能有一个切割点。当识别序列为 n个 bp, 则其切割频率为(1/4)n 。
2
限制酶的种类
I型限制酶 通常其切割位点与识别位点相距千个碱基, 不能
准确定位切割位点。例如:EcoB、EcoK。
相关文档
最新文档